i-views 5.3

O
ol 1 -

~esil*Views
OO0

00O
000
o I J

Contents

[1 Knowledge-Builder|

[1.7.7 Buildingblocks|
[1.1.2 Type hierarchy - Inheritance|
[1.1.3 Createand editobjects|,
[1.1.4 Graph editor]. v v i e e e e e e e e

[1.2.7 Definetypes| o o o e e e e e

[1.2.2 Relation types and attributetypes|
[1.2.3 Modelchanges|

[1.2.4 Representation of schema in the graph editor|.

[1.2.5 Metamodeling and advanced constructs|
[1.2.6 INAeXING| o e e e e e e e

1.3

Searches/ QuUeries| e

[1.3.T Structured qUErIeS| o i e e e

[1.3.2 Simple Search / Fulltextsearch|

[1.3.3 Searchpipelinel

[1.3.5 The searchin the knowledge builder|

[1.3.6 Special cases| e

M4

Folder and registration|. e

M5

Import and export] e e e

[1.5.17 Mapping of datasources|,

[1.5.2 Attribute typesandformats|.

[1.5.3 Configuration of theexport|
[1.5.4 RDF-Import/export] e

[1.5.5 Restore deleted individuals fromabackup|

[1.5.6 Transportselectedschemal

M6

Access rights and triggers| o o i e e

[1.6.1 Check ofaccessright|.

1.6.2 Triggern o o
[1.6.3 Filtertypes|.

|1.6.4 Operation parameters|. oo

[1.6.5 Operations|. e e

00O
000
o I J

£34

[1.6.6 Testsurrounding| i e 207

[1.7 View Configuration| i e 210
[1.7.7 Concept] o o i e e e e 212
MZ2ZMENUSl « .« v o v ot e e e e e e e 218
MZ3ACHONS . .« o v ot e e e 221
[1.7.4 View configurationelements| 244
[MZ5 Panelslot 283
[LZ76 Sessionsl e 290
[1.7.7 Knowledge Builder configuration|. 290
.. 296
[1.7.9 Detector system for determining the view configuration|. 298

[1.8 JavaScript APl e 301
(.81 Introductionl. 301
[1.8.2 Examples|. 304
[83 Modulesl e 317
[1.8.4 Debugger| e 319
L85 APTextensionsl. o 320

[[9 RESTservicesl o i e e e e e e 322
[1.9.17 Configuration| 323
[MO2 SEIVICES] .« v v ot e e e e e e 323
[[9.3 Resources 323
1.9.4 CORSl e 332
[1.9.5 OpenAPldocumentation|, 332
[1.70 Reportsand printing] i e e e 337
[1.10.1 Create printtemplates|. 337
[1.10.2 Create printtemplatesforlists| 344
[1.10.3 Document format conversion with Open / LibreOffice| 346
EOING| . . . e e e e e e e e e e e e e e e e e 347

[1.71.1 Configuration| e e 348
[1.71.2 View configuration| i 355
[1.11.3 Tagging by SCript] v i e e e e e e 356
[1.11.4 Required software| i e 357
[1.12 Development support] e 357
121 Devtoolsl. e 357
[L12.2 Devservicel 357

[T.13 Rule enginel e 357

00O
000
o I J

£34

[L13. 1 Whatarerules?l e 357
[1.13.2 Where can rules be configured?, 358
[1.13.3 How canrules be configured? 358
[1.13.4 Testing rules|. e 366
[1.13.5 Executingrules| 368
2_Admin Tooll 368
2.1 Admin tool configuration| e 368
2.2 Taunchwindowl 369
R2ZTServen . .o oo 369
[2.2.2 Knowledgenetwork| 369
2.3 Information| 369
[2.2.4 Manage, Newand Next|, 371
25 End . . . oo 371

[2.3 Create a new knowledge network|, 371
R3TServenl 371
[2.3.2 New knowledge network| 372
2.3.3 Password (mediator)] 372
R3ZTICENSE . . . o v ot 372
35 Usernamel. e 372
[2.3.6 Password (USer)|. o i e e e 373
3.7 Okandabortl 373

2.4 Server administration| 373
.41 Networkoverviewl 374
2.4.2 Messagefield| e 374
43 Menulinel 374

2.5 Individual network administrationl oo 376
2.5.1 User authenticationl« 376
[2.5.2 Individual network administration windowf 377

[~ View Configuration Mapper] 405
B.1 _Introductionl e 405
[3.2 Configuration| e e 405
[3.2.17 View configurations for the View Configuration Mapper| 406
[3.2.2 Loginconfiguration|. e 416
[3.2.3 The View Configuration Mapper component| 416
[3.2.4 Create a project with the View Configuration Mapper|. 419

O
00e
et £
[3.2.5 Modifytemplates|. 419
[3.2.6 Operatethefrontend| 420
B3TACtionsl o 420
[3.4 Viewconfigelements| e 422
BAT Generall. . .« . oot 422
B.42 Alternativel. 422
3.4.3 Group|. e 423
[3.4.4 Hierarchy|. e 425
[3.4.5 Properties| 429
[3.4.6 Property] e 431
BAZ EdI . . . oo oo 435
BAB Tablelo 437
3.49 Searchl 445
[3.4.10 Graph configuration| 461
BATTTEXT . . . o v oot e 463
3.4.72Tmage]. e 464
[3.4.13 Script generated HTML| 464
[3.4.74 Scriptgenerated VIEW|. v v v v i e e e e 465
[3.5 Bookmarksand history] e 466
3.51 BookmarkResourcel 466
352 LlinktoPanels| 469
[3.5.3 In-app navigation with bookmarks|. 472
... 472
[3.6.1 vcm-plugin-calendar| L 473
[3.6.2 vcm-plugin-chart] e 473
[3.6.3 vcm-plugin-html-editor] 476
[3.6.4 vem-plugin-maps|o e 478
[3.6.5 vcm-plugin-markdown|. 479
[3.6.6 vcm-plugin-timeling| 481
[3.6.7 vcm-plugin-net-navigator] 483
[3.7 Special configuration| e 486
[3.7.1 Display change history inaweb frontend|. 486
3.8 Installation] e 489
[3.9 EXtension project] e e e e e e 489
[3.9.1 Developmentenvironment| 490

00O
000
o I J

£34

4__i-views services| 490
BT Generall. . .« oot 490
[4.1.17 Commandline parameter|. e 490
|4.1.2 Configurationfilel 490
B2 Mediaton o v ot 495
B2T Generall. . . . v v ottt 496
[4.2.2 Systemrequirements| e 496
[4.2.3 Operatingmodes|. i e 497
424 Installationl. 500
[4.2.5 Operation]| e 506
4.3 Bridgel. e 510
B3I Generall. . .« oot 510
|4.3.2 Common command line parameters| 511
|4.3.3 Configurationfile "bridge.ini"| 512
[4.3.4 RESTbridgel e 513
[43.5 KEMbridge] 518
436 KloadBalancerl 519
.. 520
BAT Generall. . .« oot e 520
|4.4.2 Configuration of the Jobclient|. 521
45 Blobservicel 531
M51 Introductionl. e 531
[4.5.2 Configuration| e 532
453 SSLcertificates] e 533

1 Knowledge-Builder

1.1 Basics

When using i-views, databases work the way people think: simple, agile and flexible. That
is why in i-views many things are different than relational databases: we do not work with
tables and keys, but with objects and the relationships between them. Modelling of the data
is visual and oriented towards examples so that we can also share it with users from the spe-
cialist departments.

With i-views we do not set-up pure data storage but intelligent data networks which already
contain a lot of business logic and with which the behaviour of our application may, to a large
extent, be defined. To this end we use inheritance, mechanisms for conclusions and for the
definition of views, along with a multitude of search processes which i-views has to offer.

Our central tool is the knowledge builder, one of the core components of i-views. Using the
knowledge builder we can:

define the scheme but also establish examples and, above all, visualise

define imports and mappings from a data source

phrase requests, traverse networked data, process strings and calculate proximities

define rights, triggers and views

All these functions are the subject of this documentation. One continuous example is a se-
mantic network surrounding music, bands, songs, etc.

1.1.1 Building blocks

The basic components of modelling within i-views are:

e specific objects

e relationships

e attributes

e types of objects

e types of relationships
e types of attributes

Examples for specific objects are John Lennon, the Beatles, Liverpool, the concert in Lither-
land Town Hall, the football world cup in Mexico in 1970, the leaning tower of Pisa, etc.:

00O
000
o I J

"'@The Beatles

aJohn lenil "‘Concert in Litherland Town Hall

We can link these specific objects together through relationships: "John Lennon is a member
of the Beatles", "The Beatles perform a concert in Litherland Town Hall".

"@The Beatles

Qjohn lenneR "'°Concert in Litherland Town Hall

Additionally, we have introduced four types here: specific objects always have a type, e.g.
the type of persons, type of the cities, the events or the bands - types which you may freely
define in your data model.

00O
000
o I J

FOLDER

KNOWLEDGE BASE

«) Object Types Name
| 1 -
Business-Net Blonde Redhead

¥ Component Blur

’ EY
. Document Deep Purple

¥ 2 Event Eels
@ Location Garbage

3 .
’ Musical Instrumei Gnarls Barkley
4 % Person or Group
4 @ Organization/C
42 Band

% Company

Gorrilaz
Rolling Stones
The Beatles

& Person

The main window of i-views: on the left-hand side the types of objects, on the right-hand side the
respective, specific objects - here we can also see that the types of the i-views networks are within
a hierarchy. You will find out more about the type of hierarchy in the next paragraph.

Even the relationships have different types: between John Lennon and the Beatles there is
the relationship "is member of"; between the Beatles and their concert the relationship could
be called "performed at" - if we want to generalise more, "participates in" is perhaps a more
practical type of relationship.

"@The Beatles

participates in

is member of

QJohn | et +°Concert in Litherland Town Hall

The same applies for attributes: in the case of a person these may be the name or the date of
birth. Specific persons (objects of the type 'person’) may then have name, date of birth, place
of birth, address, colour of eyes, etc. Events may have a location and a time span. Attributes
and relations are always defined with the object itself.

00O
000
o I J

1.1.2 Type hierarchy - Inheritance

We can finely or less finely divide types of objects: we can put the football world cup in 1970
into the same basket as all the other events (the book fair in 2015, the Woodstock festival,
etc.), then we only have one type called "event" or we differentiate between sport events,
fairs, exhibitions, music events, etc. Of course, we can divide all these types of events even
finer: sport events may, for example, be differentiated by the types of sports (a football
match, a basket ball match, a bike race, a boxing match).

In this manner we obtain a hierarchy of supertypes and subtypes:

@Event

The hierarchy is transitive; when we ask i-views about all events, not only all specific ob-
jects are shown which are of type event, but also all sports events and all bike races, boxing
matches and football matches. Hence, since the type "boxing match" is not only a subtype of
"sport event", i-views will reject a direct supertype / subtype relationship between event and
boxing match - with a note that this connection is already known.

The hierarchical structure does not necessarily have to have the structure of a tree - a type
of object may also have several upper types. However, an object may only have one type of
object.

If we then wish to join the aspects of a concert and major event we cannot do this in the
specific concert with Paul McCartney because we need the type of object "stadium concert"
in order to do this:

00O
000
o I J

@Event

OSport Event

OCOF‘CG“ @Ma}or Event @M'\mor Event eFootbaH Competition

@Wor\d Cup @District—League Competition
OStad'\um Concert Club Concert

"‘o Paul McCartney - 1990 in Estadio Maracana @Football World Cup 1970 Mexico

Type hierarchy with multiple inheritance

The affiliation of specific objects with a type of object is also expressed as a relation in i-views
and may as such be queried:

eStad]um Concert

is individual of

"'° Paul McCartney - 1990 in Estadio Maracana

When do we differentiate between types at all? Types do not only differ in icon and colour -
their properties are also defined in the types and when queried, the types can also easily be
filtered. The inheritance plays a major role in all these questions: properties are inherited,
icons and colours are inherited and when, in a query, we say that we wish to see events, all
objects of the subtypes are also shown in the results.

00O
000
o I J

Person or Group

participates in

@ Event

QConcert

is member of eOrganizatiorVGroup

°Per'son

0

gﬁand QCIub Concert

omhn Lennon

"‘°Concert in Litherland Town Hall
0 .is member of

@ The Beatles

Inheritance makes it possible to define types of relations (and types of attributes) further up in the
hierarchy of the object type and hence use them for different types of objects (e.g. for bands and
other organisations.

@ participates in

1.1.3 Create and edit objects

Creating specific objects

Specific objects (in the knowledge builder they are called "instances") may be created every-
where within the knowledge builder where types of objects can be seen. Based on the types
of objects, objects can be newly created via the context menus.

00O
000
o I J

= —l=
Suhtypes(Instances

FOLDER .n. XOD =

KNOWLEDGE BASE

. 4O Object Types

P Y Business-Net

Name

Amy Winehouse
%% Component

» & Document
» T Event
& Location
¥ Musical Instrume
4 % Person or Group ‘ OK | ‘ Cancel |
» % Organization/C | _

3 Person

Ringo Star4

David Black

David Rowie
An object can be created by means of the button "new" and using the named entered

In the main window below the header there is the list of specific objects already available.
In order that objects cannot inadvertently be created twice, the name of the object can be
keyed into the search button in the header. The search does not, by default, differentiate
between upper and lower case and the search term may be cut off left and right (supplement
by placeholders "*" and "?"):

/e Subtypes | Instances

= oo

KNOWLEDGE BASE

Paul*
4 O Object Types Name
@ Location Paul

’ Musical Instrume: Paul McCartney
4 8 Person or Group
» % Organization/C

3 Person

Editing objects

After entering and confirming the name of the object, further details for the object created
may be keyed into the editor. The object may be assigned attributes, relations and extensions
by using the respective buttons.

00O
oy I
ol I

i-views 5.3

14534

Person
Ringo Starr m

Attributes

» Name = | Ringo Star
Relations
Extensions

When editing an object we can, in addition to linking it to another object, also generate the
target of the link if the object does not already exist.

For example, members of a music band are documented completely. Via the relation, we
want to link the member Ringo Starr with the object "The Beatles". If it is not yet clear whether
the object Ringo Starr is already documented in i-views you can use the search button to
ascertain this,

Band
The Beatles @

Attributes
» Name = | The Beatles
Relations
has member = ot
has member = John Lennon

Concert in Litherland Town Hall

Add relation

or via the icon button, select ‘Choose relation target’ .4: from a searchable list with all
feasible targets of relation.

participates in

00O
000
o I J

Firma | Person

B -

Ringo*

Name

Ringo Starr

P Name Ringo Starr

Deleting the relation has a member may be accomplished in two different ways:

1. Delete in the context menu using the button further actions = and the option 'delete’.
2. With the cursor over the button further actions = and holding down the Ctrl key.

The target object of the relation itself will not be deleted as a result of this however. If an ob-
ject has to be deleted this is done via the button x in the main window or via the context

menu directly on this object.

Objects may also be created using the graph editor. This process is described in the following
paragraphs.

1.1.4 Graph editor

1.1.4.1 Introduction graph editor

By using the graph editor, knowledge networks with their objects and links can be depicted
graphically. The graph editor may be opened on a selected object using the graph button:

00O

:: i-views 5.3
00 16224
—-—
p| Subtypes |Instances ‘ =0
FOLDER -
BDEBEE %05 =
KNOWLEDGE BASE |€
<0 iject Types Name A
P H _
¢ Business-Net Mariner's Revenge Song
>
f Component Medication (Garbage)
» 2
2 Document Mental
» T Eyent o
@ Location oz liis el Mother's little helper
) Not ready yet)
Musical Instrumel Ohlala & Edit
» & Person or Group = A ‘\“
» O Role J+ Open graph editor) |
» ¥ Topic Mother's little he Bk
4 3 work % Print
& Album Attributes Schema
£ 5 Reengineer 3
i o T Create copy
» & Relation types
¥ &5 Attribute Types ¥ Delete

The graph always shows a section of the network. Objects from the graph may be displayed
and hidden and you can navigate through the graph.

@IBth Nervous Breakdown

Legend °Keith Richards "'@Mother‘s little helper
° Band

° Person
"'° Rolling Stones
@ sons

°Mick Jagger
’ Club Concert

‘Concert in Madison Square Garden

In the graph editor not only a section of the network may be displayed: objects and relations
may be edited as well.

On the left-hand side of a node there is a drag point for interaction with the object. By
double-clicking on the drag point all user relations of the object will be displayed or hidden.

Linking objects via a relation is carried out in the graph editor as follows:

OO

O

—
&

o] 1 J

&

o] 1 J

&

1. Position the cursor over the drag point to the left of the object with the left mouse
button.

2. Drag the cursor in a held down position to another object (drag & drop). If several
relations are available for selection, a list will appear with all feasible relations. If there
is only one feasible relation between the two objects, this will be selected and no list will
be shown.

s

® @ Rolling Stones

+
.@Bill Wyman

In order to display objects in the graph editor there are different options:

e Objects may be dragged from the hit list in the main window to the graph editor window
using drag & drop.

e If the name of the object is known it can be selected via the context menu using the
function "show individual".

If an object is to be hidden from the graph editor, it may be removed from there by clicking it
and dragging it from the graph editor holding down the Ctrl key. In doing so, there will be no
changes in the data: the object will exist unchanged within the semantic network but it will
not be displayed anymore in the current graph editor section.

New objects may also be created in the graph editor. To do this we drag & drop the type of
object from the legend on the left-hand side of the graph editor to the drawing area:

00O
000
o I J

19th Nervous Breakdown

Legend OKeith Richards
o Band

" Mother's little helper

Qe — |
°Mick Jagger
° Club Concert

otConcert in Madison Square Garden

If there are no types of objects to be seen in the legend you can search for them using a right
mouse click in the legend area. Following this, the name of the object will be given.

Leaend QKeith Richards
o Band

o Person

The editor will re-appear in which the possible relations, attributes and enhancements for
the object can be edited.

Add type

1.1.4.2 Operations on objects in the graph editor

The name can be changed later on in the Admin tool or the Knowledge Builder. The user
created in this way automatically has graph administrator rights. Right-clicking the object in
the context menu allows other operations to be executed. For the most part, this context
menu provides the same functions as the form editor, however also includes other graph
editor-specific components.

00O
000
o I J

+
"'@The Beatles

% v

The Beatles ... *

Bearbeiten
Umbenennen
Graphisch darstellen

L&schen

Knoten ausblenden

Mavigation »
Darstellung »
Zusammenfassen

Erweiterungen
Berechnete Relationen
Fixieren

Kirzester Pfad

Verbundene Knoten ausblenden

The following graph editor-specific functions are available in this context menu:

e Hide node: The node can be hidden here.

e Navigation - Extensions: Opens the extensions for an object.

e Navigation - Calculated relations: Opens the calculated relations for an object.

e Navigation - Fix: Fixes the position of a node in the graph editor, so that it is not repo-
sitioned even when the layout is restructured. The fixed node can be undone using the
Release option.

e Navigation - Shortest path

1.1.4.3 View

The menu "View" provides many more functions for the graphic illustration of objects and
types of objects:

Graph Selection

®

Lecend

Q
2

Default Settings
Change Background

Auto hide nodes

Auto layout nodes

Mode alignment
Fix all labels
Show internal names

recover hidden edges

¥ | Highlight relations

) (

oI I J
oI I J

Default settings: Opens the menu with the default settings for the graph editor. This
menu is also available in: global setting window -> register card "personal" -> graph.

There you can set whether attributes, relations and enhancements should appear in a small
mouse-over-window above the object and how many nodes at a maximum will be visible in
one step:

e Show bubble help with details: if the mouse pointer stops on one node the details of
the first ten attributes and relations will be displayed in a yellow window if bubble help
was previously activated. (check "show bubble help with details" in the global setting
window register card "personal" graph)

e Max nodes: if a node/object has a lot of adjacent objects it often doesn't make sense to
show them all by clicking on the drag point.

Change Background: The background color can be changed or a picture can be set as back-
ground.

Auto hide nodes: automatically hides surplus nodes as soon as the number of desired
nodes is exceeded and shown. The number can be set in the input field "max. nodes" in
the toolbar:

max. Node:| 5 =

Auto layout nodes: automatically implements the layout function for newly displayed
nodes.

Fix all labels: using this option the names of all relations are always visible, not only when
rolled over with the mouse. Alternatively, the description may be fixed directly in the context
menu of a relation.

Show internal names: displays the internal name of types of in brackets

recover hidden edges: all edges hidden by means of the context menu are shown again

The window of the graph editor and the main window of the knowledge builder provide even
more menu items which may offer support when modelling the knowledge network.

On the left-hand side of the graph editor window there is the legend of the types of objects.

00O
000
o I J

Graph View Selection

*’ }'% < max. Node:| 5 =

% Working Folder (wor
W Private

19th Nervous Breakdown

Keith Richard
o i "'Mother‘s little helper

Legend

o Band
o Person
song

°Concert in Madison Square Garden
Club Concert

°Mick Jagger
+° Rolling Stones

[] re-use last relation

This legend shows the types of objects for the specific objects on the right-hand side.

By dragging & dropping an entry from the legend into the drawing area you can create a new
specific object of the corresponding type.

Via the context menu for the legend entries all specific objects can be hidden from the image.
Here you can also "hold" legend entries and add new types of objects to the legend (regard-
less of whether specific objects of this kind are represented in the image).

If the drag point has been clicked to show the adjacent objects a selection list will appear
instead of the objects.

00O
000
o I J

e,

Please choose

Accordion Player

Bass Player
Composer
Drummer

Guitarist
Pianist
Producer
Vocalist

(De)select all
| OK | |Cancel|

1.1.4.4 Bookmarks and history

The menu graph contains more functions for the graph editor:

Bookmarks: parts of the knowledge network or "sub-networks" can be saved as bookmarks.
The objects are saved in the same position as they are placed in the graph editor.

Graph View Selection

*

“ | New Bookmark|(wor

% Private

Leaend

° Band

o Person

@ Song

. Club Concert

e <

max. Node:

° Keith Richards

"'° Rolling Stones

.Concer’c in Madison Square Garden

@ch Nervous Breakdown

00O
000
o I J

When a bookmark is created it may be given a name. All nodes contained in the bookmark
are listed in the description of the bookmark.

Bookmarks, however, are not data backups: objects and relations which were deleted after
a bookmark was saved are also no longer available when the bookmark is shown.

Graph View Selection

* X rw <
W Working Folder (workil
% Private

+ Rolling Stones Sub 19th Nervous Breakdown

max. Node:| 5 [+

Keith Richard
o il el "'Mother‘s little helper

Leaend

o Band
owﬁck Jagger
"'@Rolling Stones
° Person

Song

‘Concert in Madison Square Garden
Club Concert

[re-use last relation

History: using the buttons "reverse navigation" and "restore navigation" elements of a (sec-
tion of) a knowledge network may be hidden again in the order of sequence in which they
were shown (and vice versa). Furthermore, these buttons reverse the auto layout. The but-
tons can be found in the header of the graph editor window or in the menu "graph".

< >)

Undo navigation (Page up)

19th Ne
°Ke'|th Richards

Layout: the layout function :n enables you to position nodes automatically when many

nodes are not allowed to be positioned manually. When more nodes are displayed they will
also be automatically positioned in the graph via the layout function.

AN

000

o] 1 J

&

o] 1 J

&

Copy into the clipboard: this function creates a screenshot of the current contents of the
graph editor. This image may then be inserted into a drawing or picture processing pro-
gramme, for example.

Print: opens the dialogue window for printing or for generating a pdf file from the displayed
graph.

Cooperative work: this function enables other users to work on the graph mutually and
simultaneously. All changes and selections of a user on the graph (layout, showing/hiding
nodes, etc.) will then be shown to all other users synchronously.

View Selection
@ Copy to clipboard w<>
Open for cooperative work

Close

Rolling Stones Suk

@ Keith Richards

1.2 Definition of schema / model

1.2.1 Define types

The principle of the type hierarchy was already presented in Chapter 1.2. If new types are to
be created this is always done as a subtype of a type which already exists. Creating subtypes
can be carried out either via the context menu Create -> Subtype

«) Role
Role

Al
Bz & Edit

c /e Rename

Di >+ Open graph editor
_'- Show in tree

Gt |

pi N Print

Create '@ Subtype

Reengineer (% Instance

Pr

WV

¥ ¥ Topit

¥ 4 worl

or in the main window using the tab "Subtypes" above the search field and the tab "new":

Copy schema to folder

H Delete

00O
000
o I J

OO Subtypes Instances

FOLDER .E. XOD =

KNOWLEDGE BASE

>

4 O Object Types
» ' Business-Net

Name

Accordion Player

¥ Component

= Document

Compaoser
» T Event P New subtype of Role:
" Drummer
Locati .
. oca. on Guitarist
: Musical Instrumei Pianist
» & Person or Group
Producer
« O Role
po . Role
Accordion Play Vocalist

& Bass Player

Changing the type hierarchy

In order to change the type hierarchy we have the tree of object types in the main window
and the graph editor.

In the hierarchy tree of the object editor we will find the option "Removing supertype x from
y" in the context menu.

00O
000
o I J

@ Location
¥ Musical Instrume
» & Person or Group
4 O Role
& Accordion Play
¥ Bass Player
& Composer
& Drummer
¥ Guitarist
& Pianist
& Producer
¥ Vocalist
» & Topic
“ 3 Work
‘& Album
% Song
¥ «" Relation types
¥ & Attribute Types

TECHNICAL

£ >

i-views 5.3

26534

O Knowledge Base

» ¥ Business-Net

“ Component
¥ = Document
» I Event

@ Location

¥ Musical Instrument
» & Person or Group
» O Role
» ¥ Topic
“ 4 work

‘& Album

Properties of the type

* Name

Farbe

Symbol

Definition
Internal Name

Abstract

- = 1 1

= Sond

]

Create new subtype

£ Add subconcept

ox Remaoving supertype "Work™ from "Song”
¥ "Song" Delete

Uuration =

Using this option we can remove the currently selected object type from its position in the
hierarchy of the object types and with drag & drop we can move an object type to another
branch of the hierarchy. If we hold down the Ctrl key when using the drag & drop function
the object type will not be moved but additionally assigned to another object type. What still
applies is: the hierarchy of the object type allows multiple assighments and inheritance.

00O
000
o I J

i-views 5.3

27234

¥ Musical Instrument

* % Person or Group

» O Role Record label
* ¥ Topic
" Work O Knowledge Base Properties of the type
» " Relation types » J Business-Net
» & Attribute Types ¥ Component * Name
TECHNICAL » & Document Farbe
> T Event Symbol
@ Location
Musical Instrument
4 % Person or Group Definition

4 % Qrganization/Group

43 Band
% Company
2 Person i Move type Record label under type Company?
S Yes \L'
4 O Role —_—
* ¥ Topic Attributes of objects
¥ 43 work

* Inherited Attributes

Configuring object types with properties

In the simplest case we define relations and attributes with an object type such as "band" or
"person" and thus make them available for the specific objects of this type. (For example the
year and location the band was established, date of birth and gender of people, location and
date of events.)

If the object type for which the properties are defined has more subtypes the principle of
inheritance will take effect: properties are now also available for the specific objects of the
subtypes. Example: as a subtype of an organisation, a band inherits the possibility of having
people as members. As a subtype of "person or band" the band inherits the possibility of
taking part in events:

00O
000
o I J

i-views 5.3

28534

i)

is member of

0 Person

°John Lennon

is member of

@Person or Group

participates in

i] @ Event

eOrganization/Group ?
0Concer‘t
0
0

@Band
eclub Concert

"‘.Concert in Litherland Town Hall

participates in

> °The Beatles

O Knowledge Base

* ¥ Business-Net
& Compaonent
¥ 2 Document
» T Event
@ Location
Musical Instrument
4% Person or Group
eE Organization/Gr
42 Band
4 Company
& Record label
& Person
* O Role
» ¥ Topic
» ¥ work

* Inherited Attributes

relations of objects
is author of
is band of
is performer of
“ Inherited Relations
has location
has member
is supervised by
participates in
tags

writes text

Define New Attribute

Instances of Work
Instances of Guitarist
= Instances of Work
= Instances of Location > Person or Group
Instances of Firma, Instances of Person

> Organization/Group

= Instances of Person > Organization/Group

Instances of Event > Person or Group

Instances of Document > Knowledge Base

Instances of Work

Define New Relation

> Person or Group

The editor for the object type "band" with directly defined and inherited relations there.

00O

:: i-views 5.3
o0 291534

Band
The Beatles
Attributes
» Name = | The Beatles
Relations
has member = John Lennon
has member = Paul McCartney

has member Ringo Starr

is author of = Across the Universe (Beatles)
is author of = Eleanor Rigby

is author of = I'm a Loser (Beatles)

is band of = Ron Wood (Guitarist)

participates in Concert in Litherland Town Hall

First Concert in Star-Club

With a specific object the inherited properties are available without further ado and the dif-
ference goes without notice.

participates in

Defining relations

When dealing with relations, the following basic principle governs ati-views: a relation cannot
only be unidirectional. If we know of a relation for the specific person "John Lennon" to be
"is a member of the band The Beatles" it then implies for the Beatles the contents "it has a
member called John Lennon". These two directions cannot be separated. Therefore, i-views
demands from us the types of source and target of the relations when creating new relation
types - in our example that would be person and band as well as differing names: "is member
of" and "has member".

& ™
OO0

\
ol 1}
ol 1}

Type of relation

Mame of new relation
Mame of inverse relation
Domain

Target domain

Create Cancel

with own inverse relation

is member of

has member

Person

Band

Hence the relation is defined and can now be moved between objects using drag & drop.

Defining attributes

When defining new attribute types, i-views needs, above all, the technical data type as well

as the name. The following technical data types are available:

Type of data What do the values look | Example (music network)
like?

Attribute abstract attribute, without
an attribute rating

Selection freely definable selection | design of a music instru-
list ment (hollowbody, fretless,

etc.)

Boolean »Yes« Or »No« music band still active?

Data file random external data file | WAV file of a music title
which will be imported into
the knowledge network as a
»blob«

Date date dd.mm.yyyy (in the | publication date of a record-
German language setting) ing medium

Date and time date and time dd.mm.yyyy | start of an event, e.g. con-
hh:mm:ss cert

Colour value colour selection from a
colour palette

Flexible time month, month + day, year, | approximate date when a
time, time stamp member joined a band

OO

&

O

o 1

&

ol I _

&

Floating point number

numerical value with a ran-
dom number of decimal
places

price of an entrance ticket to
an event

Integer

numerical value without
decimal places

runtime of a music title in
seconds

Geographical position

geographical coordinates in

location of an event

password a clearly hashed
value (Chaum-van Heijst-
Pfitzmann) which is only
used to validate the pass-
word

WGS84 format

Band without attribute rating,
serves as a medium for
meta attributes to be
grouped

Internet link link on a URL website of a band

Interval date interval: interval of | period of time between the
numbers, character string, | production of an album and
time or date its publication

Password per attribute entity and

Reference to [...]

reference to parts of the
network configuration:
search, diagram of a data
source, scripts and files -
is used for example in the
REST configuration

Character string

random sequence of al-
phanumeric characters

review text to a recording
medium

Time

time hh:mm:ss

duration of an event

The intention of using these data types is not to define everything as character strings. Tech-
nical data types in a defined format later offer special feasibilities of inquiring and compar-
ing. For example, numerical values may be compared to larger or smaller values within the
structured queries and a proximity search can be defined for geographic coordinates, etc.

1.2.2 Relation types and attribute types

Relation types and attribute types (in brief property types) are always properties of specific

objects.

1.2.2.1 Create a new relation type
Via the button "add relation" in the object editor the editor starts to create a new relation
type.

Type of relation | with own inverse relation hd
MName of new relation

MName of inverse relation

Domain

Target domain

Create Cancel

Editor for creating a new relation type (see also Chapter 2.1 Defining types)

Name of new relation: names for relation types may be chosen freely within i-views but
should be selected under the premise of a comprehensible data model. The following con-
vention may be of help for this: the name of the relation is phrased in such a manner that
the structure [name of the source object] [relation name] [name of the target object] results
in a comprehensible sentence:

[John Lennon] [is a member of] [The Beatles]

Furthermore it is helpful when the opposite direction (inverse relation) takes on the word
selection of the main direction: "has a member / is a member of".

Domain: here we define by which object types the relation has to be created: one object type
forms the source of the relation and another object type the target. The tareget object type,
in turn, forms the definition area of the inverse relation. To simplify matters, when creating
you may only enter one object type at this stage. Afterwards, further object types may be
defined in the editor for the relation type (see below).

1.2.2.2 Create a new attribute type

Via the button "define new attribute" in the object editor the editor starts to create a new
attribute type:

00O
000
o I J

X

Choose attribute value type

Attribute ~
Boclean
Choice

Color value

Attribute name | Stage Namel

Date

Date and time

File

Flexible time

Float

geo position

Group

Integer

Internet shortcut

Interval

Password

Reference to Mapping of a data source
Reference to Organizing folder
Reference to Query

Reference to Script

Reference to Semantic elements folder
String

Time v

Supertype
Defined for

Internal Name

Cancel

Two-stage dialogue for creating a new attribute type

Attribute

tances of Person

(] May have multiple occurrences

Cancel

In the left-hand window the format of the attribute type is defined (date, floating point num-

ber, character string, etc.)

The following technical data types are available:

Type of data What do the values look | Example (music graph)
like?

Attribute abstract attribute, without
an attribute rating

Boolean »yes« Or »N0« music band still active?

Choice string values which can be | role; design of a music in-
selected from a drop-down | strument (hollowbody, fret-
menu less, etc.)

Colour value colour selection from a
colour palette

Date date dd.mm.yyyy (in the | publication date of a record-
German language setting) ing medium

Date and time date and time dd.mm.yyyy | start of an event, e.g. con-
hh:mm:ss cert

OO

&

O

o] 1 J

&

o] 1 J

&

File random external data file | WAV file of a music title
which will be imported into
the Knowledge Graph as a
»blob«

Flexible time month, month + day, year, | approximate date when a

time, time stamp

member joined a band

Float (floating point num-
ber)

numerical value with a ran-
dom number of decimal
places

price of an entrance ticket to
an event

geo position (geographical

geographical coordinates in

location of an event

position) WGS84 format
Group without attribute rating,
serves as a medium for
meta attributes to be
grouped
Integer numerical value without | runtime of a music title in

decimal places

seconds

Internet shortcut link on a URL website of a band

Interval date interval: interval of | period of time between the
numbers, character string, | production of an album and
time or date its publication

Password per attribute entity and

password a clearly hashed
value (Chaum-van Heijst-
Pfitzmann) which is only
used to validate the pass-
word

Reference to [...]

reference to parts of the
Knowledge Graph configu-
ration: search, diagram of a
data source, scripts and files
- is used for example in the
REST configuration

String (character string)

random sequence of al-
phanumeric characters

review text to a recording
medium

Time

time hh:mm:ss

duration of an event

After selecting and confirming the attribute type it can be further specified with the name of
the attribute in the subsequent dialogue.

Supertype: here it is defined at what level in the hierarchy the attribute type should be
placed.

00O
000
o I J

May have multiple occurences: attributes may occur once or more than once, depending
on the attribute type: a person only has one date of birth but may, for example, have several
academic titles at the same time (e.g. doctor, professor and honorary consul).

1.2.2.3 Edit details

The dialogs for creating new attribute and relation types are limited views of the attribute
and relation type editors. To edit details of relations and attributes, editors must receive and
enhanced scope of functions.

You get to these two editors via the listing of relations and attributes on the “Schema” tab of
the object editor:

p Untertypen | Objekte = Objekte (Ohne Vererbung)

T wgene
4 ~

I © | |- ° |~ LIk

@ Target group

“ Tool
4 2 Dokument

~ Kommentar
4 Y Inhalt

Name
Erstes Konzert im Star-Club
Konzert im Madison Square Garden

Konzert in der Litherland Town Hall

% Musik Schlagw:
49 Musik Stil

%% Komponente

Konzert im Madison Square Garden

¥ Musikinstrument

SOrt Attribute
b Rolle
4 % Subjekt * Name = | Konzert im Madison Square Garden
» @ Organisation/C Attribut hinzufiigen
2 Person
Relationen

4 T Veranstaltung

» 7T .
GroBveranstalt hat Teilnehmer = % Loschen (Strg)

» @ kleine Veranste
» P Konzert

M Messe

Umwandeln

» 2 Sportveranstalt
4 43 Werk
‘® Album

Relationsquelle neu wahlen

Relationsziel neu wahlen

Alternatively, you can use the hierarchy tree on the left side of the main window for access.
The hierarchies for relation and attribute types are located underneath the object types. The
editors are started by right-clicking on the relation or attribute to be edited in the context
menu and choosing “Edit” 4.

00O
000
o I J

P 2 Veranstaltung
¥ 43 Werk

£+ Relationstypen
&L Attributtypen

TECHNIK

Next, we will look at the details of the definition of properties by using the relation type editor
as the example (the attribute type definition is a subset thereof):

hat Ort
Ubersicht
«" Relation — "
Symbol =
» & Abkiirzungsrelation g ‘ ‘ wO
44" Benutzerrelation Attribut oder Relation hinzufiigen
«" beherrscht Instr Definiti
efinition
«" benutzt fur
« betreut Interner Name ‘ b
¢ betreut B Subjekt Hinzufiigen
< enthalt
</ enthalt
«" enthalten in
s
hat P\UIJ[OI’ Ziel ort Bearbeiten
«" hat Beitrag von
«" hat Bestandteil
¢ hat Coverversior Inverser Relationstyp ist Ort von
«" hat Feature
Abstrakt O
«" hat Interpret
¢ hat Komponist Kann mehrfach vorkommen
«" hat Kunde Mix-In |
<" hat Mitglied Einseitige Relation |
«" hat Mitwirkende
1 |
< hat Ort y Hauptrichtung .

Defined for: Here we can subsequently check for which object types the relation can be
created. Relations can be defined between several objects and thus have several sources
and targets.

In this way, we can allow persons and bands to be authors of a song in the schema or as-
signed a location - even if they do not have a super-type in common.

We can use the “Add” button to add additional objects. We can use “Remove” to prevent this
object type and all its objects from entering into this relation.

“Change” makes it possible to replace an object type. Already existing relations are then
deleted by the system. If there are relations to be deleted, a confirmation prompt appears
before the change is made.

Target: Here you can change retrospectively for which types of objects the relation can
be used. To change the target object type you have to switch to the inverse relation type:
The button for changing bears the label of the inverse relation type. After clicking on the

button, the inverse relation appears in the editor and can be edited in the same way as the
previous relation.

Abstract: If we want to define a relation which is only used for grouping but is not supposed
to define concrete properties, we define it as “abstract.”

Example: If the relation “Writes song” is defined as abstract, this means: if we create songs
and their relation to artists and bands, we can now enter specific information (who wrote the
lyrics, who wrote the music). The unspecified relation “Writes song” cannot be created in the
actual data but can only be used for queries.

May have multiple occurrences: One characteristic of relations is whether they may have
several occurrences. For example: the relation “Has place of birth” can only occur once for
each person whereas e.g. the relation “is member of” can occur several times for a person.
Hence, logical matters can be modeled precisely. For example, musicians as persons can
only have one place of birth but (at the same time) can also be members of several bands.
Whether the relation can occur multiple times is specified independently for each direction
of the relation: A person can only have one place of birth but the place can be the place of
birth of several persons.

The option can only be deactivated if the relation does not occur several times in the actual
data set. If it occurs several times, the system cannot decide automatically which of the rela-
tions is to be removed.

Mix-in: Mix-ins are described in the Extension chapter.

Main direction: Every relation has an opposite direction. In the core, the two directions are
equivalent, but there are two places where it makes sense to determine a main direction:

e In the Graph editor: Here the relations always present themselves in the main direction
in relation to the direction of the arrow and labeling; irrespective of the direction in
which they were created.

e For single-sided relations (without inverse relation)

Additional setting options for relations and attributes are located in the “Definition” sub-item
on the “Details” tab. The setting options under Definition are often used and that is why they
are already available on the Overview tab. Under “Definition (advanced)” in contrast, there
are setting options that are not required as frequently.

00O
000
o I J

Aufgabe gehdrt zu Prozessschritt

Ubersicht Details

~
« Relation Typ
v o Benutzerrelation Definition
Berechnete Relati
o Berechnete Relation 4 Schemadefinition Inverser Relationstyp Prozessschritt hat Aufgabe
v " Systemrelation Objekt
Typ Abstrakt m|
4 View-Konfiguration Kann mehrfach vorkommen
4
Objekt Mix-In m|
Details
Objektliste Einseitige Relation
4 Typ Hauptrichtung O

Details

Definition (erweitert)
Objektliste

Indexierung Behavior Kinfinity.KObjectBehaviour
Zahler y x
Namensattribut fir Typen & x
Eigenschaft ist iterierbar Aletiv ~
Richtwert fir minimales Auftreten 0 p x
Richtwert fir maximales Auftreten & x v

Counter: If a number is entered in the counter, this is the number with which objects of
this type are counted up. The JavaScript functions getCounter(), increaseCounter() and set-
Counter() can be used to access the counter.

Name attribute for objects: (Note: can only be set on object types, not relation or attribute
types)

Typically many views in i-views only represent an object via its name (e.g. in object lists,
hierarchies, in the Graph editor, the relation target search, etc.). Instead of the name you can
use any other attribute of the objects here with which it can be represented. A prominent
example for products: The article number.

Name attribute for types: This can be used also to select an alternative attribute for a more
descriptive display for types.

Property can be iterated:
Selection options: Active / Write only / Inactive.
Default: Active.

Sometimes the maintenance of the index for iterating properties severely affects perfor-
mance. This typically happens with meta properties such as “changed by” or “changed on”
which do not necessarily have to be taken into account all the time. In such cases we rec-
ommend setting the properties to cannot be iterated by using the “Inactive” selection option.
The purpose of “Write only” is to deny read access but still allow write access. This makes it
possible to test for inadvertent side effects.

Reference value for minimum occurrence: This reference value relates to the user inter-
face in Knowledge Builder and as of Version 5.3 it also affects the user interface in the web
front-end and specifies the minimum number of times a property is supposed to occur on an
object. If the number falls below the specified number, the property is displayed in red in the
user interface but the object can continue to exist. An import ignores the reference value.

Reference value for maximum occurrence: As of Version 5.3, this reference value relates
to the user interface in Knowledge Builder and the user interface in the web front-end. It
specifies the maximum number of times the property should occur on an object. If the spec-
ified number is reached, no additional properties can be created. An import ignores the ref-
erence value.

1.2.2.4 Single-sided relations
Application of single-sided relations - basic principles

When an object is called up for import purposes or displaying in view configuration, all of
its properties will be loaded (especially when not indexed sufficiently). This in turn means
that besides of the attribute values, all existing relations will be loaded including their target
objects as well, leading to an overhead which slows down performance.

Especially for catalog objects, the loading of all properties can lead to long loading duration. A
catalog object is an object which serves as central reference for other objects and therefore
is interrelated with them.

Example: A semantic network has objects of the type "city" which are connected by relations
to its citizens. When a detailed view of a city has to be loaded for indicating the number of
citizens only (and not their names, addresses and hobbies etc.), single sided relations serve
for this purpose.

In this case, the single-sided relations direct from the individual satellite objects towards the
catalogue object. This results into the relation "is citizen of" being visible on the citizen side
only, but the relation "has citizen" from the city towards the citizens will be suppressed. Nev-
ertheless, the 'virtual' relation "has citizen" can be used for structured queries and it can be
found within the schema.

Defining single-sided relations

In order to define a single-sided relation, we must specify in the dialog which relation half
(original or inverse orientation) has to be kept virtual, in other words "invisible". Here fore
we choose the checkbox "virtual" on the affected half. The other relation half automatically
becomes the real relation half which builds up the relationship between start domain and
target domain.

OO

&

O

o] 1 J

&

o] 1 J

&

=,= MNew relation type X

Type of relation | with own inverse relation hd
Relation Inverse relation

MName is citizen of has citizen

Domain Instances of Person Instances of City

Internal Mame
virtual O

Create Cancel

Single-sided relation
= wvisible"/real
relation half

Lnvisible” fvirtual
relation half

Supplementary declaration of a conventional relation as a single-sided relation

When a preliminary declared conventional relation type is going to be converted into a single-
sided relation type, the instances of the virtual relation half will be deleted. This process can
be inverted when redefining the relation form. Then the particular relation halves are going
to be determined again.

The conversion to single-sided relations will show its effect as follows: For a catalog object, all
the virtual relation halves including their relation targets are not going to be displayed any-
more. But the virtual relation instances are still represented as an instance in the knowledge
network and therefore can be called up in structured queries.

In the best case, when defining import mappings for large amounts of objects that relate to
a catalog object, always use the real, single-sided relation type half. This can lead to perfor-
mance improvement when importing.

00O
000
o I J

Delete all elements
Marph
Convert to One-Way-Relation

=
[+ 1]

B X € i

Edit

Edit unconfigured

Cepy internal name
Rename

Open graph editor
Open uncenfigured graph editor

Show in tree
Print

Reengineer
Delete

Access rights
References
Copy ID
Script

RDF export

i-views 5.3

41/534

[204/1,002 = 20%]

Remaining: 8 Seconds

3-555 Mowve from is citizen of to is citizen of (temp)

Pazzed: 2 Seconds

As a result, the checkbox "Single-sided relation" indicates that the respective relation half is

used as a single-sided relation.

Hint: The checkbox of the Boolean attribute "Single-sided relation" only serves for indication
purpose. A redefinition only can be executed via the context menu in the detail editor.

00O
000
o I J

Single-sided relation

VS.

Single-sided relation

Hint: After conversion to single-sided relation, the performance for indicating virtual rela-
tions can be improved by means of indexing.

Supplementary conversion of a single-sided relation into a conventional relation

If we realize afterwards that a relation type actually should be declared as a conventional
relation type, a correction can be made without further consequences. In the detail editor of
the relation type, we therefore click onto the context menu and choose Reengineer > Convert
to normal relation.

Edit

Edit uncenfigured

Copy internal name

B
[+]

Rename
Open graph editor
Open uncenfigured graph editor

Show in tree

€ i

Print

Delete all elements Reengineer ?
Maorph
Convert to normal Relation

Delete

B X

Access rights >
References

Copy ID

Script >
RDF export

Immediately, the Knowledge-Builder changes all existing virtual and single-sided relations
into normal relations.

Supplementary swapping of the orientation of a single-sided relation type

The supplementary change of orientation of the single-sided relation type is done analogous

via the "Reengineer" command in the context menu of the detail editor. In order to do this,
we change to the opposite relation type half which has to be converted from virtual to single-
sided and choose Reengineer > Convert to one-way relation.

1.2.3 Model changes

In i-views you can make changes to the runtime of the model:

e implement new types

e make random changes to the type hierarchy (without creating tables and giving any
thought to primary and secondary keys).

The system ensures consistency. When creating objects and properties the opposite direc-
tion of a relation is always included. Attribute values are checked as to whether they match
the defined technical data type (for example, in a date field we cannot enter any random
character string).

Consistency is also important when deleting: dependent elements always have to be deleted
with them so that no remaining data of deleted elements stays in the network.

e Thus, when an object is deleted all its properties will be deleted along with it. If, for
example, we delete the object "John Lennon" we also delete his date of birth and his
biography text which we can have as a free text attribute for each person, etc. Likewise,
his relation "is member of" to the Beatles and "is together with" to Yoko Ono. The
objects "The Beatles" and "Yoko Ono" will not be deleted; they only lose their link to
John Lennon.

e When deleting a relation the opposite direction is automatically deleted with it.

Since i-views always ensures that the objects and properties are in accordance with the
model, deleting an object type or, where necessary, an operation has far-reaching conse-
guences: when an object type is deleted, all its specific objects are also deleted - analogue to
the relation and attribute types.

In this process, i-views always provides information on the consequences of an operation.
If an object has to be deleted, i-views lists all properties which will thus be removed in the
confirmation dialogue of the delete operation:

000

—
&

o] 1 J

&

o] 1 J

&

Delete the following objects?

4 |5 venue of
Mame: is venue of
4 Liverpool is venue of Concert in Litherland Town Hall
Concert in Litherland Town Hall has venue Liverpool
4 has venue
Mame: has venue
has venue (Instances of Location)
Subtypes of has venue
15 venue of (Instances of Event)
Subtypes of is venue of

i-views controls where, by the change, objects, relations or attributes become lost. The user
is made aware of the consequences of the deletion.

Not only the deletion, but also conversion or change of the hierarchy type may have its con-
sequences. For example, when objects have properties which no longer comply with the
model after a change in type or change in the inheritance.

Event

relation, that has to be deleted

e(oncprt

relations, that would disappear
caused by that operation

00;1}) Concert ostad\um Concert

) . Paul McCartney - 1990 in Estadio Maracana
b (R . . @
@F"“ Cancert in Star-Club @Concert in Litherland Town Hali

@ Paul McCartney

>} Liverpool + @ The Beatles

Let us assume that we delete the relation "is supertype of" between "event" and "concert"
and thus remove the object type "concert" and all its subtypes from the inheritance hierarchy
of event to add them to "work", for example. In this case, i-views draws our attention to
the fact that the "has participants" relations of the specific concerts would be omitted. This
relation is defined in "event" and would thus no longer apply to the concerts.

There are possibilities for preventing the omission of relations as a result of model changes.
If an object type has to move within the type hierarchy, for example, the model of the af-
fected relation has to be adapted prior to this.

For example, if "concert" is to be located under "work" within the hierarchy and no longer un-
der "event". To this end, the relation "has participants" will be assigned to a second source:
that can be either the object type concert itself or the new item "work". The relation will

00O
000
o I J

hence not be lost.

i-views pays particular attention to the type hierarchy. If we delete a type from the middle
of the hierarchy or remove a super/sub relation type, i-views then closes the gap which has
ensued and puts back the types which have lost their supertypes into the type hierarchy to
the extent that they keep its properties as far as possible.

Special functions

Changing type: objects already in the knowledge network may be moved to objects of an-
other type. For example, if the object type "event" differentiates to "sports event" and "con-
cert". If there are already objects of the type sports event or concert in the knowledge net-
work, they may be selected from the list in the main window and quite simply moved to a
new, more suitable object type using drag & drop.

Alternatively, we can find more information in the context menu under the item "edit".
Select type: using this operation we can assign a property to an object.

Date of the event:
01.01.2020

Cﬂ.ﬂba reunion-concert

Reselect relation target: in relations this does not only apply to the source, but also the
relation target.

Benny Andersson [participates]

Abba reunion-concert

Convert subtypes to specific objects (and vice versa): the border between object types
and specific objects is, in many cases, obvious but not always. Instead of setting up only one
object type called "musical direction" as in the case of our sample project, we could have
set up an entire type hierarchy of musical directions (we decided against this in this network

OO

&

O

o] 1 J

&

o] 1 J

&

because the musical directions classify so many different things such as bands, albums and
songs and therefore they do not provide any good types). It may happen, however, that we
change our minds in the middle of the modelling. For this reason, there is the possibility
of changing subtypes into specific objects and specific objects into subtypes. Any relations
which may already exist will be lost in the process if they do not match the new model.

Converting the relation: source and target of the relation will remain the same, only the
relation type will be converted.

Converting the attribute: source/object will remain the same but it will be assigned to
another attribute type:

Benny Andersson

Date of the event: i e
01.01.2020 O 01.01.2020
Abba reunion-concert

Abba reunion-concert

Benny Andersson

[participates]

When converting the individual relations we are usually quicker when we delete these and
replace them with another one. However, it may happen that meta properties are attached
to the properties which we do not want to lose. On the other hand, the converting opera-
tions are also available for all properties of a type or a selection thereof. A prerequisite is,
of course, that the new relation or attribute type is also defined for the source and target
objects.

If changes are made to the model, consideration should always be given to the fact that
restoring a previous condition may only be carried out by installing a backup. Analogue to
the related databases there is no "reverse" function.

1.2.4 Representation of schema in the graph editor

Until now we have mainly been dealing with linking of specific objects within the graph ed-
itor. Presenting such specific examples, discussing them with others and, where necessary,
editing them is also the main function of the graph editor. We can, however, also present the
model of the semantic network directly using the graph editor, e.g. the type of hierarchy of a
network.

Types of objects will then be displayed as nodes with a coloured background and types of
relations as a dotted line:

O
e
00 (|
5} Location
Domain of

is venue of ‘

Inverse term of the relation

. has venue

Domain of

Event

Relation types in the graph editor

If until now we have been referring to relations in the graph editor, this concerned relation
objects between specific objects of the knowledge network. Moreover, the general types of
relations (hence the diagrams of the relations) may also be presented in the graph editor. A
relation is depicted in the graph editor as two semi-circles which represent the two directions
(main direction and inverse direction). Therefore, between these two nodes there is the rela-
tion "inverse type of relation™:

plays Instrument ‘

Inverse term of the relation
. ist played by

The presentation of a type of relation and the hierarchy within the graph editor may be shown
analogue to the object editor with all supertypes and subtypes:

00O

o] 1 J

&

o] 1 J

&

“ Relation
is broader type of
is broader type of is broader type of
Relation of System
Bl AT Relation of Abbreviation

0 User relation

is broader type of

is broader type of

. has author is broader type of ‘ + has style

is broader type of

Lyrics written by .

Attribute types may also be depicted in the graph editor - they are shown as triangular nodes.

Attribute

is broader type of is broader type of

is broader type of

Alternative Name
MName

Year

Analogue to the type of object hierarchy the hierarchy of the relations and attributes within
the graph editor may be changed by deleting and dragging the supertype relation.

1.2.5 Metamodeling and advanced constructs

00O
000
o I J

1.2.5.1 Enhancements

As a further means of modelling, i-views offers the possibility of enhancing objects.

For example, if a person performs the role of a guitarist in a band but plays another kind of
instrument in another band. In addition, the person exercises the role of the composer.

Role: guitarist

J#) Bass guitar

49 Guitar

+® @Faces
"@ Rolling Stones Ron Wood

@Jeﬁ Beck Group

Role: bassist

Role: composer

@) ohlala 3] stay With Me

The fact that one person can play different roles in a knowledge network may be regulated
via a special form of a object type. This may not contain any objects, but enhance objects
from another object type (e.g. in this case "person"). For this purpose, the object type "role"
is implemented into the knowledge network, for example and the different roles created for
persons as subtypes: guitarist, composer, singer, bassist, etc. In order that these "role object
types" may enhance objects this function will be defined in the editor for the object type by
checking the box "type can extend objects":

00O
o] 1 J
o I J

i-views 5.3

50234

Guitarist

O Knowledge Base
» ¥ Business-Net
“ Component

» & Document
* F Event
@ Location
@ Musical Instrument
» & Person or Group
4« O Role
& Accordion Playe
@ Bass Player
& Composer
& Drummer
@ Guitarist

<

Properties of the type

» Name = ‘Guitarist ‘
Farbe = -
Symbol = ‘ ‘ al)
Definition

M9

Internal Name

Abstract O
O

Type is not abstract
g -
Type can extend objects E

Enhancements are displayed in the graph editor as a blue dotted line:

0 Person

extends individuals of

ORole

i

OCompcser

OBass Player

OGuitarist

"'°Ron Wood

As a result of this enhancement we have achieved several things simultaneously:

00O
000
o I J

¢ We have formed sub objects for the persons (we can also imagine these as sections or -
with persons - as roles). These sub objects may be viewed and queried individually. They
are not independent, when the person is deleted the enhancement "guitarist" along
with the relations to the bands or titles are gone.

o We have expressed a multi-digit content. We cannot express anything on separate rela-
tions between persons, instruments, title/band - in this case the assignment would no
longer succeed.

Ron Wood
{composer)

Ron Wood
(composer)

@ Stay With Me Ron Wood (bassist)

"'ORon Wood

Ron Wood (bassist)

°Jeff Beck Group
GBass guitar
OGuitar *°Ro|ling Stones

Ron Wood

{guitarist)

For this purpose the relation "plays in the band" for the enhancement "guitarist" has to be
defined. This effect that persons inherit an additional model via the enhancement may be
helpful regardless of multi-digital contents.

From a technical point of view, the enhancement is an independent object which is linked to
the core individual by means of the system relation "has enhancement" or inverse "enhanced
individual". Its type (system relation "has a type") forms the enhancement type.

00O
000
o I J

[has type]

Guitarist
[has type]

Band
[has extension]

[plays in] Artist XY

Person

Artist XY

When defining a new enhancement, two object types play a role: in our example we want to
give persons an enhancement and we have to provide this information to your type "person".
The enhancement itself again has an object type (usually even quite a lot of object types); in
our case "guitarist". With the type "guitarist" (and with all others with which we want to en-
hance the persons) his specific objects will be dependent.

When querying enhancements in the structure search we have to traverse individual rela-
tions. From the specific person via the relation "has extension" via the enhancement object
"Guitarist". From there you can reach the band via the relation "plays in band".

+ 3 Persan
o + has extension | © + Guitarist
+ playsinband | © + |@&Band
o B
Name 4 has extension
Ron Wood Ron Wood (Guitarist)

Mix-in

The essence of this example with the role "guitarist" is that the relation "plays in a band" is
linked to the enhancement but not with the person. Hence, a consistent assignment is pos-
sible with several instruments and several bands.

If the option mix-in is selected the relation, on the other hand, is created with the core object
(person) itself. The reason for this is that enhancements are sometimes not used to express
more complex contents but to assign an object polyhierarchically to different types. This ob-
ject inherits in this manner relations and attributes of several types.

When we setup an extensive type hierarchy of events, for example, with the subdivision into
large and small events, outdoor and indoor events, sports and cultural events, we can either
characterise all combinations (large outdoor concert, small indoor football tournament, etc.)
or create the different types of events as possible enhancements of the objects of the type
"event". Then we can assign an event via its enhancements as a football tournament and, at
the same time, as an outdoor event as well as a large event. Via the enhancement "football
tournament" the relation "participating team" may then be inherited, via the enhancement

00O
000
o I J

"outdoor event", for example, still the property "floodlight available". When we have placed
these properties in mix-in they may be queried like direct properties in the events.

If a mix-in enhancement is deleted it acts like a "normal" enhancement: there has to be at
least one enhancement available which entails the mix-in property. When the last of these
enhancements is deleted the relation or the attribute in the core object is also deleted.

1.2.5.2 Shortcut relations

A special form of the relation is the shortcut relation. Hidden behind this is the possibility to
shorten several relations already available and defined and which are present in the seman-
tic graph database in a connected row by means of a suitable relation. In this manner the
system can, to a certain extent, draw a direct conclusion from A to B from an object A in the
semantic graph database which is connected to an object B via several nodes.

For example, a band publishes a recording media in a certain style of music, ergo this style
of music can likewise be assigned to this band:

+ .@?First Impressions of Earth

Potential shortcut
relation

is author of

In the form editor the inferred relation path is defined via the relations "is author of" and
"has style".

Owverview | Details
~

«" Relation 2 {is author of}!* >> {has style}* -

Type
4« Shortcut relation Definition v
ol iti .
< + has style Inferred relation patt TanSitive ensions | Change relation Remove
'f + has topic o | # Schema definition 2= il e

In the queries the shortcut relation can be used like any other relation as well.

In the current version of i-views it is recommended that several nodes and edges be queried
via search modules as a result of the improved overview in the structured queries.

00O
000
o I J

1.2.5.3 Meta properties

In Chapter 2.1 properties of a lesser complexity in object types for objects were defined. For
example, users can add or edit contents to the music knowledge network which we are treat-
ing here as an example via a web application. It should, however, be noted which information
was changed from whom and when. To do this, attributes and relations and, in turn, for at-
tributes and relations are required in all combinations.

Attributes to attributes: for example, discussions and reviews are listed in the music knowl-
edge network as text attributes for music albums. If it is to be noted when discussions and
reviews were added or when they were last changed we can define a date attribute which is
assigned to the discussion and review attributes:

changed at: 01.04.2015
Attributes to relations:

Review: one of the badest albums i ever...
Revolver

This date attribute may also be located at a relation between albums and personal senti-
ments such as "moods" if the users are given the possibility of tagging:

Revolver

Playfu changed at: 01.04.2015

Relations may be used on attributes and on relations. For example, those users should be
documented who have created or changed an attribute (e.g. review of an album) or a relation
between an album and a mood at certain times:

00O
000
o I J

Mick J.

[writes]

Review: one of the badest albums i ever...
Revolver

[has mood] Revolver

Playful

[generates]

Mick J.

These examples together with the editing information form a clearly demarcated meta level.
Properties of properties are, however, usable for complex "primary information":

If, for example, the assignment of bands or titles to the genres be weighted, a rating as
"weight" may be given to the relation as an attribute.

An attribute of a relation may also be the sum of a transfer or the duration of participation
or membership.

Relations to relations may also be expressed as "multi-digit contents". For example, the fact
that a band performs at a festival (that is a relation) and in doing so takes a guest musician
with them. He doesn't always play with the band and hence doesn't have a direct relation
to it. Likewise, he cannot be generally assigned to the festival but is assigned to the perfor-
mance relation.

Modelling of meta properties may, of course, also be realised by implementing additional
objects. In the last example the fact that the band performed at a festival enabled an object
of the type "performance" to be modelled. A significant difference is that in the meta model
the primary information can simply be separated from the meta level: the graph editor does
not show the meta information until it is requested and in queries, also in the definition of
views the meta information can simply be left out. The second difference lies in the delete
behaviour: objects are viable independently. Properties, even meta properties, are not on

00O
000
o I J

the other hand; when primary objects and their properties are deleted the meta properties
are deleted with them.

Incidentally: properties can not only be defined for specific objects but also for the types
themselves. A typical example of this is an extensive written definition with a object type, e.g.
"what do we understand by a company?" That is why we are always asked whether we want
to create them for concrete objects or subtypes when creating new properties.

1.2.5.4 Multilingualism

The attributes "character string", "data file attribute" and" selection" may be created multi-
lingually. In the case of the character string attribute and data files, several character strings
may then be entered for an attribute:

Album
Pablo Honey m

Attributes
* Name Pablo Honey
4 Review Pablo Honey is the debut studio album by the English alternative rock band Radiohead, released in February 1993. The album was produced by Sean Slade

English Pablo Honey is the debut studio album by the English alternative rock band Radiohead, released in February 1993. The album was produced by Sean Slade

German Pablo Honey ist das im Winter 1993 erschienene DebUtalbum der britischen Band Radiohead. Das Album enthélt den Song Creep, der zum bekanntesten St

Add attribute

With data file attributes several images (e.g. with labels in other languages) may be uploaded
analogically. In the case of selection attributes all selection options are deposited in the at-
tribute definition; here it doesn't matter in which language the selection for the specific object
is made.

All other attributes are depicted in the same manner in all languages, e.g. Boolean attributes,
integers or URLs.

If the image deviates in other languages attributes adapt their image automatically, depend-
ing on the language: for example, dates according to European spelling day|month|year are
shown in US format month|day|year.

In i-views separate attributes are not simply deposited for values in other languages, instead
they remain as a separate layer for an attribute with language variations. You don't have to
bother about the management of different languages when developing an application, but
only the desired language for the respective query:

Name: Gitarre
Name: Guitar

Beschreibung: Die Gitarre ist ein Musikinstrument
aus der Familie der...

Description: a guitar is a popular musical
instrument that makes...

Q00O

—

In i-views preferred alternative languages can be defined: if there is no attribute value, e.g.
a descriptive text in the queried language the missing text can be shown in other languages
if they are available. The order of sequence of the alternative languages may also be defined.

Multilingual settings are, for example, used in search.

1.2.6 Indexing

Indexing forms part of the internal data management of databases. Used correctly, the set-
ting of indexes can improve performance significantly.

Background: In i-views, all semantic elements (types or objects) are generally stored in a
cluster with their properties (attributes or relation halves). For certain transactions or uses,
however, it can be better to only load part of the information. Instead of having to load the
entire elements or clusters to read a few properties for queries, a corresponding index is
used to refer exclusively to the required properties. Metaphorically, these indexes are both
signposts and shortcuts to the required partial information.

The requirement for indexing in structured queries or during import mapping becomes ap-
parent through various notes: In import mapping, if an object is not identified using the
primary name, as expected, but through a different attribute, the note appears: “No usable
index for [...]."

=80

test 1: Objekte von Single File Document

- 1: Objekte von Single File Document (Identifikation nicht optimal) Abbildung Identifizieren Log Optionen

2: Attribut description o .)
Objekt identifizieren durch folgende Abbildungen:

2: Attribut description: Kein nutzbarer Index fiir description

Import mapping with message regarding missing index

+ [[Robjext
S i (mdjrequired_for | &) + MsofortmaBnahme
q !

Bedingung bearbeiten iﬁ Ik

[MaBnahme - Gesundheitszustand]
Kein nutzbarer Index fiir (md)required_for

Structured query with message regarding missing index

Indexing can improve performance in particular when it comes to writing data (= importing).
Indexing is required for:
e Transaction:

Read transactions: Search/structured query; view configuration
Write transactions: Imports (import mapping)

e Checking rights

AN

&

OO0

o] 1 J

&

o] 1 J

&

Depending on the intended use, suitable indexes must be selected for certain attributes or
relations.

The indexes are defined in the Knowledge Builder settings. The assignment of the indexes
can take place either in the settings of the KB or in the Detail editor of a type (Details >
Indexing > Assign index).

1.2.6.1 Manage and apply available indexes
Available indexes (Settings > Index configuration)

All indexes created in the Knowledge Builder can be managed centrally in the settings.

% Einstellungen - O x

Personlich System Indexkonfiguration

Indexilter Verfugbare Indizes:
Indizes Name Filterbezeichner Typ Status Neu anlegen
Lucene-Yolltextindex (JNI) externalFulltext Lucene-Volltextindex (JNI) aktiv
Metriken Metriken Metriken aktiv
System Index fur Systemrelationen aktiv
Index fur Relationen topic-»value Zusammensteckbarer Indexer aktiv
Index fir Attributwerte topic->value (domain segmented) Zusammensteckbarer Indexer aktiv
value-> property Zusammensteckbarer Indexer aktiv
value->topic Zusammensteckbarer Indexer aktiv
value->topic (unique) Zusammensteckbarer Indexer aktiv
value->topic (word) [Zeichenketten-Zerlegung] Zeichenketten-Zerlegung (cdp title indexilter) Zusammensteckbarer Indexer aktiv
value->topic for subject keys (word) [Zeichenketten-Zerlegung] Zeichenketten-Zerlegung (cdp titlefhtml indexilter) Zusammensteckbarer Indexer aktiv
Volltextindex fur Terme [Zeichenketten-Zerlegung) Zeichenketten-Zerlegung (cdp term name filter) Zusammensteckbarer Indexer aktiv
< >
oK
“” 1/
Category “Indexes

This setting option can be used to manage the index structures. All available index types are
listed under “Available indexes”. Each index type can be used for specific types of attributes
or relations.

If an index is shown in grey, then the index is currently deactivated; if it is highlighted in red,
then the index is currently not synchronous.

There are buttons to generate, delete, configure, assign and synchronize on the right-hand
side.

Index Use

Lucene full text index | Full text query
(JNI)

Metrics Performance improvement in structured queries

OO

&

O

o] 1 J

&

o] 1 J

&

C=4
System System relations (predefined, cannot be changed) This is used for
“extends object” / “has extension” / “is super-type of"” / “is subtype
of” relations
topic -> value To list attribute values/relation targets in object lists
topic -> value (domain | To list attribute values/relation targets in object lists
segmented)
value -> topic For single-sided relations, results in a speed-up for weighted in-
topic -> value verse single-sided relations
value -> topic Attribute values for an object

value -> topic (unique) | Attribute values that may only occur once per attribute type for
an object (write rights check for imports)

value -> topic | CDP-specific: This is only used in j-views content
(word)[string split-
ting]

value -> topic for sub- | CDP-specific: This is only used in i-views content
ject keys (word)[string
splitting]

Full text index for | CDP-specific: This is only used in i-views content
terms [string splitting]

Category “Index for relations"/ “Index for attribute value”

Indexes can be divided up using different aspects. First of all, a distinction can be made
between forward and reverse indexes. In the case of the reverse indexes, it may make sense
to refer to the property from target/value to resolve the metaconditions on the property.
Ultimately, an index can optionally perform a segmentation by each type of source object
in order resolve structured queries that are limited to objects of subordinate types more
efficiently.

Some properties may not require an index depending on the specific application. (They can
then be marked with “Ignore”. They are not examined further in this optimization step.)
e Relations can use a reverse index instead of a forward index on the inverses - and vice-
versa.

e Attributes can also be indexed with modified/standardized values (e.g. full text with
basic word forms). A corresponding operator can then be used for search for these.

Applicable indexes (detailed configuration)

The indexes that can be used for a relation type or attribute type can be assigned using the
detailed configuration.

00O
000
o I J

‘i haslanguage

has language

& cross reference of .
o« default language
o defined by enumera
o defines subject link
o diff
" diff of
o diff target
o dita child
o dita parent
o document facet tern
«" document represent
o facet term of
o file referenced by
o has bookmark
o has cross reference
o has document facet
& has facet term
o has file type
o has import start pat
«" has language

b o has metadata W

Ubersicht ~ Details

Typ
Definition
4 Schemadefinition
Objekt
Typ
4 View-Konfiguration
4 Objekt
Details
Objektliste
“ Typ
Details.
Objektliste

Indexierung

Indexierung:

Name

topic->value

Filterbezeichne Typ Status Index zuordnen

Zusammenstecl aktiv
Entfernen

| Einstellungen

Synchronisieren

Assigning indexes in the detailed configuration of type

Attribute types

Relation types

topic -> value

topic -> value

topic -> value (domain segmented)

topic -> value (domain segmented)

value -> property

value -> property

value -> topic

value -> topic

value -> topic (unique)

1.2.6.2 Create a new index

In the settings of Knowledge Builder, a new index can be created under:
Settings > Index configuration > Indexes > Create new

The following selection is available at the start:

Index

Use

dex (JNI)

Lucene full text in-

Full text query

Q00O

o] 1 J

&

o] 1 J

&

Redundant stor-
age for relation
attributes

To display meta properties of symmetric relations more quickly; this
is used without additional filters

Pluggable indexer

Combined use of distributor and index modules for adapted index-
ing; specific configuration by means of index filters is possible

The following section describes the configuration of the pluggable indexers because these
can be used most flexibly and cover almost all use cases.

Addable index modules

Pluggable indexers enable the administrator to create an indexer from prefabricated mod-
ules in order to achieve the corresponding indexer behavior.

A pluggable indexer consists of distribution levels that are closed by an index level that regu-
lates data storage. Hence, an indexer can index both attributes and relations.

If the indexer is assigned an optional index filter, the indexer behavior can be influenced
further; only suitable property types can then be assigned to the indexer.

Since properties include attributes and relations, the following section refers to an attribute
value or relation target as a value of the property.

00O
000
o I J

EE Indexerkonfiguration

Hinzufigbare Indexbausteine

Yerteiler je Definitionsbereich
Werteiler je Eigenschaftstyp
Werteiler je Eigenschaftswert
Yerteiler je Objekt

Index Redundante Speicherung fir Relationseigenschaften

Zugewiesene Indexbausteine

-2

Kein Filter

Indexer-Bezeichnung

Filter wihlen

Abbrechen

Pluggable indexer

00O
000
o I J

—
"lq.--.

T = Topic = object/elemen
P = Property = attrib&
"V" = Value = attribu

Distributor/index

Use

Distributor by domain
(after that, all other dis-
tributors can be selected)

To search for a subset of object types that jointly use a prop-
erty

Distributor for each

property type
(index can be selected
afterwards:)

Distinction between attribute and relation

Index property on
value/target

Attribute -> Attribute value,
Relation -> Target object/target type

To find relation targets in structured queries with a restriction
on the meta property

Index object on
value/target
= topic -> value
= topic -> value (domain
segmented)

Object -> Attribute,
Abject -> Target object of relation

To list attribute values/relation targets in object lists

OO

&

O

o] 1 J

&

o] 1 J

&

Index value/target on

property
= value -> property

Attribute value -> attribute
Meta-relation target -> Attribute
Relation target -> relation
Meta-attribute (value) -> Relation

For single-sided relations, results in a speed-up for weighted
inverse one-way relations

Index value/target on
property (uniqueness
check)

Attribute value -> Attribute

To search for meta properties

Index value to seman-
tic element
=value -> topic

Attribute value -> Attribute
Relation target -> Relation

To support structured queries on objects with specified val-
ues/targets on attributes/relations

Index value to seman-
tic element
(uniqueness check)
=value -> topic (unique)

Attribute value -> Object (e.g.: email address)

Distributor for each

property value

Together with “Index property”:
For compact storage of many identical values/targets; same
response as for “Index value/target on property”

Distributor for each ob-
ject

For single-sided inverse relations

Index redundant storage
for relation properties

(Might not be used in combination with pluggable indexes)
Faster display of meta properties on relations when using
symmetric relational properties

Filter

Filter type Use

Latitude For indexing an attribute type of the value type “geographical posi-
tion”

Longitude For indexing an attribute type of the value type “geographical posi-

tion”

Interval start value

For indexing an attribute type of the value type “interval”

Interval stop value

For indexing an attribute type of the value type “interval”

String filtering

Strings to words fil-
ter

1.2.6.3 Details about indexer blocks

A distinction is made between the breakdown indexer modules and the indexing indexer
modules. A breakdown indexer module partitions the index according to different aspects.
Following that, there is either another breakdown or an indexing index module that stores
the index entries.

Verteiler je Eigenschaftsbegriff Y

Mame st

wird gefressen von

Verteiler je Definitionsbereich

Tier Panze Tier Pflanze Tier Pianze

Y Y Y Y y Y

Index Wert an Objekt "Fliege" — TOS JGrag" —P 11 P12 — TS TO3 — P11 P11 —TO3 TOS = P12
JFroach" — TO2 wSonnentau” — P12 TO1 —T02 T2 — T

oLdwet — T04 T02 —TOS TS — TO2
wotorch" — TO1 TS — TO4
LLebra® — TO3

The figure shows an example of how a stackable indexer consisting of three modules (with-
out value filter) groups the index entries. This index can now efficiently provide answers to

questions such as

e Which animals start with S
Which plants either other organisms
e Which animals eat zebras (T03)

e etc.
Questions such as

e Which organisms start with S
e Which organisms eat flies (T05)

could also be answered. To do so, an indexer configuration without “Distributor by domain”
would suffice (and might be more efficient depending on the data situation).

1.2.6.3.1 Distributor by property type

The most important module, without which most indexing modules cannot be added. It
generally appears in first place and partitions the entries according to their property type.

1.2.6.3.2 Distributor by domain

Enables partitioning according to the relevant terms of the property-carrying objects. The
module is only useful for properties of individuals.

If a property can occur in multiple object types and a search only searches for a subset of
these object types, this module accelerates the search through corresponding index access.

1.2.6.3.3 Distributor by object

This module can be used for indexing to summarize the relation targets on the source object.
As the previous module, itis used for mapping older indexers and its K-Infinity 3.1 only makes
sense for single-sided inverse relations.

1.2.6.3.4 Distributor by property value

Used to partition according to relation target or attribute value. In this case, only the property
can still be indexed (see Index property).

1.2.6.3.5 Index value / target to object

This index module is used to store an attribute value on an object or a relation target on
the source of a relation in the index. This type of indexing makes sense if expert queries
for objects with specified values on indexed attributes (e.g. with specified target on indexed
relations) are supposed to be supported.

1.2.6.3.6 Index object to value / target

The index module indexes in the exact opposite way as the “Index value to semantic element”
and, for attributes, can be used to determine the column values of the indexed attributes for
object lists. For relations, it can be used in the same way as the “Index value to semantic ele-
ment” if either the inverse relation is indexed or the source object is already more restricted
by the search than the target object.

If you want to support expert queries with the indexed relation in both directions (source-
target and target-source), the relation can be indexed either with this value and the “Index
value to semantic element” or the relation and its inverse relation can both be indexed with
one of the two index types. Here, it can make a difference if the index module is combined
with a “Distributor by domain” because use of this distributor module for an index on the
inverse relation can be used for partitioning by means of the target domain.

1.2.6.3.7 Index value / target to property

This index module is used to store values on the attribute or target on a relation in the index.
This type of indexing makes sense if searches for additional meta properties are supposed to
be supported for the indexed attributes. To ensure this index can also be used in a search for
the objects of the property (analogous to “Index value to semantic element”), the respective
property must remain set to “Active” under “Property can be iterated” in the corresponding
term editor.

1.2.6.3.8 Index property to value / target

This index module supports expert queries to search for targets of the relations. To do so, the
meta properties of the relation are used for a highly restricted process. Simple source-target
conditions are not, however, supported.

1.2.6.3.9 Index property

Together with the distributor for each property value, the same behavior can be achieved as
for an index value / target to property. If there are a great many identical values or targets,
this makes it possible to achieve more compact storage; otherwise, this combination has no
advantages.

1.2.6.3.10 Index property value

This index only stores the attribute values or relation targets. Using it makes sense if a “Dis-
tributor for each object” is used upstream and few objects have many values/targets.

1.2.6.3.11 Index redundant storage for relation properties

This module can only be used by itself and is used to display the meta properties on relations
more quickly if symmetric relational properties are used. No index structure is created at the
technical level but the indexer can be addressed via the same configuration and program-
ming interfaces.

1.2.6.3.12 Uniqueness check

The Index value to semantic element and Index value to property modules can be supple-
mented with a uniqueness check. The modules supplemented in this way are usually used
for the consistency check of unique identifiers. They are available in the selection list for the
addable index modules (e.g. Index value to semantic element (uniqueness check)).

If a new value is to be written and the same value is found in the index, this new value
cannot be adopted. Values are recognized as identical if they are also grouped identically
by all distributors of the index. If, for example, you want to perform a uniqueness check by
domain only (this, for example, makes it possible for “modern” to coexist as an individual of
verb and as an individual of adjective), the index must contain a Distributor by domain.

If a value filter is also configured, the uniqueness check is executed on the filtered values.
This makes it possible, for example, to identify “arm” and “Arm” as identical.

Note: a value filter that splits strings (for full text) can be combined with the uniqueness
check, but this is not usually sensible, because even a partial string can lead to duplicates
after splitting, for example “The house” and “house and home.”

The Index value to semantic element cannot recognize duplicate values of this property as
duplicates in an object if properties occur multiple times. Itis therefore possible for two iden-
tical attributes with identical values to exist in the same object, but not in different objects. If
you want to prevent this, you must deactivate multiple occurrences in the attribute term or
instead use an Index value/target to property for the uniqueness check.

1.2.6.4 Details about value filter

1.2.6.4.1 Value decomposition

No atomic attribute value can be indexed for geocoordinates and interval attributes. Instead,
longitude and latitude or interval start value and interval stop value are used to index one
component of the value. For complete indexing, a corresponding indexer for the other com-
ponent of the value must be configured respectively.

1.2.6.4.2 String manipulations

Full text filters for strings can be configured in the Admin tool. These can be used to configure
which manipulation is possible on the strings, and how the strings should be split into indi-
vidual words. Additional operators are then offered in expert queries, to which the respective
filter label has been added, to allow a specific query to be executed using this filter.

Strings can be indexed in manipulated form by means of “string filtering,” and when a query
is executed, this results in all attribute values being interpreted as hits which the filter maps
to the same string as the search input.

By means of “string splitting,” several (manipulated) sub-strings (tokens) from a text can be
indexed. The related index then allows expert queries that execute a search within the string
by means of the operators “Contains words” and “Contains phrase.”

1.2.6.5 Metrics

An attribute “Average number (calculated)” can be created on all property types. The value
of the attribute specifies how many values of the corresponding property an object from the
property domain has on average.

This information enables structured queries to better decide how they determine their result
set. In addition, you can create an attribute “Average number (manual)” whose value over-
writes this value. (This makes sense if the domain is abstract but the property in enquiries is
supposed to be used only when it actually occurs.)

1.3 Searches/ Queries

Querying of the semantic network has various subtasks for which we can configure different
search modules: often we would like to process the user’s entry in a search box (charac-
ter strings). Usually we would like to pursue the links for the queries within the semantic
network.

e Structured queries

e Simple/direct queries (simple search, full text search, trigram search, regular expres-
sions, parameterised hit quality)

e Search pipeline

Q00O

000

i

1.3.1 Structured queries

Using structured queries you can search for objects which fulfilled certain conditions. A sim-

ple example for a structured query is as follows: all persons who master a certain instrument
should be filtered.

~
*+ | & Person

o + plays Instrument

0, *+ | Jd Musical Instrument

Q ¥ | Violin

At first there is the type condition: objects of the type person are searched for. The second con-

dition: the persons have to master an instrument. Third condition: this instrument has to be the
violin.

In the structured query the relation "plays an instrument", the type of the target of the rela-
tion and the value of the target "violin" form three different lines and thus also three search
modes. The third condition that the instrument has to be a violin may also optionally be
omitted. In the hit list you would then find all persons who play any random instrument.

N
*+ & Person

o + plays Instrument o + | Musical Instrument

Often conditions (in this case the instrument) should not be determined previously but be ap-

proved completely. Depending on the situation, an instrument may be given as a parameter
in the application:

+ ; Person +

+ @ Musical Instrument X

+* Name o) = 9 A=aM

¢ + plays Instrument | ©

The conditions may thereby be randomly complex and the network traversed as far as pos-
sible:

* |} person or Group

F + is author of | ©@ + JAwork

o + has topic |©@ + |y Topic

+ Name | &F = @ A=aV

Slightly more complex example: persons or bands who deal with a certain issue in their songs (to
be more exact in at least one). In this case you do not search for the name but the ID of the issue
as the parameter - typical for searches, for example, which are queried via a REST service from the

Q00O

o] 1 J

&

o] 1 J

&

application [Figure - "ID" instead of "name"]

The type hierarchies are automatically included in the structured queries: The type condi-
tion "work" in the search box above includes its subtypes albums and songs. Even the rela-
tion hierarchy is included: if there is a differentiation below "is author of" (e.g. "writes text"
or "writes music") the two sub-relations will be included in the search. The same applies for
the attribute type hierarchy.

Interaction

If a new structured query is created, the topmost of all types is entered at first per default.
In order to limit the query even more you can simply overwrite the name or select "Choose
type" by clicking on the icon.

+ . Brnnt tarm
Root term

Choose type
Edit (Alt)

The button s« allows you to add more conditions to the structured query. Deleting con-

ditions takes place at the beginning of each line where the type condition is listed (relation,
attribute, target, etc.). When you click on the button == the following menu will appear which

may vary slightly depending on the context.

Band

Attributes r
& Relations..

Schema r

Identify LS

Query structure *

Transfer r

From all possible conditions, focus has, until now, been on the very first item in the menu. A
complete explanation of all conditions and options of the structured queries can be found in
the next chapters.

1.3.1.1 Use of structured queries

One of the main purposes of structured queries is to provide information on a certain context
in applications. The structured query from the last section, for example, can enable end
users in a music portal to generate a list of all artists or bands who cover subjects such as
love, drugs, violence etc. in their songs.

To do so, the structured query is usually integrated into a REST service via the query s reg-
istration key. We include the subject in which the user is interested as a parameter in the
query with the user s ID.

Example scenario: A user enters a search string to search for their topic. Hence, there is

no ID but only a string that is to be used to identify the topic. However, the query result
is supposed to show immediately which bands have written songs on the subject. For this
purpose, a structured query can be integrated into a search pipeline as a component - after
the query that processes the search string.

One of the reasons why structured queries are such a central tool for i-views is that the
conditions for rights and triggers are defined with structured queries. Let s assume the
only people allowed to leave comments in a music portal are artists and bands. In the rights
system, you can thus specify that only artists and bands that have written at least one song
on a topic may leave comments on this topic. Structured queries can also be used in exports
to determine which objects are to be exported.

All these uses have one thing in common: we are only interested in qualitative, not weighted
statements. This is the domain of structured queries in contrast to search pipelines.

Last but not least, structured queries are also important tools for us as knowledge engineers.
We can use them to get an overview of the network and compile reports and to-do lists.
Here are some examples of questions that can be answered using structured queries:

e Which topic is featured by many artists/bands?

e Do specific topics have to be removed because too many relations have amassed or
conversely should rarely used topics be merged or closed?

For ease of use, it makes sense to be able to organize structured queries in folders.

One main purpose of the structured queries lies in the applications for a certain context to
provide information. The structured query in the last paragraph may generate, for the user,
a list of all artists or bands in a music portal who deal with the topics of love, drugs, violence,
etc. in their songs.

For this purpose, a REST service is usually implemented via their registration key. The topic
in which the user is interested just now is the one we enter into the query with his ID as a
parameter.

The following is an example of this scenario: a user searches for a topic by entering a search
string according to a topic. There is therefore no ID, but only a string on the basis of which
the topic should be identified. Thereby, the search results should show which bands wrote
songs on this topic. For this purpose, a structured query can be installed in a search pipeline
as a component - behind the query which processes the search string.

Therefore, structured queries are, among other things, a central tool within i-views because
the conditions for rights and trigger are also phrased using the structured queries: assuming
only artists and bands are allowed to leave comments within a music portal. With the rights
management it may be stated that only artists and bands who have written at least one song
on a certain topic are allowed to leave their comments on this topic. Structured queries may
also be used in exports in order to determine which objects are to be exported.

All these applications have one thing in common: we are only interested in qualitative, not
weighted statements. That is the domain of the structured queries in comparison to the
search pipelines.

Last but not least, structured queries are also tools for us knowledge engineers. With them
we can obtain an overview of the network and compile reports as well as to-do lists:

00O
000
o I J

e To what topics there are how many artists/bands?

e Do certain topics have to be removed because they have collected too many relations
or should, on the other hand, sparse topics be compiled or closed?

For this application it makes sense to be able to organise structured queries into folders.

Implement

The structured queries are implemented on the results tab with the button search.

B -

The search results can then be further processed (e.g. copied into a new folder) but they are
not kept there permanently.

The path which the structured query has taken may only be viewed in the graph editor to
backtrack it. To this end, one or more hits are selected and displayed using the button graph.

mg]'?:-@

A structured query may be copied in order to create different versions, for example. Like-
wise there is the possibility of saving them in XML format, regardless of the network. The
structured query may therefore be imported into another network. However, this is limited
to versions of the same network, e.g. to backup copies, because the structured query refer-
ences types of objects, relations and attributes via their internal IDs.

1.3.1.2 Structure of structured queries

Very indirect conditions can be expressed within structured queries: you may randomly tra-
verse between the elements throughout the structure of the knowledge network. Artists and
bands may be found who wrote songs on certain topics but which we cannot name specifi-
cally using their titles.

1.3.1.2.1 Serveral conditions

Condition chains may either be randomly deep or several parallel conditions may be ex-
pressed: additional conditions are added to any random condition element as a further
branch:

00O
000
o I J

+ &38and
& | * " is author of
(o] t & .J:Wc‘rk
d # |+ + has topic
(o] t & JTopic.
& Relat #* " is characterized by I-il»‘ﬁtreerv:;tﬁaan
+ .Q‘;Musical Keyword. fepickeywon
FAY e ® & Name
& | * " has location
© ha + dLocatinn

A fived @ | Great Britain

Several conditions: English bands with songs on a certain subject

1.3.1.2.2 Alternative Conditions

In the example mentioned above only artists or bands can be found who created songs on a
defined subject and who come from England. If, instead, we want to find all artists and bands
which fulfil one of the two conditions they will be expressed as ‘alternative’. You can create
an alternative via the menu of ‘Band'.

Band
/N Attributes..,
dp relations..,
Schema >
Identify]
Query structure > = Add alternative
Transfer » 4 |dentifier
0 Predefined identifiers -]
lﬁ Litility query
-'- Reference
" Mew local macro
O Structured queny macro (registered)...
p Oueng..

By clicking the symbol =< you can add a further alternative condition for ‘Band’:

4+ |8dBand
#+ &dBand | &~ * " 15 Author Of
0] + | Jdopus
o + | 15 Specified By
(0] + '/ Content
o + Is distinguished by
(0] & |“Keyward
+ Mame
Bvoe =[] wp
+ GdBand | + has Place
© + | @Friace

+ Q Great Britain

Alternative conditions - the band either has to be English or have songs on a certain subject

If there are further conditions outside the alternative bracket there are objects in the hit list
which fulfil one of the alternatives and all other conditions.

1.3.1.2.3 Transitivity / Repetitions

Let's assume the bands are assigned to either cities or countries within the network. Of these,
in turn, it is known which cities are in which countries. In order to document these contents
in the search it was possible to very simply expand the condition string: we were able, for
example, to search for bands which are assigned to a city which, on the other hand is in Eng-
land. However, in this manner those bands will not be found which are directly assigned to
England. In order to avoid this we can state in the relation "is located in" that it is optional
and therefore does not have to be available.

Simultaneously, we can also include hierarchies which are several levels deep using the func-
tion "Repetitions". For example, is known from the band ZZ Top that they come from the city
of Houston which is in Texas. In order to also retain the band as a result when bands from
the USA are queried we can state in the relation "is located in" that this relation has to be
followed up until repetitions are reached:

00O
o] 1 J

&

o] 1 J

&

i + has location
0 + ijLocation
o + is located in | {1...3}

o0, + fLocation

is located in Q &f Great Britain

cardinality

CI:) Repetitions D

~* is property of

£ Attributes 4
& Relations »
Schema 4
Identify 4
Query structure 4

Paste from clipboard

1.3.1.2.4 Negated conditions

Conditions can likewise be purposefully negated. For example, if punk bands are searched
for, which do not come from England. To this end, the negative condition is setup as a so-
called "Utility query".

+ &2Band

o + + hasstyle| © + ﬂMusical Style J:Work Q 5
#

e

4 + 83pand

o + has location | © + @ Location A &' | GroBbritannien

The utility query delivers bands from England - from the main search a reference can be established
and thereby noted that the search results are not at all allowed to comply with the criteria of the
search help - in this manner we remove the results of the search help from those of the main search
and only obtain bands which do not come from England.

Interaction takes place as follows: the utility query is compiled in the type condition and can,
after conclusion of the main search above, be linked with the menu item "reference". At this
stage you can then select which type the reference should be (in this case negative).

1.3.1.2.5 Corresponds to condition

The reference allows references to be made to other conditions of the same query within a
structured query:

Q00O

000

1+ &2pand
o’ + is author of
o + 7 song
o + has cover
o + ZJsong
o + has author

+ (82pand

e =
Here the last condition references the first one, i.e. the band who writes the cover version also
has to be the author of the original. Without a reference the search would read as follows: bands
which have written songs which cover other songs which were written by any (random) bands.
Incidentally, the result is, for example, the band "Radiohead" (they covered their own song "Like
Spinning Plates").

1.3.1.2.6 Other options in building the structured queries

Search macros: other structured queries but also other searches can be integrated into
structured queries as macros. In doing so, there is the possibility of outsourcing repeating,
partial queries into your own macros and thus adapting the behaviour at a central location
when changing the model. A macro can be integrated into each condition line.

An example from our music network: from bands to all their achievements, no matter
whether they are albums, songs which are directly assigned to the band or songs on the
albums of the bands. We need these partial queries more frequently, for example in a struc-
tured query which returns the bands to a certain mood. We start this query with a type
condition - we are looking for bands - and integrate the pre-defined module as a condition
for these bands:

+ @3pand
& L is author of | © + Jdwork

s + contains | {0...1} © + Jdwork @ AlbumOrSong
&dBand

Work

s + has mood | © * |\ Topic | R ".,

The objects which return those which are integrated into the structured query as macros
have, of course, to match the condition with which they are linked from the point of view of
their type. With the aid of the identifier function, the query (from the "invoking" query) can
still be continued with additional conditions. In our case the albums and songs from where
the macro query originates are defined by the invoking query: namely albums and songs
with the mood "aggressive". Integrating the search macro into the structured query is car-
ried out through the menu "Query structure". Under structured query macro (registered) there

is a selection list with all the registered macros.

Simple search: using the search mode "simple search" the results of a simple search or a
search pipeline may serve as input for a structured query. Each respective simple search can
be selected by means of the selection symbol. The input box contains the search entry for
the simple search. Further conditions can enable a simple search to be filtered further, for
example.

Cardinality condition: a search for attributes or relations without its own conditions may
be carried out with a cardinality operator (characterised by a hash tag #). You may use the
cardinality greater than or equal to, less than or equal to and equal. The normal equal oper-
ator of the relation or attribute condition corresponds to greater than or equal to 1.

We have thus covered everything we can find within the menu "Query structure":

Query structure g Identifier
Transfer ’ Utility query
Reference

MNew local macro

Structured query macro (registered) *

Query...

1.3.1.3 Details of the conditions
The type condition

The beginning of the structured query determines which objects should appear as the re-
sults. To do this you click on the type icon for the first condition and select "Choose type" in
the menu, the input mask then starts in which the name of the object can be entered.

Alternatively, you can simply overwrite the text behind the type icon with the name of the
object.

In the second step the relation condition is added. For example, a search is made for the
place of origin of a band and "has location" is set as a relation condition. The target type of
the relation is added automatically which, however, can also be changed (if, for example, the
"has location" relation for countries, cities and regions applies but we only wish to have the
cities).

Schema y Add type condition
Identify i Subtypes
Query structure M « | Instances
Transfer ' Without Inheritance

There are further functions available for a type condition. In the item for this there is the
item "Schema" in the general condition menu which we can reach via the button +: several
types of conditions are defined consecutively what is interpreted by "or" in the query. For

Q00O

000

example, we search for works or events on a particular style of music as follows:

+ J:Work 2| Event

We can just search for types of objects instead of specific objects or both at the same time
by checking the boxes "Subtypes" and "Instances" in the menu "Schema".

+ Work

This is what the condition looks like when a search is made for both specific works as well as
subtypes of the work (albums and songs).

Without inheritance: normally, the inheritance starts automatically with all types of condi-
tions of the structured query. If a search is made for events in which bands play a certain
style of music, all subtypes of events are then incorporated into the search and then we are
provided with indoor concerts, club concerts, festivals, etc. In the vast majority of cases this is
exactly what is desired. For exceptions there is the possibility of switching off the inheritance
and restrict the search to direct objects of the type event, i.e. by excluding the subtypes of
objects.

Operators for the comparison of attribute values

Attributes may also play a role as conditions for structured queries. For example, if it does
not suffice to only identify objects which show an exact predefined value or the value entered
as a parameter. For instance, bands which were founded after 2005 or songs which are more
or less 3 minutes long or songs which contain the word "planet" in their title. These require
comparison operators. The type of comparison operators which i-views offers us depends
on the technical data type of the attribute:

Equal

not equal

Exactly equal

Between

Distance

Greater than

Greater/Equal

Less than

Less/Equal

before now (past)

after now (future)

Comparison operators for dates and quantities

The comparison operator Exactly equal constitutes a special case: the index filter is switched
off and a search can be made after the special character * which is normally used as a
wildcard.

The comparison operator Between requires spelling of the parameter value with a hyphen,
e.g. "10.1.2005 - 20.1.2005".

00O
000
o I J

The comparison operator Distance requires spelling of the parameter value with a tilde, e.g.
"15.1.2005 ~ 5" - i.e. on 15.1.2005 plus/minus 5 days.

= Equal
notequal

Exactly equal

€8 Contains string (regular expression) (Zeichenketten-Zerlegung (Volltext))
£ contains phrase (Zeichenketten-Zerlegung (Volltext))

& Contains string (Zeichenketten-Zerlegung (Volltext))

> Greater than

> Greater/Equal

< Lessthan

< Less/Equal

= Regular expression

Comparison operators for character strings

Operator Beschreibung

Abstand

Enthalt

Enthalt Phrase

Enthalt Zeichenkette

Enthéalt Zeichenkette (Regularer Ausdruck)

Entspricht

Exakt gleich

Gleich

Gleich (Geo)

Gleich jetzt (Gegenwart)

Grosser als

Grosser/Gleich

Ist enthalten in

Kleiner als

Kleiner/Gleich

Nach jetzt (Zukunft)

Regularer Ausdruck

OO

&

O

o] 1 J

&

o] 1 J

&

Uberschneidet

Uberschneidet von oben

Uberschneidet von unten

Ungleich

Vor jetzt (Vergangenheit)

Zwischen

Comparative value results from the script: attribute value conditions may be removed
from partial searches and replaced by a script and attribute condition. The results of the
script are then used as a comparative value for the attribute value condition, e.g. if the
comparison operators do not suffice for a specific query.

Identifying objects

The structured query provides several options for identifying objects within the knowledge
network. To simplify matters, the previous examples often defined the objects. This type of
manual determination may, in practice, be of help in testing structured queries or determin-
ing a (replaceable) default for a parameter entry.

At this point we have already become familiar with the combination with the name attribute
which can, of course, be any random attribute. In the menu item "Identify" we will find some
more options for defining starting points for the structured query:

Identify k Specify objects
Query structure ' Access right parameter
Transfer k Script

Semantic element with ID

in folder

Access right parameter: the results of the query may be made dependent on the appli-
cation context. This particularly applies in connection with the configuration of rights and
triggers when, generally speaking, only "user" is usable.

Script: the objects to be entered at this point are defined by the results of the script.

Semantic element with ID: you may also determine an object via its internal ID. This condi-
tion is normally only used in connection with parameters and the use of the REST interface.

8 + has location | @ + jLocation o Location_ID

In folder: using the search mode "in folder" the contents of a collection of semantic objects
can be entered into a structured query as input. The selection symbol will enable you to

AN

&

OO0

o] 1 J

&

o] 1 J

&

select a folder within the work folder hierarchy. The objects of a collection are filtered with
respect to all other conditions (including conditions for terms).

1.3.1.4 Parameter conditions
Parameters

In structured queries, input can be passed on by means of a parameter. This allows handing
over query input within JavaScript code in forms of:

$k.Registry.query(’<registryKeyOfQuery>’).findElements ({<parameterNameInQuery>: <input>})

The parametrized input can be in forms of:

e semantic element

1 Top-Level-Typ
Attributes ¥ N
5 bject: *
o Relations ¥ f# Specify objects
Schema > Semantic element
Identify ¥ Q Specify objects element
Cluery structure > Access right parameter oK Cancel
Transfer ¥ Script :
Semantic element with 1D
in folder
e attribute value
+ |® Top-Level-Typ
o Name! | #% = A—ars

Choose

~ Query using all languages
Query using the current language
Query using the selected languages
Subpress warning
Show warning
Add comment
&) Edit parameter
Predefined parameters >
Standard value
Remove condition (Ctrl)

Copy to clipboard

e elementid

+ | Top-Level-Typ | | 5¥

Choose

Add comment
&> Edit parameter
Standard value
Remove condition (Ctrl)

Copy to clipboard

There are two possibilities to test structured queries using parameters:

1. Using the test environment of the structured query
2. Invoking the structured query by script (executing or debugging)

In general, there are four conditions a parameter can have:

e Parameter is set
e Parameter is not set
e Parameter is deactivated

(Parameter contains empty string)

Optional parameters

The structured query has a feature that allows using optional parameters: for a certain
branch of the query, the context menu offers the condition "Disable condition when no pa-
rameters set".

+ | @ KG Element
o s ralatad alamant | FY 4+ @ KG Element
Choose
ARDF-ID| &F = @id A
Add comment F
Disable condition when no parameters set
Remove condition (Ctrl)

Copy to clipboard

If the optional parameter condition has been set, it has the following effect: From this point
on, the rest of the branch (to the right) will not be encountered as condition for the query
result when the respective parameter has been deactivated.

Note: When the parameter is not set, the test environment will nevertheless throw an error
despite the optional parameter condition. If testing of optional parameters is needed, the
parameter needs to be disabled in order to test an unset parameter condition.

Important rules about setting parameters

Pa- | Setting Setting in JavaScript | Result
ram-| in struc-

e- tured

ter | query

con-

di-

tion

Pa- | Parame- Variable containing | Parameter condition is encountered in query

ram- | ter value | parameter value is | result
eter | has been | defined
is entered
set

Q00O

000

Pa- | No pa- | Handing over no pa- | Error: "Parameter xy is missing"
ram- | rameter rameter
eter | value has
is been en- | Using
not | tered (just
set | executing | findElements()
query) or

id {Pmr'afr{.- negﬁzl' tig Gur set)

without ;\rguments or
setting parameter to
undefined.

Pa- | Click- Setting parameter to
ram- | ing on x | null.
eter | besides

e With conventional parameter: as if the
parameter requirement would not
exist within the structured query

is parameter
dis- i s e With optional parameter: the branch
abled from the optional condition until end

Disable Parameter

of query branch will be ignored

id (disabled)

Pa- | Entering Variable for param- | Query branch will return no result; if no alter-
ram-| " or "' | eter set to empty | natives exist, the whole query might return
eter | rejecting string " or "" no results

con- | search
tains | dialog if
empty occurring
string

Caution: Risk of search results containing false positives.

For predictability and reliability of query results in scripts, make sure to avoid parameter
values from being null inadvertently, since no errors are thrown system wise. Use control
structures to catch unattended conditions of parameter input.

When an optional parameter is passed on to the structured query by means of a script in
a search view or a search result view, the value type of the parameter also needs to be set
to "optional". If the value type is set to "obligatory", the structured query will not deliver
any search result when the script sets the parameter value to "null" (with the intention to
deactivate the optional parameter).

1.3.1.5 Comments in structured queries
Adding comments

Every condition in a structured query can be commented. For adding a comment, choose
the option "add comment" in the context menu. At the condition in the structured query, an
existing comment causes a blue indicator flag which shows up a text in case of mouseover.

00O
000
o I J

"~
+ | Person

A + Last name

Edit Condition
The last name still has to be entered

By means of the dialog "Edit comment", the corresponding comment can be changed or
removed:

55 Add comment

>
Language Add

Comment [The last name still has to be entered

Delete Cancel

The indicator flag for comments is not shown when the condition has a warning or a fault. In
this case you only can see the yellow warning indicator or the red fault indicator. Additionally,

all warnings, faults or comments will be listed in their order on the right side below the
parameters editor.

+ :; Person

Edit Condition
Parameter Value Equal is missing. & Value Equal: No or invalid attribute value ...
this comment has no indicator

@ The last name still has to be entered

@ this comment has no indicator

Warnings and cautions can be suppressed in the indicator indication if you want to ignore
them at this point (of course, this is not recommended). To do so, click on the indicator
symbol in the listed view or choose the function "Suppress warnings" in the context menu of

the condition. The indication can be reactivated on the same way or by choosing the context
function "Show all warnings" of the root finder.

00O
000
o I J

+ NO parameters

@ The last name still has to be entered

@ this comment has no indicator

1.3.2 Simple Search / Fulltext search

Processing the search queries of users may be carried out with or without interaction (e.g.
with type-ahead suggestions). The starting point is, in any case, the character string en-
tered. In configuring the simple search we can now define with which objects and in which
attributes we search according to the user input and how far we differ from the character
string entered. Here is an example:

white p
&b WHITE
) Names of
23 Whitesnake '

& Barry Eugene Carter

How do we have to design and organise the search in order to receive the below feedback on
objects from the entry "white"? In all cases we will have had to configure the query to show
that we only want to have persons and bands as the results. How is it, however, if there are
any deviations from the user input?

e When is the (completely unknown) Chinese experimental band called "WHITE" a hit? If
we state that upper case and lower case doesn't matter

e When will we receive "Whitesnake" as a hit? If we understand the entry to be a substring
and attach a wildcard

e When "Barry Eugene Carter"? If we not only search through the object names but in-
clude other attributes as well - his stage name is namely "Barry White".

These options can be found again in the search configuration as follows:

00O
000
o I J

Attributes

(] Hits only on attributes
Filter - No filter -

Alternative name +
MName Primary name

Semantic elements

L] filter results

Band
Person

Query syntax

[] Case sensitive

L] Apply query syntax
Deconstruct query string

L

Default operator: | OR

Wildcards

) Mo wildcards) Prefix Minimal number of characters 3
) Auto wildcards ® Substring Wildcard quality factor 1.0
® Always wildcards O Suffix

Language

®) Query using all languages
(0 Query using the current language
) Query using the selected languages

Settings

[] Restrict resultset size Hits
[] server based query

Configuration of the simple search with (1) details as to which types of objects are to be browsed
through, (2) in which attributes the search has to be made, (3) upper case and lower case and (4)

placeholders.

1.3.2.1 Simple search - details of the options

Placeholder/wildcard

The entry is often incomplete or we want to retrieve the entry in longer attribute boxes. To
do this, we can use placeholders in the simple search. The following settings for placeholders

can be found in simple search:

) No wildcards) Prefix Minimal number of characters 3
) Auto wildcards ® Substring Wildcard quality factor 1.0
® Always wildcards O Suffix -

¢ Placeholder behind (prefix) finds the [White Lies] for the entry "white"
e Placeholder in front (suffix) finds [Jack White]

¢ Placeholder behind and in front (substring) finds [The White Stripes]
e Caution! Placeholder in front is slow.

The option "Always wildcards" works as if we had actually attached an asterisk in front and/or
behind. Behind automatic wildcards there is an escalation strategy: in the case of automatic
placeholders, a search is made first with the exact user entry. If this does not deliver any re-
sults a search will be made with a placeholders, depending on which placeholders have been
set. With the option prefix or substring there is once again a chronological order: in this case
you look for the prefix first (by attaching a wildcard) and, if you still can't find anything, you
make a search for a substring (by means of a prefix and attaching a wildcard).

If you are allowed to attach placeholders in your search you can state in the box minimal
number of characters how many characters the search entry must show to actually add the
placeholders. By entering 0 this condition is deactivated. This is particularly important if we
set up a type ahead search.

With the weighting factor for wildcards you can adapt the hit quality to the extent that the
use of placeholders will result in a lower quality. In this manner we can, if we want to give
the hits a ranking, express the uncertainty contained in the placeholders with a lower ranking.

If the option "No wildcards" is selected the search entry will not be changed. The individual
placeholder settings will then not be available.

The user can, of course, him/herself use placeholders in the search entry and these can be
included in the search.

Apply query syntax: when the box for the option "Apply query syntax" has been checked a
simplified form of the analysis of the search input is used in which, for example, the words
"and" and "or" and "not" no longer have a steering effect. Nevertheless, in order to be able to
define how the hits for the tokens should be compiled, the default operator can be switched
to "#and" or "#or". What applies to all linking operators is the fact that they do not refer to
values of individual attributes, but to the result objects (depending on whether "hits only for
attributes" has been set). A hit for online AND system thus delivers semantic objects which
have a matching attribute for both online and the system (which is not necessarily the same).

Filtering: simple searches, full-text searches and also some of the specialised searches may

OO

&

O

o] 1 J

&

o] 1 J

&

be filtered according to the types of objects. In the example described in the last paragraph
we made sure that the search results only included persons and bands. Attributes which do
not match a possible filtering are depicted in red bold print within the search configuration
dialogue. In our case this could be an attribute "review", for example, which is only defined
for albums.

Translated attributes: in the case of translated attributes we can neither select a transla-
tion, nor have the language dynamically defined. Search for multilingual attributes, then in
the active language or in all languages, depending on whether the option "in all languages"
is checked.

Query output: a maximum query output may be defined by entering the maximum number
in the "results" box. This checkbox will then limit the query output and the mechanism can
be activated or deactivated. By entering the number in the output the checkbox will auto-
matically be activated. Caution: if the number is exceeded no output will be shown!

Server-based search: generally speaking, each search can also be carried out as a server-
based search. The prerequisite for this is that an associated job client is running. This option
can be used when it can foreseen that very many users will make search queries. By out-
sourcing certain searches to external servers, the i-views server will be disburdened.

1.3.2.2 Multi word search inputs

In our examples for queries the users have, until now, only entered one search term. How-
ever, what would happen if the user entered "Abba Reunion News", for example, and thus
would like to find a news article which is categorised by the keywords "Abba" and "reunion"?
We have to disassemble this entry because none of our objects would match the entire string
or at least not the article being searched for:

abba reunion news E

Without segmentation abba reunion news ‘,,,ONEV‘S

With segmentation

reunion ,,,""H‘@A:)ba ‘DLGH“b’ﬂed again?

5" Reunion

00O
000
o I J

Our examples so far do not, however, fall short only due to multi word search inputs. We also
often have search situations in which it does not make sense to regard the names or other
character strings from the network, with which we compare the input, as blocks, e.g. because
we would like to retrieve input in a longer text. In this case the wildcards will eventually no
longer be an adequate means: if we also want to disassemble the input on the page of the
object and the text attributes which have been searched through it would be better to use
the full-text search.

1.3.2.3 Fulltext search and indexation

If we want to view or search through longer texts word by word, e.g. description attributes
we recommended the use of full-text index. What does something like that look like?

Gem —Jocawence]

aaliyah Doct#155, Pos. 548644 / Doc#459, Pos. 934875 / Doc#935, Pos. 26526

abba Doc#132, Pos. 43095 / Doc#459, Pos. 46795 / Doc#935, Pos. 534955 / Doc#343, Pos.
367773 / Doc#711, Pos, 92634

abbey Doci#464, Pos. 95367 / Doc#2543, Pos. 65258 / Doct634, Pos. 35241

abbreviation Doc#436, Pos. 54362

abbreviator Doc#463, Pos. 234652

abnormity Doc#253, Pos.4652

abho Doci#t234, Pos. 32243 / Doc#332, Pos.23414

The full-text index records all terms/words which occur within a portfolio of texts so that i-views
can quickly and easily look up where a particular word can be found in which texts (and in which
part of the text).

"Texts", however, are not usually separate documents within i-views, but the character string
attributes which have to be searched through. Their full-text indexing is a prerequisite for
the fact that these attributes are offered in the search configuration.

Even full-text indexing concerns the deviations between the exact sequence of characters
within the text and the text which is entered in the index and which can hence be retrieved
accordingly. An example of this: a message from the German music scene:

00O
000
o I J

Transformation to
yandre”

Seperate from punctuation mark, then
eliminate the single character

André Rieu together with Bela B. or”~ Stopword
amazing tour! Fun-Punk meets Cuddle-Classic?

Stopword

Fragment in ,,cuddle” and
»Classic” and Seperate from
punctuation mark

Seperate from punctuation
mark

Fragment in ,fun® and , punk”

In this example we find a small part of the filter and word demarcation operations which are
typically used for setting up a full-text index:

Word demarcation / tokenizing: often in punctuation such as exclamation marks are placed
directly on the last word of the sentence without a space in between. In the full-text index,
however, we want to include the entry {tour}, not {tour!} - hardly anyone will search for the
latter. For this purpose, when setting up the full-text index we have to be able to specify
that certain characters do not belong to the word. The decision is not always so easy: In a
character string such as "Cuddle-Classic" which occurs in a text we have to decide whether
we want to include it as an entry in the full-text index or as {cuddle} and {classic}. In the first
instance our message will then only be found if an exact search is made for "Cuddle-Classic"
or, for example, "*uddle-c*", in the second instance for all "classic" searches.

What we will probably keep together in spite of the occurrence of punctuation, i.e. exclude
from tokenizing, are abbreviations: when AC/DC come to Germany o.i.t. (only in transit) it is
probably better to have the abbreviation in the index instead of the individual letters.

Filter: by using filter operations we can both modify words when they are included in the full-
text index and also completely suppress their inclusion. Known: stop words, at this point we
can maintain a list. Moreover, we probably do not want individual words (Bela B.) to be in
the index like this - the likelihood of confusion is too great. Using other filters we can restore
words to their basic forms or define replacement lists for individual characters (e.g. in
order to eliminate accents). Other filters, in turn, clear the text of XML tags.

We can set all this in the admin tool under "index configuration". We can then assign these
configurations (in the knowledge builder or in the admin tool) to the character string at-
tributes. The index configuration is organised in such a manner that filtering can take place
before the word demarcation and after the word demarcation.

The full-text search does not affect the wildcard automatism of the other queries but the
user may, of course, provide his input with wildcards.

1.3.3 Search pipeline

Search pipelines enable individual components to be combined to complex queries. Single
components perform operations in the process, e.g.:

OO
cee
o0

/—
&
~
&

NUAN

-

e traversing the network and thus determining the weighting

e performing structured queries and simple queries

e compiling hit lists

Every query step produces a query output (usually a number of objects). This query output
may, in turn, be used as input for the following components in the pipeline.

Example

Let us assume that songs and artists from our musical network are characterised with tags
named ‘moods’. Based on a certain 'mood’ we now want to find which bands best represent

this mood.

Step 1 of our search pipeline goes from a starting mood (in this case "aggressive") via the
relation is mood of to the songs which are assigned to the mood ‘aggressive".

typical bands
4 I. through Songs

£ Weighted relation/attribute (is mood of) mood => songs

Add Remove Move up | Move down

[Restrict resultset size Hits
[Server based query

Hits | Cause | Description

Input | moad

nn
Output | songs

Hit
Property is mood of (Instances of Work)
Weight

Standard valu 0.25

=0

Remove

est environmer

00O
o] 1 J
o I J

i-views 5.3
924534

. @Aggressive

*@Dog faced boy
"'@Heart in a cage
i
"'@Faint
"'@Seven Nation Army

"'@A Place for my Head

"@Crawling

w @ By Myself

"'@Anarchy In The U.K.

In the second step we go from the number of songs detected in the ‘mood’ searched for to
the corresponding bands via the relation has author:

- Search Pipeline
P = typical bands
Components

£ typical bands
<« through Songs
& Weighted relation/attribute (is mood ofy mood => songs
& Weighted relation/attribute (has author) songs => bandsThroughsongs

Configuration ‘Hﬂs |Cause |Descﬂplion ‘

Input | songs 1=

Hit

Output | bandsT! |

Hit

Property | has author (Instances of Band, Instances of Persar) J

 Gomom]]

Weight |

00O
000
o I J

"‘Dog faced boy @Eels

. Aggressive

"‘Heart in a cage
*‘@The Strokes

B},r Myself
Faint @Linkin Park

Craw\ing

A Place for my Head

'| Anarchy In The UK.

"‘Seven Nation Army
"‘@ Elephant

@Sex Pistols
@The White Stripes

Now we would like to pursue a second path: from the starting point 'mood’ "aggressive" to
the musical directions which are characterised by aggressiveness.

Based on this number of relevant musical directions we have to go to bands which are as-
signed to this mood. We go down this alternative path in one step using a structured query:

=0
Components
£ typical bands Configuration | Query parameters | Description
+ I through Songs Tnput
& Weighted relation/attribute (is mood of) mood => songs Hits to filter, or no input to perform the query
£ Weighted relation/attribute (has author) songs => bandsThroughSongs Output | bandsThroughStyle
4 [& through Styles Hits
£3 structured Query "Band” => bandsThroughstyle Remain
M Scale quality bandsThroughStyle => bandsThroughStyle Hits that do not match the query condition
% Merge hits bandsThroughSongs, bandsThroughStyle => typicalBands oy [T

O has Target #
© has Target #
O ttribute

¥ Value = @ mood A=aF

From the last two steps we give the indicator "musical direction" a somewhat lower weighting
and compile the outputs at the end:

OO

&

O

o] 1 J

&

o] 1 J

&

Search string
Parameters
Name Required Type Value Type of value Set value
mood id Aggressive Musical Keyword Set element
Search Trace search
Name Type Reason Search string Quality v
éLinkin Park Band A Place for my Head, By - 100
The White Stripes Band Elephant, Seven Nation - 38
Eels Band Dog faced boy . 8
The Strokes Band Heart in a cage . 6
Sex Pistols Band Anarchy In The U.K. . 6

The steps are processed in sequence: the input and output define which step will continue
to work with which hit list. For instance, in this manner we would be able to begin again with
'mood’ on our alternative path.

The principle of weightings

It was the goal to give the bands we obtained as outputs a ranking which shows how great
their semantic "proximity" is to the mood aggressive. In particular, we influence ranking in
this search at two positions: right at the end we weight bands higher in the summary which
are found both via their musical direction and their songs. In this case this applies to Linkin
Park and the Sex Pistols. The higher ranking of Linkin Park results from the fact that again and
again different songs lead to Linkin Park with the mood aggressive. Since more aggressive
songs from Linkin Park are in the database, Linkin Park should be ‘'rewarded’ with a higher
ranking.

1.3.3.1 Configuration of search pipelines

The individual components of a search pipeline are depicted in the main window in the box
components in the order of sequence in which they are implemented.

Using the button add we can insert a new component at the end of the existing components.

Grouping with blocks serves only to provide an overview, e.g. for the compilation of several
components in a functional area of the search pipeline.

The order of sequence of the steps can be changed using the button upwards and downwards
or with drag & drop.

Using the button remove the component selected will be removed, to include all possible sub
components. The configuration for the component selected is displayed on the right-hand
side of the main window.

Configuration of a component

A selected component may be configured on the right-hand side of the main window using
the tab "configuration": most components need input. This usually comes from a previous
step. In this way, the first components in our example pass on the output under the variable
"songs" to the next component, this then goes from there to the bands and, in turn, gives the
output to the next steps as "bandsThroughSongs":

=0

typical bands Configuration | Hits | Cause | Description
4 I through Songs Input | songs
& Weighted relation/attribute (is mood of) mood

& Weighted relation/attribute (has author) songs => bandsThroughSongs Output | bandsThroughSongs

Property | has author (Instances of Band, Instances of Person)
Weight Remove

Standard valy 1.0

Using the input and output variable we can also, in later steps, re-set to the initial output
which we saw in the last paragraph.

We define the input parameters as global settings for the search. Under the name which we
assign here we can then access these inputs in our search pipeline during each step. In our
example the input parameter for identifying typical bands is the mood.

=x0

typical bands Configuration | Description

“ [through Songs [Add hit causes
& \Weighted relation/attribute (is mood of) mood => songs

Paramaters

& Weighted relation/attribute (has author) song

dethrougnsongs Nanm:
4 £ through Styles J mood]
Structured Query "Band” => bandsThroughStyle

Some components enable a deviation from the standard processing sequence:

Individual processing: elements of a quantity, e.g. hits from a search may be processed
individually. This is practical if you want to assemble an individual environment of adjacent
objects for search hits. In individual processing each element of the configured variable in
the single hit is saved and implemented in the sub components.

Condition for set parameters: this component only carries out further sub components if
predefined parameters have been set, whereby the value is insignificant. New sub compo-
nents may be added by using the ‘add’ tab.

KPath condition: By using a KPath condition we can determine that the sub components may
only then be implemented if a condition expressed in KPath is fulfilled. If the condition is not
fulfilled the input will be adopted. KPath is described in the manual for KScript.

Output: we can stop the search at any stage and return the input. This component is also
useful for testing the search pipeline.

The block components which we have also used in our example group a lot of individual
steps. In order to maintain an overview in extensive configurations we can also change the
name of the component using the tab "description" and add a comment as well. Neither the
block components nor the description have any functional effects. Both of them only serve

00O
000
o I J

the 'legibility’ of the search pipeline.

Test environment

Using the test environment in the menu we can analyse the functioning of the search. The
upper section contains the search input and the lower section the output. The input may be
a search text or an element from the knowledge network, depending on which required and
optional input parameters we have globally defined in the search pipeline. If we wish to enter
an element from the knowledge network as a starting point we select the corresponding
parameter line and add an attribute value or a (knowledge network) element, depending on
the type.

Search string

Parameters
MName Required Type Value Type of value Set value
mood Cd Aggressive Musical Keyword Set element
Reset
Search Trace search
> [HEERY
Name Type Reason Search string Quality v
%Linkin Park Band A Place for my Head, By - 100
The White Stripes Band Elephant, Seven Nation - 38
Eels Band Dog faced boy - 8
The Strokes Band Heart in a cage . 6
Sex Pistols Band Anarchy In The UK. . 6

On the tab Trace search a report of the search will be displayed. This primarily consists of
the configuration of the output variables and the duration of the implementation of each
component. The log begins with the pre-configured variables (search string) as well as active
users.

Trace search Duration: 1.128 milliseconds .

“ through Songs Messages: ‘ .
Weighted relation/attribute (is mood of) mood => songs Variables and values
Weighted relation/attribute (has author) songs => bandsThroughSongs Name Type Value

“ through Styles sorgs Jouput | () Seven Naton Army: it
Structured Query "Band" => bandsThroughStyle meod Input Aggressive

Scale quality bandsThroughStyle => bandsThroughStyle

Merge hits bandsThroughSongs, bandsThroughStyle => typicalBands

Hits

)

Scale quality typicalBands => typicalBands

Name Type Reason Search string Quality
A Place for my Song Aggressive . 25
Anarchy In The Song Aggressive . 25
By Myself Song Aggressive : 25
Crawling Song Aggressive . 25
v
< >

Calculation possibilities

In the case of some components it is possible to summarise several quality values into one
single quality value - e.g. in "summarise hits" but also when traversing the relations (see ex-
ample above). For this purpose the following methods of calculation are available:

addition / multiplication

arithmetic average / median

minimum / maximum

ranking

The option "ranking" is then always suitable when we want to assemble an overall picture
from individual references, e.g. if we want to calculate many paths, at least partially inde-
pendent paths - at the end still with differing lengths - to an "overall proximity". Using the
ranking calculation we ensure that all positive references (all independent paths) keep in-
creasing their similarity without exceeding 100%.

In the search pipeline quality values are always specified as floating point numbers. The
value 1 thereby corresponds to a quality of 100%.

1.3.3.2 The single components
/# Weighted relations and attributes

Starting with semantic objects, we can traverse the graph in this step and collect relation
targets or attributes. To do so, we have to specify the type of relation or attribute.

Please note: Only collected targets are output, rather than the initial set. If this is to be
displayed, we then have to summarize the input and output hits.

When traversing a relation, the weighting of hits can be influenced. Let s assume we want
to semantically enhance the “initial mood” of our example search with “sub-moods"”. But this
indirection is to be reflected in a ranking: Connections to bands that run via sub-moods are
not supposed to count as much as connections via an initial mood. For this purpose, we can
assign a fixed value - e.g. 0.5 - for moving along the relation and then merge input quality,
e.g. multiply it. In this case the sub-moods added in this step count only half as much as
direct moods.

Instead of assigning a fixed weight for moving along the relation, we could also read the value
from a meta-property of the basic type float of the selected relation. If the attribute is not
available or no attribute has been configured, the default value is used. The value should be
between 0 and 1. The hit generation can be configured in detail: For relations, you have the
option to also generate a new hit for the source of the relation (rather than for the relation
target).

If a relation has been selected as a property and hits are generated for relation targets, we
can also transitively trace the relation. The quality value is reduced with each step until the
value falls below the specified threshold. If an object has more relations than specified under
maximum fan-out, these relations are not traced. The higher the damping factor, the more
the quality value is reduced.

Structured query

We can use structured query components to either search for semantic objects/go from an

Q00O

o] 1 J

&

o] 1 J

&

existing set to other objects (as with the weighted relation) or filter a set.

If we search for objects, we forward our initial set of hits from a preceding step into the
search via the parameter name. (In general: Within the expert query, variables of the search
pipeline, e.g. search string, can be referenced via parameters.) In this case, the input stays
blank.

Konfiguration | Suchparameter | Beschreibung
Eingabe
Treffer (zur Filterung) oder ohne Eingabe (normale Abfrage)
Ausgabe bandsThroughStyle
Treffer
Rest

Treffer, die bei der Filterung nicht die Suchbedingung erflllen

Abfrage | Band

+ |@dBand
' + + hat Stil
o] + | J@Musik stil
o’ + wird charakterisiert von
0 + %, Musik Schlagwort
+ Name
T = @ A=a¥

For filtering, in contrast, we specify a set of objects as the input. The output contains all
objects that meet the search condition. Objects that do not meet the search condition can
optionally be stored in an additional variable (Rest).

We can either define the structured query ad hoc directly in the component or we can use
an existing structured query.

Please note: If an existing search is selected, no copy is created. Any changes to the struc-
tured query that we make for search pipeline purposes also modify the query for all other
uses.

Query

You can use the “Query” component to execute simple queries, full text queries and other
search pipelines. Simple queries and full text queries receive a string here, e.g. the search
string: This is a parameter that is available for processing user input in all search pipelines.
The hit list of the called search fills the output of this component.

By integrating search pipelines into other search pipelines, we can factorize sub-steps that
occur more frequently. Several parameters and entire sets of hits (“hit collections”) can be
transferred to other search pipelines. With integrated search pipelines we can also replace
several parameters, that is, we can access of every sub-step output in the integrated search
and vice versa. If we go to selected parameters, we can also rename them, for example, if
we want to use a set of hits from the integrated search but have already used the name.

Alternatively, we can also apply only some of the parameters from the integrated search in
order to avoid such conflicts.

Summarize hits

We can use this component to summarize different sets of hits (“hit collections”) from previ-
ous steps. The following methods are available for summarizing:

Join: All hits that occur in at least one of the sets are output as a result
Intersect: Only hits that occur in all sets are output as the result.

With joins and intersects, a semantic object can occur in several sets of hits (“hit collections”)
and has to be computed as one total hit with a new hit quality. The aforementioned calcula-
tion options are also available here.

Difference: One of the sets of hits (“hit collections”) must also be defined as the initial set.
The other sets are deducted from this set.

Symmetric difference: The result set consists of objects that are included in exactly one
subset (= everything except for the intersection, when there are two sets).

Three different types of total hits can be generated. The selection is particularly relevant if
partial hits include additional information.

e To generate uniform hits, remember the original hits as the cause: New hits are gener-
ated that contain the original hit as the cause.

e Extend original hits: The original hit is copied and receives a new quality value. If there
are several hits for the same semantic object, a random hit is selected.

e Generate uniform hits: A new hit is generated. The properties of the original hit are lost.

Summarize partial hits

During individual processing you frequently have to general a total set from partial hits. The
component “Summarize partial hits” enables you to do so. This summarizes all hits of one or
more partial sets of hits (“hit collections”). The difference to Summarize hits is that summariz-
ing only take parts at the end, not for every partial hit set. This is relevant in particular when
calculating the quality because summarizing hits would return incorrect values, in particular
for the median.

Script

A search pipeline can contain a script (JavaScript or KScript). This can access the variables
of the search pipeline. Furthermore, a script can transfer several parameters to the search
pipeline. The result of the script is used as the result of the component.

JavaScript APl and KScript are described in separate manuals.

/y Copy quality from attribute value

For hits, we can copy the quality value from an attribute of the semantic object. If the ob-
ject does not have exactly such an attribute, the default value is used. The value should be
between 0 and 1.

Compute total quality from weighted qualities

To adapt the quality of a search hit, it can be useful to compute a total value from individual
partial qualities. The qualities must be available as numeric values. These values are used to
calculate a new total quality.

Compute overall quality of hits

You can use the individual quality values of a set of hits to compute a total quality.

Restrict quality

We can restrict sets of hits (“hit collections”) to hits whose quality value falls within specified
limits (minimum or maximum). Normally, we want to filter out hits that fall below a certain
quality threshold.

Restrict number of hits

If the total number of a set of hits is to be restricted, we can add the component “restrict
number of hits”. We can use the option “Do not split hits of the same quality” to prevent a
random selection in case of several hits of the same quality in order to comply with the total
number. We then get more hits than specified.

If some very specific cases, we can also randomly select the hits, e.g. if we have a large
number of hits with the same quality and want to generate a preview.

Scale quality

Die quality values of a set of hits can be scaled. A new set of hits with scaled quality values is
calculated. The calculation takes place in two steps:

1. Die quality value of the hits are limited. The threshold values can either be specified or
calculated. The calculation determines the minimum and maximum value of the hits. If
thresholds are specified and a hit has a quality value that falls outside of the thresholds,
the value is limited to the threshold value. If you want to remove such hits, you have
to execute the restrict quality component first. Example: Mapping percentage values to
school grades. 30% is average, over 90% is high score. The values can be scaled linearly
from 30% to 90%.

2. Following that, the quality values are scaled linearly. Hits with the minimum/maximum
input value receive the minimum/maximum scaled value.

Compute hit quality

You can use a KPath expression to generate a new hit with calculated quality for a hit. The
KPath expression is calculated on the basis of the input.

1.3.3.3 KPath

KPath allows addressing of objects within the Knowledge Graph. The notation is similar to
XPath but differs in some respects.

AN

&

OO0

o] 1 J

&

o] 1 J

&

The individual elements of the expression normally are separated by a slash "/". If a KPath
expression begins with "/", then the evaluation starts at the root type, else it starts at the
current object (depends on the context of the evaluation). If an element does not correspond
to one of the listed elements of the table, it will be interpreted as a name of a sub type. Simple
names can be specified without quotation marks.

When specifying a language, it must be stated according its ISO 639-2 code ("eng" for English,
"ger" for German, ...).

Examples:

¢ @Name
Attribute "Name"

e //book\Faust/~author
Relation "author" of the book "Faust"

e //$artifact$/book{eng}
Sub type "book" (English name) of the type "artifact" (internal name)

e //book*[~author/target()/@Name = "Goethe"]
All books which had been written by Goethe

1.3.3.3.1 Names

In combination with @, /, //, \ and \\, following kinds of names can be used:

Name Description

name Name in standard language. Without quotation marks the name
needs to be begin with a letter, an asterisk or with an underscore
sign. Whitespaces or special characters which are used in other
expressions are not allowed. The name must comply with fol-
lowing regular expression:
[a-zA-Z_*]IN({3$% {3, ~@8#+-"'s | A&]*

(For better reading, the escape character "\" has been left out)

"name" If the name doesn't meet the above-mentioned requirements,
'name’ it needs to be surrounded by single quotes or double quotes.
Here, the backslash sign "\" serves as escape character for pos-
sibly used apostrophes, e. g. 'Wendy\'s".

name{lang} Name in the specified language "lang"
$names$, $"name"$ Internal name

8names, §8"name"8 System name

#1D42_1013 ID of the object

Names are not replaceable by variables and must therefore be a part of the script.

OO

O

—
&

o] 1 J

&

o] 1 J

&

34
1.3.3.3.2 Operators
Numeric values can be linked by the operators +, -, * or /.
When using "*", "-" and "/", at least one white space character must surround the operator

on both sides each.

Parenthesis are supported, e. g. "(5 + 3) * 4" equals the value 32.

Example: Sum of all relations between Goethe and Schiller:
\\Goethe/~*/size() + \\Schiller/~*/size()

The operator "+" also can be used to append strings:
//person\Goethe + " wrote " + //book\Faust
leads to:
Goethe wrote Faust

By means of the unary operator "!", a Boolean expression can be negated, e. g.:
11=2

For some operators, an alternative notation only consisting of alphabetical characters is pos-
sible, e. g. "eq" for equality. Applying this notation, at least one white space character needs
to be used between operator and operand. The expressions are case-sensitive, so operators
are only recognized if written in small letters.

Possible operators are (in descending precedence):

Opera- | Alternative Meaning

tor notation

! not Negation (unary operator)

* Multiplication

/ Division

+ Addition, linking (only character strings)

- Subtraction

< It Smaller than

> gt Greater than

<= le Smaller than or equal to
>= ge Greater than or equal to
= eq Equal to

I= ne Not equal to

AN xor Exclusive or (logical operator)

Q00O

o] 1 J

&

o] 1 J

&

&& and And (logical operator)

I or Or (logical operator)

Due to KScript basing on XML, operators like '&&’, ‘<’ or '<="need to be written using entities
like ‘&It or '‘&’ instead of the character signs '<’ and '&’ or alternative notation needs to
be used.

Example for "and":

<Path path="var(left) && var(right)"/>
<Path path="var(left) and var(right)"/>

Example for "smaller than":

<Path path="var(left) < var(right)"/>
<Path path="var(left) 1t var(right)"/>

1.3.3.3.3 Conditions
Conditions can be specified using the following notation:
pathl[path2] path3

On all elements out of path1 for which the condition path2 applies, path3 will be executed.
To express the condition path2, comparative operators can be used (see preceding section).
Boolean expressions can be linked with Boolean operators.

Example: Name of all books which had been written by Goethe:

//book* [~author/target () /@Name = "Goethe"]/@Name/value ()

1.3.4 Model "hit"

The “Hit" type content model is available to ensure that search queries can be processed and
transported both as quality and causes. A “Hit” can be seen as a container that summarizes
the element including several properties and makes it temporarily available to the context.
The contained properties can be, for example, calculated hit quality, hit cause, change log
entry etc.

In search pipelines, the content models “Hit” and “Hits"” are available. The “Hits" type is an
array of several “Hit" elements:

000
o 1

&

ol I _

&

Hits = [Z&Hit3, <Hit>, <Hit>, ... <Hit>]

Element (Objekt, Attribut oder
Relation

® Treffer-Qualitat

® Treffer-Ursache (Cause)

® (direct/semantic Hit)

Meta-attributes of hits
In addition to the semantic element, the following meta-attributes are transported in a hit:
¢ Hit quality: Can have a value between 0 and 1 by setting a quality in a search pipeline;
the hits of a structured query receive the value 1 by default
e Hit cause: Refers to the input element that has led to the hit and its type
e Hit cause (snippet): Refers to the content or the search term that has led to the hit

For detailed information on the meta-attributes, refer to the JavaScript API.

Using hits in search pipelines

If a hit list is to be processed in a search pipeline by means of a simple query, individual
processing is required because the hit list is in the form of an array: Queries can process an
individual “hit” in the form of a string but not “hits” (= array). Converting a “hit” into string, in
turn, can be done using a script that precedes the simple query.

4) Einzelverarbeitung hits4 = hit
Skript hit => hit1
) Abfrage "Abfrage” hit1 => hit2

Teiltreffer zusammenfassen hitZ => hits

Example script for converting a hit into a string:

function search(input, inputVariables, outputVariables) { return input.element().name(); }

Using hits in tables

The “Use hits” option is available in the column element configuration of a table. This option
determines whether the entire hit element (semantic element + meta-attributes) or only the
semantic element is to be forwarded to display query results.

Processing hits in tables via a script

If the query results are to be processed further using a script, the “Use hits” option deter-
mines whether the query result is supposed to be treated as a hit: The script is forwarded
either $k.SemanticElement or $k.Hit as a JavaScript object.

OO

&

O

o 1

&

ol I _

&

1.3.5 The search in the knowledge builder

With the exception of the structured queries which are created in the folders and also im-
plemented there, all searches in the header of the knowledge builder are made available for
internal usage.

FOLDER

¥ W Working Folder (wi

¥ W/ Private

For this purpose we have to drag & drop a pre-configured search only into the search box of
the header of the knowledge builder. If this contains several searches to be selected from

you can select the desired search from the pull-down menu by clicking on the magnifier icon.
The search input box always contains the search mode which was last carried out.

We can remove the search using the global settings where we can also change the sequence
of the various searches in the menu.

1.3.6 Special cases

1.3.6.1 Volltext search Lucene

The full-text search may also alternatively be carried out via the external indexer Lucene. The
search configuration is then analogue to the standard full-text search, i.e. attributes may, in
turn, be configured in the search which are also connected to the Lucene index; the search
process is also analogue. In order to configure the Lucene indexer connection we hereby
refer you to the corresponding chapter in the admin manual.

1.3.6.2 Search with regular expressions

Regular expressions are a powerful means of searching through databases for complex
search expressions, depending on the task concerned.

Search with regular expressions hit

The [CF]all the call, the fall

Car. cars

Car.* cars, caravans, Carmen, etc.
[AR]Joom doom, loom, etc. (but not room)

Q00O

—

ol I J

As search inputs, i-views supports the standard also known from the standard known from
Perl which, for example, is described in the Wikipedia article for regular expression.

1.3.6.3 Search in folders

The search in folders is carried out in names of folders and their contents:

e folders whose name matches the search input
e fodlers which contain objects which match the search input

expert searches which contains elements which match the search input

scripts in which the search input appears

rights and trigger definitions which contain elements which match the search input

Using the search input #obsolete, you can target your search for deleted objects (e.g. search-
ing in rights and triggers). When configuring the search the number of folders to be searched
through can be limited. Furthermore, the option "search for object names in folders" may be
deactivated. This is helpful if you do not want to search for semantic objects in folders be-
cause in the case of extensive fodlers (e.g. saved search results) the search for object names
may take a very long time.

1.3.6.4 Query for duplicates

After imports or due to other reasons such as quality assurance it can be necessary to check
for duplicates semantic elements. To do so, a specially configured structured query can be
used.

Note: Because the structured query shown in the following example refers to elements of the
whole Knowledge Graph without further type restrictions (objects of top level type), executing
the query can take an unusually amount of time. It therefore is adviced to restrict the query
to the most exactly subtype as possible.

In principle, the structured query searches for different objects that have identical values
for their identifying attributes (here: objects with identical names).

The query for duplicates can be configured as follows:

1. Create a query for objects of the subtype in question. Add the identifying attribute as
condition (here: primary name).

2. Depending on the object, create a utility query. Use a negative reference (comparison
operator "is not") to make sure that only different objects will be found:

+ @ Top level type

% <

34 Top level type

00O
o] 1 J
o I J

i-views 5.3
1074534

3. For comparing the attribute values against each other, the value fields need to be removed
first:

Structured query

£ = Duplicates

*

O Attribute #B f Choose.

%% Reference — 314 . Query using all languages

....................... Query using the current language
Query using the selected languages
L Utiity query |3 48 (@ Tc Subpress waming
[\ Atiibute Show warning Azafp
Add comment

@ Edit parameter
@ Predefined parameters >
Standard value

Copy to clipboard

4, After having removed the value fields, the context menu offers the option "compare val-
ues". Add this condition and select the identifying attribute of the utility query to compare
against:

Structured query
£ = Duplicates
.

A Attribute .- - Name

’Q Reference = # cardinality
........... = Has attribute value
comparison value computed by script
¢ LR EEY) condition on new attribute value
script condition on new attribute value

Compare with attribute value to be written

~* is property of
/N Attributes 2
= o Relations >
Schema 4
BE_= »
«C Add alternative
Name Paste from clipboard = e
Gl Predefined identifiers 4

/. Extract to utility query

1} Useas main query

%4 Reference
¢ compuewalue
@ New local macro

@ Structured query macro (registered)...

£ Query..

Result: Structured query for searching duplicates.

Structured query
£ = Duplicates

*
O Attribute HR # Value = valueof[4] A=ag @
-

@ Reference # B3l ¢

¢ Utility query |3 8 .Top level type
O Attribute [4 88

1.3.6.5 Query for identical translations

Similar to the query for duplicates, the query for objects with identical translations makes
use of references and attribute value comparisons.

Note: Because the structured query shown in the following example refers to elements of the
whole Knowledge Graph without further type restrictions (objects of top level type), executing
the query can take an unusually amount of time. It therefore is adviced to restrict the query
to the most exactly subtype as possible.

The difference between this query and the query for duplicates is that it is all about one
and the same object this time, with the additional condition of identical attribute values in
different translation layers of one and the same attribute:

+ | Top level type

+ Name

% = <

LF = Az [
% = "2

4 o Top level type
>+ Name |[£F = Aza g [

1.4 Folder and registration

Along with the objects and their properties, we also build a variety of other elements in
a typical project: we define, for example, queries and imports/exports, or write scripts for
specific functions. Everything that we build and configure can be organized in folders.

The folders are shared with everyone else working on the project. If we do not wish to do so,
we can file things in the private folder, for example for test purposes. This is only visible for
the respective user.

A special form of the folder is the collection of semantic objects, in which we can file objects
manually, for example for processing at a later date. To do so, we simply move them to the
folders using Drag&Drop, and there are also operations to, for example, define result lists in
folders.

In the moment we delete one of these objects within the Knowledge Graph, it is also deleted
from the collection. If a semantic element is removed by clicking on "Remove from folder", it
is only removed from the collection but still exists within the Knowledge Graph. If the actions
"Delete" or "Delete selected elements"” or "Delete all elements inside the folder" is used, the
semantic element actually is deleted and from the Knowledge Graph and therefore is not
accessible anymore within the collection.

Caution: The action "Remove from folder" has different functionalities, depending on the
context of use: In the case of folders containing import mappings, the action "Remove from
folder" actually means completely deleting the respective import mapping!

In the case of collections of semantic objects with more than 100 entries, for reasons of per-
formance, no determination of the table configuration that best suits the content occurs. We
can, however, request this by means of the context menu function “Determine configuration
of the object list” when necessary.

Registration

Queries, scripts, etc. can call each other (a query can be integrated into another query or into
a script, while, in turn, a script can be called from a search pipeline). There are registration
keys for this purpose, with which we can equip queries, import/export mappings, scripts
and even collections of semantic objects and organizing folders to ensure they provide other
configurations with a functionality. The registration key &, must be distinct. Everything that
has a registration key is automatically added to the “Registered objects” folder, or in the
subfolder that corresponds to its type

Shift, copy, delete

Let us assume we have a folder called “Playlist functions” in our project. This might contain
an export, some scripts and a structured query “similar songs”, which we would like to use
in a REST service. The moment we give the structured query a registration key, it is added to
the folder “Registered objects” (“Technical” section). This means the structured query “similar
songs” appears in the folder “Registered object” under “Query”. It also remains there when
we remove it from our project subfolder “Playlist functions”. If we remove the registration
key, the query will automatically disappear from the registry.

The basic principle when deleting or removing: Queries, imports, scripts can be in one or
several folders at the same time, and at least one folder must contain them. Only when we,
for example, remove our query from the last folder will it actually be deleted. Only then does
i-views also request a confirmation of the delete action. The same applies for removal of the
registration key.

If we wish to delete the query in one step, regardless of the number of folders that contain
it, we can only do this from the registry.

Folder settings

We can define quantitative limits for query results, folders and object lists (lists of the specific
objects in the main window of the Knowledge Builder when an object type is selected on the
left-hand side) in the folder settings. Automatic query up to the number of objects speci-
fies up to which number of objects the contents of the folders or the object lists are shown
without any further interaction by the user. If the limit set there is exceeded, the list initially
remains empty, and the message “Query not executed” appears in the status bar. Executing
a search without an input in the input line shows all objects. This, at least, until the second
limit has been reached: Maximum number of query outputs, maximum number of outputs
in object lists - in this instance high values - there is actually no result when these values are
exceeded, queries must be restricted, e.g. in object lists in which we also have the beginning
of the name in the input box.

00O
000
o I J

1.5 Import and export

By mapping data sources we can import data to i-views from structured sources and ex-
port objects and their properties in structured form. The sources can be Excel/CSV tables,
databases or XML structures.

The functions for import and export overlap to the most part and are therefore all available
in a single editor. In order to access functions for import and export, it is first necessary to
select a folder (e.g. the working folder). There the “New mapping of a data source” button
can be used to select a data source for the import or export.

Name Typ

ORDNER
4w/ Arbeitsordner (workingFolder) {0

Alternatively, you can find the button on the “TECHNICAL" tab under “Registered objects” ->
“Mappings of data sources”.

The following interfaces and file formats are available for import and export:

e CSV/Excelfile

e XML file

MySQL interface
ODBC interface

Oracle interface

PostgreSQL interface
e For the exchange of user IDs, a standard LDAP interface has been implemented.

The following section uses a CSV file to describe how to create a table-oriented import/export.
As all imports/exports apart from XML imports/exports are table-oriented and the individual
data sources differ only in terms of their configuration, the example for the mapping of the
CSV file can also be applied to the mapping of other databases and file formats.

1.5.1 Mapping of data sources

CSVfiles are the default exchange format for spreadsheet applications such as Excel. CSV files
consist of individual rows of plain text in which columns are separated by a fixed, predefined
character such as a semicolon.

1.5.1.1 Principle of operation

Let s use a table with songs as a first example: When the table is imported, we would like to
create a new, specific object of the type song for each line. The contents of columns B to G
become attributes of the song, or relations to other objects:

00O
000
o I J

A B c D [e TF] G H
1 |Titelname Interpret Album Genre Dauer Jahr Meine Wertung
2 |The Suburbs Arcade Fire The Suburbs Postwave 315 2010 60
3 |Ready To Start Arcade Fire The suburbs Postwave 255 2010 80
4 |Modern Man Arcade Fire The Suburbs Postwave 279 2010 60
5 Rococo Arcade Fire The Suburbs Postwave 236 2010 40
6 |Empty Room Arcade Fire The suburbs Postwave 171 2010 20
7 |City With No Children Arcade Fire The Suburbs Postwave 191 2010 20
8 |Half Light1 Arcade Fire The Suburbs Postwave 253 2010 20
9 |Half Light Il (No Celebration) Arcade Fire The Suburbs Postwave 267 2010 40
10 |Suburban War Arcade Fire The Suburbs Postwave 281 2010 80
11 |Month Of May Arcade Fire The Suburbs Postwave 230 2010 20
12 |wasted Hours Arcade Fire The Suburbs Postwave 200 2010 40
13 |Deep Blue Arcade Fire The Suburbs Postwave 268 2010 60
14 | We Used To Wait Arcade Fire The Suburbs Postwave 301 2010 100
15 |Sprawl | (Flatland) Arcade Fire The Suburbs Postwave 174 2010 40
16 |Sprawl Il (Mountains Beyond Mountains) Arcade Fire The Suburbs Postwave 318 2010 40
17 | The Suburbs (Cnhtlhue_d) Arcade Fire The Suburbs Postwave 87 2010 40
18 EIEahDrRiEby The Beatles Revolver Qldies 127 1966 EIO!
19 For No One The Beatles Revolver Qldies 121 1966 60
20 |Good Day Sunshine The Beatles Revolver Qldies 129 1966 40
21 |Here There And Everywhere The Beatles Revolver Qldies 145 1966 40
22 IWant Ta Tell You The Beatles Revolver Qldies 149 1966 40
23 |I'm Only Sleeping The Beatles Revolver Qldies 181 1966 60
24 love ToYou The Beatles Revolver Qldies 181 1966 20
25 |She Said She Said The Beatles Revolver Qldies 157 1966 40
26 Taxman The Beatles Revolver Oldies 159 1966 20
27 Tomorrow Never Knows The Beatles Revolver Oldies 177 1966 20
28 |Yellow Submarine The Beatles Revolver Oldies 160 1966 20
29 |About A Girl Nirvana MTV Unplugged in NY Rock 217 1994 60
30 Jesus Doesn't Want Me For A Su Nirvana MTV Unplugged in NY Rock 277 19%4 40
31 |The Man Who Sold The World Nirvana MTV Unplugged in NY Rock 260 1994 80
32 |Pennyroyal Tea Nirvana MTV Unplugged in NV Rock 220 1994 60
33 |Dumb Nirvana MTV Unplugged in NY Rock 172 19%4 40
34 Polly Nirvana MTV Unplugged in NY Rock 196 19%4 60

Using the song as a basis, we build up the structure of attributes, relations and target objects
that should be created by the import (left-hand side). An object of type song is created this
way for row 18, for example, with the following attributes and relations:

Definition: Mood-Beispiel
1: Individuen von Seng
£\ 2; Attribut Name
™ 3: Attribut Dauer
£ 4: Attribut Jahr

£ 5: Attribut Wertung

Oldies

Lange: 127
4 " 6: Relation has style
. Jahr: 1966
4 () 7: Individuen von Musical Style The Beatles \/E\,/elttung' 60
£ 12: Attribut Name | b)
Eleanor Rigby

4 4 8: Relation has author

_} 9: Individuen von Band
% 13: Attribut Name
4 " 10: Relation is contained in

Revolver

11: Individuen von Album
% 14; Attribut Name

We can, however, also decide to distribute the information from the table in a different way,
for example allocate the year of release and artist to the album, and in turn the genre to the
artist. A row still forms a context, however this does not mean it must belong to exactly one
object:

00O
000
o I J

Definition: Import-Beispiel
4 1: Objekte von Song
£ 2 Attribut Name
{5 3: Attribut Dauer
N 4: Attribut Wertung
4 5: Relation ist enthalten in
4 6: Objekte von Album
/N 7: Attribut Name
/N 8: Attribut Jahr
4 9: Relation hat Autor
4 10: Objekte von Band
5 11: Attribut Name
4 12: Relation hast Musikrichtung
4 13: Objekte von Musikrichtung
£ 14; Attribut Name

Everywhere that we build up new, specific objects and relation targets in our example, we
must always specify at least one attribute for this object, in this case the respective name

Oldies
Lange: 127
Wertung: 60

Eleanor Rigby
The Beatles

Revolver Jahr: 1966

attribute that allows us to identify the corresponding object.

1.5.1.2 Data source - selection and options

Once we have selected the “New mapping of a data source” button, a dialog opens which
we must use to specify the type of data source and the mapping name. If we have already
registered the data source in the semantic graph database, then we will now find it in the

selection menu at the bottom.

00O

&l i-views 5.3
88 113634
OOAGE :
Name Typ
G L P

MName
‘Son94 |

Datenguelle
® Neu anlegen
CSV/Excel-Datei 8

LDAP
MySQL-Schnittstelle
ODBC-Schnittstelle
Oracle-Schnittstelle
PostgreSQL

() Registrierte Datenguelle verwenden

| | Auswihlen |

| OK || Abbrechen|

By pressing “OK" as confirmation, the editor for the import and export opens. We can specify
the path of the file we wish to import under “Import file". Alternatively, we can also select
the file using the button to the right of it. As soon as the file has been selected, the column
headings and their positions in the table are exported and shown in the field at the bottom
right. The “Read from data source” button can read out the columns again in the event of
any changes to the data source. The column “Mappings” shows us the respective attribute to
which the respective column of the table is mapped later on.

OO

&

O

o] 1 J

&

o] 1 J

&

534
=#0
wew O 00ALS LR
Songs Songs
CSW/Excel-Datei | Optionen | Log | Registratur
Import-Datei: | Ch\Users\nproske\Desktop\Songs.csv OTabeIIe anzeigen..
Export-Datei: ... || Tabelle anzeigen...
Optionen
Encoding: v Zeilentrenner: | automatisch erkennen v

1. Zeile ist Uberschrift Werte in Zellen sind in Anflhrungszeichen eingeschlossen

Spalten identifizieren Trennzeichen
) Gber Spalteniiberschrift () Tab

®) (ber Position) Space
O Ober Zeichenposition ;

Spalten: /Aus Datenguelle lesen

Positic Uberschrift Feldldne Typ Abbildungen

1 Titelname Variabe Zeichenket

2 Interpret Variabe = Zeichenket

3 Album Variabe Zeichenket

4 Genre Variabe Zeichenket

5 Moad Variabe Zeichenket

6 Dauer Variabe Zeichenket

7 Jahr Variabe Zeichenket

8 Meine Wertung Variabe Zeichenket

[] Bearbeiten [ipalte hinzufiiger| spalten entferner MNach oben Nach unten

The structure of our example table corresponds to the full default settings, so that there is
nothing else to factor in under the menu item Options. CSV files can, however, exhibit struc-
tures that are very different, which must be factored in using the following setting options:

Encoding: The character encoding of the import file is defined here. This provides ascii, ISO-
8859-1, ISO-8859-15, UCS-2, UTF-16, UTF-8 and Windows-1252 for selection. If nothing has
been selected, the default setting that corresponds to the operating system in use is applied.

Line separator: In most cases, the setting “detect automatically”, which is also selected by de-
fault, is sufficient. However, should the user establish that line breaks are not being identified
correctly, then the corresponding, correct setting should be selected manually. This provides
CR (carriage return), LF (line feed), CR-LF and None for selection. The standard used to encode
the line break in a text file is LF for Unix, Linux, Android, Mac OS X, AmigaOS, BSD and others,
CR-LF for Windows, DOS, 0S/2, CP/M and TOS (Atari), and CR for Mac OS up to Version 9,
Apple Il and C64.

1st line is heading: It may the case that the first line does not include a heading, and the
system must be notified of this by removing the checkmark set by default next to “7st line is
heading”.

Values in cells are surrounded by quotation marks is selected so that the quotation marks are
not included in the import when this is not wanted.

Identify columns: Whether the columns are identified using their heading, the position or the
character position must be specified, as otherwise the table cannot be captured correctly.

OO0
O
O
O

Separator: If a different separator than the default semicolon is used, this must also be spec-
ified when the column is not identified using the character position.

Moreover, the following rules apply: If a value in the table contains the separator or a line
break, the value must be placed in double quotation marks. If the value contains one quota-
tion mark, this must be doubled (»""«).

1.5.1.3 Definition of target structure and mappings
1.5.1.3.1 The object mapping

We will now start setting up the target structure that should be produced in the semantic
graph database. In our example, we are starting with object mapping of the songs. In order
to map a new object, we must press the “New object mapping” button.

Songs Songs

The next step is to specify the type of object for import.
=#0

Songs 1: Instances of Song

1: Instances of Song Mapping | Identify | Log | Options

Type Song ﬂ
There are further specific settings in the options tab of the object mapping.

With objects of all subtypes: If the checkbox is set to "With objects of all subtypes", the
import also includes objects from all subtypes of "Song". Since this is usually desired, the
checkmark is set here by default.

Exact type is specified by the following mapping: If the exact type to which the object s to
be created is identified in the import source, this can be mapped here via the "New..." button.
It must be a subtype of the type specified in the tab "Mapping".

Allow multiple objects: It is possible that the knowledge network already contains sev-
eral objects with correspondent identifying properties (correspondent names). If the import
mapping needs to be referred to these objects, an ambiguity conflict occurs. If you set the
checkmark here, the import for all these objects is going to be performed disregarding the
ambiguity.

If you do not set the checkmark, the import will not be carried out for the multiple occuring
objects and instead the user will be informed that the importer cannot uniquely identify the
object.

1.5.1.3.2 The attribute mapping / Identifying objects

Now we want to link the information in the table to the object mapping of the songs. At-
tributes for individual songs are represented along with relations. In order to first create the
track name for a song in the mapping, we add an attribute to the object mapping for song.
Clicking on the “New attribute mapping" button opens a dialog, which must be used to select
the relevant column from the table to be imported.

00O
o] 1 J
o I J

i-views 5.3

1164534

w = Songs
sww O ASeiELOUX
w Songs |

@ 1: Objekte von Song ot
palten:

Positior Uberschrift Abbildungen

Titciname —.

Interpret
Album
Genre

Mood

OK Abbrechen

As this attribute is the first one we created for the object mapping of songs, it is then auto-
matically mapped to the name of the object, as the name is usually the most commonly used
attribute.

CSV/Excel-Datei
W = Songs

wseww O ALEEOUN

& Songs 2: Attribut Name Aktive Sprache

4 ® 1: Objekte von Song Abbildung | Import | Identifizieren | Log | Optionen | Sprache | Wertzuweisung |

4 2: Attribut Name Aktive Sprache | 0o o | Titelname HZH Entfemen |

Quelle | 1: Objekte von Song | IZI | Neu... |
Import: | Aktualisieren oder neu anlegen wenn ni | . |
Export: | Alles exportieren | EI
Attribut:| Name |
Magliche Attribute
Bekanntheit
Dauer
EID
Jahr
Kritik
Name Primdrname
RDF-ID
RDF-URI
Symbol
Wertung

Note: The first attribute created for an object is also used automatically in the identification
of the object.

000
o] 1 J

&

o] 1 J

&

An object must be identified by at least one attribute - by its name or its ID, or by a combina-
tion of multiple attributes (as with the first and last name and date of birth of a person) - it
should already exist so that it can be unambiguously found in the semantic graph database.
This prevents unwanted duplicates from being created during import.

Note: Meta-Attributes at relations can also be imported. Here it is ensured that both the
relation source and the relation target are specified and identified, otherwise the relation is
ignored by the importer.

In the “Identify” tab it is possible to subsequently change the attribute identifying the object,
or to add multiple attributes. In addition, it is possible to specify whether the values should
be matched in a case-sensitive fashion, and the query should return identical values (with-
out index filter / wildcards). The latter is relevant if filters or wildcards are defined in the
index that specify, for example, that a hyphen should be omitted from the index. The term
would not be found with a hyphen if the search took place only via the index; in this case, a
checkmark would be needed here so the search only finds the exactly identical value.

Songs 1: Objekte von Song

! Identifizieren

4 0 1: Objekte von Song Abbildung
2: Attribut Name Aktive Sprache

Log | Optionen
Objekt identifizieren durch folgende Abbildungen:
2: Attribut Name Aktive Sprache

Now we can add further attributes to object mapping that do not need to contribute towards
identification, e.g. the length of a song - and this is once again done via the “New attribute
mapping” button. (Please note: first the object mapping “objects of song” must be selected
again.) Now we select the “Length” column from the table to be imported. This time we
have to manually select the attribute to be mapped to the “Length” column. The field on
the bottom right contains the list of all possible attributes defined in the schema that are
available to us for objects of the “song” type, among them also the “length” attribute.

OO

O

o~

o] 1 J

&

o] 1 J

&

—
=40
Songs 3: Attribut undefiniert
4 @ 1: Objekte von Song Abbildung | Import | Identifizieren | Log | Optionen
2: Attribut Name Aktive Sprache | .\ -1 ion aus | Dauer | Entfernen
3: Attribut undefiniert Quelle 1: Objekte von Song e
Import: Aktualisieren oder neu anlegen wenn ni
Export: Alles exportieren
Attribut:| undefiniert n
Magliche Attribute Ubernehmen

Bekanntheit

EID

Jahr

Kritik

Name Primdrname
RDF-ID

RDF-URI

Symbol

Wertung

Mapping of translations

For string attritbutes with translations, e.g. the primary name of objects, we can define in
which language the value needs to be imported.

If an attribute mapping is created for a translated attribute, the import language automat-
ically is set to the "Current language". The current language equals the language in which
the Knowledge Builder has been started (which at the same time is the language of the user
interface).

If the import needs to be done in another language than the current language, this can be
specified by selecting the tab "Language" and then by selecting a language of the list, which
then becomes the chosen language for the attribute mapping.

In case of an import source containing several translations of one and the same attribute
(within the same line), these values can be imported within one import mapping simultane-
ously.

The simultaneous import of translations for an attribute is done as follows:

00O
000
o I J

vew 4
w Import
4 @ 1: Instances of Album
A 2: Attribute Name German

A 3: Attribute Name English

ASHEEL,amX
3: Attribute Name English

Mepping Import Identify Log Options Language Value assignment
O Currentlanguage [Allow fallback language preferences for empty translations
(® Choose language

e dm!

Chinese 2
Czech
Danish
Dutch
English

Finnish
[Show all languages
Mappings of other translations of the same attribute:

2: Attribute Name German

Add Remove

For each language, create a separate attribute mapping for the same attribute, but specify a
different import language

In the "Language" tab for one of the attribute mappings, add the relevant attribute mappings
of the other languages to the field "Mappings of other translations of the same attribute"

This prevents from separate attributes being created for each translation and ensures that
corresponding translations are imported altogether at the same attribute.

1.5.1.3.3 The relation mapping

Next, we want to map the album on which the song is located. Since albums are concreate
objects in the semantic graph database, we need the relation that connects the song and the
album to do this. To map a relation, we first select the object for which the relation is defined
and then click on the button “Map new relation.”

K/ ¥ EEoax

1: Objekte von Song

Abbildung | Identifizieren | Log | Optionen

2: Attribut Name Aktive 5
3: Attribut Dauer

Typ Song
Mit Objekten aller Untertypen

Following that, just like for attributes, we get a list of all possible relations; and the required
relation “js included in" is naturally included.

00O
000
o I J

—
=#0
Ay 2y By B Y|
wew O ASEEOUNK
w' Songs 4: Relation undefiniert
a® 1 Objekte von Song Abbildung | Import | Export | Identifizieren | Log | Optionen
& 2: Attribut Name Aktive S| Quelle 1: Objekte von Song w | Neu.. | Entfernen
& 3: Attribut Dauer - Neu.. Entfernen
«" 4: Relation undefiniert — :
Import: Aktualisieren oder neu anlegen wenn ni
Export: Alles exportieren
Relation | undefiniert
Magliche Relationen Ubernehmen
hat stil "
hat Stimmung
hat Thema
ist ausgezeichnet in
ist Coverversion von
ist enthalten in
ist Individuum von
taggt v
Inverse Relationerundefiniert
Magliche inverse Relationen Ubernehmen

< >

In the next step, we now have to define where in this table the target objects come from. A
new object mapping is required for the target; this is created using the “New" button. If the
type of the target object is uniquely identified in the schema, it is copied automatically. If not,
a list of possible object types appears.

O
o] I)
o I)

00 34
—-—
=0

Ay 2y By o o
oW ASEEOWX
Songs 4: Relation ist enthalten in
4 @ 1: Objekte von Song Abbildung | Import | Export | Identifizieren | Log | Optionen
2: Attribut Name Aktive Spra Quelle 1: Objekte von Song . || Neu...| | Entfernen
3: Attribut Dauer Tt Enﬂemen
4: Relation ist enthalten in — -
Import: Aktualisieren oder neu anlegen wenn ni| | ..
Export: Alles exportieren
Relation | ist enthalten in
Magliche Relationen Ubernehmen
+ hat Stil (Berechnete Relation) a

+ hat Thema (Berechnete Relation)
+ ist Stil von (Berechnete Relation)
erweitert Individuum

Formular konfiguriert Eigenschaft (berechnet) (Berechnete Relation, Abstrakte
hat Auszeichnung

hat Autor

hat Beitrag von e

Tnverse Relationenenthélt

For new object mappings, we then once again have to select the attribute that identifies the
target object etc. This creates the target structure of the import.

Songs
4 @ 1: Objekte von Song
2: Attribut Name Aktive Sprache
3: Attribut Dauer
4: Relation ist enthalten in
4 @ 5: Objekte von Album
6: Attribut Name Aktive Sprache
7: Attribut Jahr
4« 8: Relation hat Autor
4 @ 9: Objekte von Band
10: Attribut Name Aktive Sprache
4« 11: Relation hat Musikrichutng
4 0 12: Objekte von Musik Stil
13: Attribut Name Aktive Sprache

1.5.1.3.4 The type mapping

Types can also be imported and exported. Let s assume we want to import the genres of
songs as types.

00O
o] 1 J
o I J

i-views 5.3
1224534

To map a new type, we choose the “New type mapping” button.

W = Beispiel Typen-Import
wvew O OAL O

|Q Beispiel Typen-Import ‘ Beispiel Typen-Import

Following this, we have to specify the super-type of the new types to be created, in our ex-
ample, the super-type would be “Song:”

CSV/Excel-Datei
W = Beispiel Typen-Import

vew O ALLEELUX
& Beispiel Typen-Import 1: Untertypen von Song
O Untertypen von Song Abbildung ‘ Import | Export | Identifizieren | Log |
Typ | sang
npars | Aktuaisieren oder neu anlegen wenn ni | . |
Export: | Alles exportieren ‘ EI

Following that, we have to specify from which column of the imported table the name of our
new types is to be taken:

CSV/Excel-Datei
w = Beispiel Typen-Import

wew O ASEELOOX

& Beispiel Typen-Import 2: Attribut Name Aktive Sprache

401 Untertypen von Song Abbildung | Import | Identifizieren | Log | Optionen | Sprache | Wertzuweisung | —

A 2: Attribut Name Aktive Sprache | p oo | Genre (‘ | |JEntrernen |

Quelle | 1: Untertypen von Song | Neu_|
TEs | Aktualisieren oder neu anlegen wenn il | . |
Export: | Alles exportieren ‘ EI
Attribut:| Name |
Magliche Attribute
EID
Farbe
Name Primarname
RDF-ID
RDF-URI
rdf:ID-Prefix
Symbol

Following that, we still have to specify on the “Import” tab that our new types are not sup-
posed to be abstract:

00O
000
o I J

wew O ASbEELUN

Beispiel Typen-Impaort 1: Untertypen von Song
4 1: Untertypen von Song Abbildung jlmpor‘t Export | Identifizieren | Log
2: Attribut Name Aktive Sprache Beim Anlegen neuer Typen
() Abstrakter Typ
®) Typ ist nicht abstrakt
) Typ kann Objekte erweitern

If we now want to assign the corresponding songs to their new types, we have to use the
system relation “has object.” In older versions of i-views this relation is called “has individual.”
As the target we chose all objects of song (incl. subtypes), which are defined via the Name
attributes in accordance with the Song title column.

Beispiel Typen-Import 8: Relation hat Objekt
4 6: Untertypen von Song Abbildung | Import | Export | Identifizieren | Log | Optionen
7: Attribut Name Aktive Sprache Quelle &: Untertypen von Song e e
4« 8: Relation hat Objekt Ziel 9: Objekte von Song .. || Neu.. Entfernen
4 & 9: Objekte von Song
i . Import: Aktualisieren oder neu anlegen wenn ni
10: Attribut Name Aktive Sprache

Export: Alles exportieren
Relation hat Objekt
Magliche Relationen Ubernehmen

Domane von (Abstrakte Relation) 2

erweitert Objekte von
Formular konfiguriert Eigenschaft (berechnet) (Berechnete Relation, Abstrakte Relation)
hat Eigenschaft

If we now import this mapping, we get the desired result. The songs that already exist in the
semantic graph database are taken into account by the import setting “Update or create if not
found” and moved under their respective type so that no object is created twice (see chapter
Import behavior settings). A quick reminder: A specific object cannot belong to several types
at once.

There is another special case. If we have a table in which different types occur in one column,
we can also map this in our import settings.

Personf/Band Herkunft Typ des Ortes
Paul McCarntey Liverpool Stadt
The Beatles GroRbritannien Land

To do this, we count the mappings of objects to which we want to assign subtypes (in this
case “objects of location”) and then select the corresponding super-type on the “Options”
tab.

OO

O

—
&

o] 1 J

&

o] 1 J

&

typenimport 4: Objekte von Ort
“ 1: ObjEkte vaon SUbjEkt Abbildung | Identifizieren | Log
2: Attribut Name Aktive Sprache Genauerer Typ wird durch folgende Abbildung spezifiziert:
4 & 3: Relation hat Ort &: Untertypen von Ort w | |Neu... | Entfernen
4 & 4: Objekte von Ort
4 6 Untertypen von Ort
7: Attribut Name Aktive Sprache
5: Attribut Name Aktive Sprache

It is also important not to forget to specify on the “Import” tab that the type is not supposed
to be abstract so that concrete objects can be created.

Careful: Assuming Liverpool already exists in the semantic network but is assigned to the
type “Location” because it did not have subtypes such as “City” and “Country” at that time.
In this case, Liverpool is not created anew under the type City. Reason: The objects of the
Location type are only identified via the name attribute and not via the subtype.

1.5.1.3.5 Mapping of extensions

Extensions can also be imported and exported. Let s assume we have a table that shows the
role of a band member in a band:

Person Band Rolle
Ron Wood Faces Gitarrist
Ron Wood leff Beck Group Bassist
Ron Wood Rolling Stones Gitarrist

Ron Wood is a guitarist with the Faces and the Rolling Stones, but a bassist with the Jeff Beck
Group. In order to map this, we must select the object for which an extension was defined in
the schema and then press the “New extension mapping” button.

T ST S B i
A= afezoax
Erweiterungen - Import-Beispiel 1: Objekte von Person
4 @ 1: Objekte von Person Abbildung | Identifizieren | Log | Optionen
Like an object mapping, an extension mapping queries the corresponding type. In the
schema of the music network, the “Role” type is an abstract type. So it is necessary to de-
fine in the mapping that the role is to be mapped to subtypes of the “Role” type (see Type
mapping chapter).
Erweiterungen - Import-Beispiel
4 @ 1: Objekte von Person
4 @ 3: Erweiterung Rolle
4) 4: Untertypen von Rolle
5: Attribut Name Aktive Sprache

As with objects and types, the relation can be mapped to the extension (or to the subtypes
of an extension).

000

p
&

\
o ¥
ol I

Erweiterungen - Import-Beispiel
4 & 1: Objekte von Person
4 @ 3: Erweiterung Rolle
4 4: Untertypen von Rolle
5: Attribut Name Aktive Sprache
4« 6: Relation spielt in Band
4 @ 7: Objekte von Band
8: Attribut Name Aktive Sprache
2: Attribut Name Aktive Sprache

1.5.1.3.6 The script mapping

The script mapping can only be used upon export. The script can be written in either
JavaScript or KScript.

The script mapping is, for example, used when we wish to combine three attributes from
the semantic graph database to form an ID. However, this may make the export slower. (In
the case of an import, this could be mapped using a virtual property more easily. The use of
virtual properties is explained the chapter Table Columns.)

The following case is another example of the use of a script in the case of an export. It shows
how several properties can be written into a cell with a separator. In this case, we wish to
generate a table which lists the song names in the first column and all moods for the songs
separated by commas:

Export 3: Skript (Objekte von Song)
4 @ 1: Objekte von Song Abbildung | Log
2: Attribut Name Aktive Sprache
3: Skript (Objekte von Song)

Abbilden auf; | Stimmung

Quelle 1: Objekte von Song
Import: Micht importieren
Export: Alles expaortieren
Skript JavaScript

To generate the second column, we require the following script:

function exportValueOf (element)

{

var mood = "";
var relTargets = $k.Registry.query(‘“‘moodsForSongs").findElements({songName: element.attributel
if (relTargets && relTargets.length > 0){

for(var i = 0; i < (relTargets.length-1); i++){

mood += relTargets[i].attributeValue(‘‘objectName") + ", ";

¥

mood += relTargets[relTargets.length-1].attributeValue(‘‘objectName");
}

return mood;

OO

O

o~

o] 1 J

&

o] 1 J

&

C=4
¥
The script contains the following structured query (registration key: “mood ForSongs"):
*+ %5 Mood
+ ist Stimmung von | © + | Jdwerk
+ Name | %F =9 A=aM

The expression “findElements” allows us to access a parameter (in this case “songName”)
within the query. The “objectName” is the internal name of the name attribute in this seman-
tic model.

Within the if-instruction we state that when an element has several relation targets, these
should be shown separated by a comma. After the last relation target that runs through
the loop, there should no longer be a comma. Even when an element only has one relation
target, this is shown without a comma accordingly.

The result is a list of songs with all their moods, which appear separated by a comma in the
second column in the table:

Songtitel Stimmung
Black Country Rock

19th Nervous Breakdown

A Manic Depressive Named Laughing Boy

A Place for my Head Aggressiv

All the Madmen

Bipolar

Bleed It Out

Bleed Like Me

Breaking the Habit

By Myself Aggressiv

Back To Black Dramatisch, Bittersif, Schwungvoll
China Girl (Bowie) Melancholisch/Diister, Kalt
Climbing up the Walls

Crawling Aggressiv

Creep Hymnisch, Elegisch, Dramatisch, Lethargisch, Melancholisch/Duster

Digging In The Dirt

1.5.1.4 Mapping of several values for an object type at an object

If several values are specified for an object type when there is an object (in our example,
there are several “Moods" for each song), then there are three possible ways the table will
look. For two of the three possible ways, the import must be modified, which is described in
the following.

Option 1 - Values separated by separators: The individual values are found in a cell and are
separated by a separator (e.g. a comma).

O

S

O

00 =4
A B C D E

1 |Titelname Genre Mood Dauer Jahr
2 |Eleanor Rigby Oldies Reflective, Dreamy 127 1966
3 |For No One Oldies Acerbic 121 1966
4 |I'm Only Sleeping Oldies Quirky, Mellow 181 1966
5 Yellow Submarine Oldies Spacey, Trippy, Playful 160 1966

In this case, we go to the mapping of the data source, where the general settings are found,
and to the “Options" tab found there. The setting used to specify separators within a cell is
found here in the lower section. We now only have to locate the corresponding column of the

"

table to be imported (“Mood") and enter the separator used (*,”) in the column “Separator”.

=0

Songs Songs

4 @ 1: Objekte von Song CSV/Excel-Datei Log Registratur

2: Attribut Name Aktive Spract

Import
3: Attribut Dauer O In einer Transaktion importieren [Journalin_4-096
4 A: Relation hat Stimmung ® Mehrere Transaktionen verwenden [] Metriken aktualisieren
4 ® 5: Objekte von Mood Trigger aktiviert

6: Attribut N Aktive ¢ [] Automatische Namensgenerierung fiir namenlose Objekte
. rou ame e 2

Datenguelle
O] Komplette Tabelle einlesen (Vorwartsreferenzen vorhanden)

() Tabelle zeilenweise einlesen (ohne Vorwartsreferenzen)

Trennzeichen innerhalb einer Zelle:
Spalte Trennzeichen
Genre

Mood

Option 2 - Several columns: The individual values are located in their own respective column,
whereby not every field must be filled in. As many columns are required as the maximum
number of moods there are per song.

A B C D E F G
1 |Titelname Genre Mood Mood2 Mood3 Dauer Jahr
2 |Eleanor Righy Oldies Reflective Dreamy 127 1966
3 |For No One Oldies Acerbic 121 1966
4 /1I'm Only Sleeping Oldies Quirky Mellow 181 1966
5 Yellow Submarine Oldies Spacey Trippy Playful 160 1966

In this case, the corresponding relation must be created the same number of times as there
are columns. In this case, the first relation must, accordingly, be mapped to “Mood1”, the
second relation to “Mood2" and the third relation to “Mood3".

00O
000
o I J

34
=40
wew O ASEELEUN
w' Songs 12: Attribut Name Aktive Sprache
4 ® 1: Objekte von Song Abbildung | Import | Identifizieren | Log | Optionen | Sprache | Wertzuweisung
& 2: Attribut Name Aktive Sprache . || Entfernen
4 3: Attribut Dauer Quelle 11: Objekte von Mood w || Neu..
4 & 4: Relation hat Stimmung Import: Aktualisieren oder neu anlegen wenn ni
4 ® 5: Objekte von Mood Export: NS @mariaar

& 6: Attribut Name Aktive Spro
4 & 7: Relation hat Stimmung Attribut: Name
4 ® 8: Objekte von Mood Mogiche Attribute o —
& 9: Attribut Name Aktive Spre EID
* 10-Relotion hat Stimmung
4 ® 11: Objekte von Mood RDF_ID
& 12: Attribut Name Aktive Sp RDF-URI

Symbol

Option 3 - Several rows: The individual values are located in their own respective row. Please
note: In this case, it is essential that the attributes that are required for identification of the
object (in this case the track name) appear in every row, as otherwise the rows would be
interpreted as their own respective object without a name, making a correct import impossi-
ble.

A B C D E

1 |Titelname Genre Mood Dauer Jahr
2 |Eleanor Rigby Oldies Reflective 127 1966
3 |Eleanor Rigby Dreamy

4 For No One Oldies Acerbic 121 1966
5 | I'm Only Sleeping Oldies Quirky 181 1966
6 | I'm Only Sleeping Mellow

7 Yellow Submarine Oldies Spacey 160 1966
8 Yellow Submarine Trippy

9 Yellow Submarine Playful

In this case, no special import settings are required, as the system identifies the object using
the identifying attribute and creates the relations correctly.

1.5.1.5 Settings of the import behaviour

During the import process, a check is always performed to determine whether an attribute
already exists. “Identify” infers concrete objects from attributes. When we refer below to “ex-
isting attributes”, these are attributes whose value precisely matches the value in the column
to which they are mapped. When we refer to existing objects, we mean concrete objects that
have been identified through an existing attribute.

Example: If our network already contains a song called “Eleanor Rigby”, the name attribute
(mapped to the “track name” column in our import table) is an existing attribute, so the song
is an existing song as long as the song is identified only via the name attribute.

OO

&

O

o] 1 J

&

o] 1 J

&

The settings for import behavior allow us to control how the import should react to existing
and new semantic elements. The following table shows a brief description of the individual
settings, while the sub-chapters of this chapter contain detailed and descriptive explanations.

Setting

Brief description

Update

Existing elements are overwritten (updated), no new elements
are created.

Update or create if not
found

Existing elements are overwritten; if none exist, they are cre-
ated.

Delete all with same
value (only available for
properties)

All attribute values that match the imported value are deleted
for the respective objects.

Delete all with same type

All attribute values of the selected type are deleted for the rel-
evant objects, regardless of the values match or not.

Delete

Is used to delete that exact element.

Create

Creates a new property/object irrespective of whether the at-
tribute value or the object already exists.

Create if type not found
(only available for at-
tributes)

An attribute of the required type is only created if none of this
type exists.

Create if value not found
(only available for at-
tributes)

An attribute with this value is only created, if none with this
value exists.

Do not import

No import.

Synchronize

In order to synchronize the contents for import with the con-

tents in the database, this action creates all elements that do
not yet exist, updates all elements that have changed, and
delete all elements that no longer exist.

During an import, we have to decide individually for every mapped object, every mapped
relation and every mapped attribute which import settings we want to use.

Note: Unlike in other editors of the Knowledge Builder, a setting is neither “inherited” by
the subordinate mapping elements, nor is the import setting for an object “inherited” by its
attributes.

1.5.1.5.1

If this setting is applied to an attribute, it ensures that the value from the table overwrites
the attribute value of exactly one existing attribute. No new attributes are created with this
setting. If the object has more than one attribute value of the selected type, no value is
imported.

Update

If you use the “Update” setting for an identifying attribute while using the “Update or create
if not available” setting for a corresponding object, the error message “Attribute not found”

00O
000
o I J

i-views 5.3
130534

appears, if the identifying object is not available in i-views.

If “Update” is applied to an object, this setting ensures that all properties of the object can
be added or changed by the import. New objects are not created.

Example: Let s assume we keep a database of our favorite songs. We have just received a list
with songs that contain new information. We want to get this information into our database

but prevent songs that are not our favorite songs from being imported. We use the “Update”
setting to do this.

About A Girl

Attribute
» Name = About A Girl
Wertung = 6
Relationen
hat Stil = Alternative Rock

The song "About A Girl" is already available in the Knowledge Builder.

Song Dauer Wertung Autor
About A Girl 168 5 Nirvana

The import table contains information on the length, rating and creator of the song.

W Aktualisieren 1: Objekte von Song
4 @ 1: Objekte von Song Abbildung ‘ Identifizieren | Log | Optionen ‘
A 2: Attribut Name Aktive Sprache
A 3: Attribut Dauer
& 4: Attribut Wertung
44" 5: Relation hat Autor
4 ® 6: Objekte von Band
A 7: Attribut Name Aktive Sprache

Typ Song

Mit Objekten aller Untertypen

Import: |Al-:tual'|5'|ere-n | III
| L]

Export: | Alles exportieren

For Song objects we specify that they are supposed to be updated. All attributes, relations and
relational targets receive the import setting “Update or create if not available yet.”

00O
000
o I J

i-views 5.3

131534

About A Girl

Attribute

Dauer = 168
» Name = | About A Girl
Wertung = |5
Relationen

hat Autor = Nirvana

hat Stil = Alternative Rock

Relation hinzufiigen

The result: The song has been updated and has received new attributes and relations. Already
existing properties have been updated (value).

1.5.1.5.2 Update or create if not found

This import setting is required in most cases and is therefore set as the default setting. If
elements already exist they will be updated. If elements do not exist yet they are created in
the database.

1.5.1.5.3 Delete all with same value

This import setting is only available for properties (relations and attributes) and is only used
when the import setting “Delete” cannot be used for deleting. “Delete” does not function
for deleting when a relation or an attribute occurs on an object several times with the same
value. If an attempt is made nonetheless, an error message appears. For example, the song
“About A Girl” may have been linked to the band “Nirvana” using the relation “has author” by
mistake.

00O
000
o I J

About A Girl

Attribute

Dauer = 168
» Name = About A Girl
Wertung = |5
Relationen

hat Autor = Nirvana
hat Autor = Nirvana

Relation hinzufiigen

In cases like this, the import setting “Delete” does not have an affect, because due to multiple
occurrences, it does not know which relations it is supposed to delete. In this case, “Delete
all with the same value” must be used.

1.5.1.5.4 Delete all of same kind

This import setting is used if all attributes, objects or relations of a type are supposed to be
deleted, irrespective of existing values. In contrast to this, the settings “Delete” and “Delete all
with identical value” take the existing values into account. Only the elements of those objects
that occur in the import table are deleted.

Example: We have an import table with songs and the duration of the songs. We see that
the duration differs in many cases and decide to delete the duration for these songs to make
sure we do not have any incorrect information.

Song Dauer

19th Nervous Breakdow 120
A Manic Depressive Nan 306
A Place for my Head 239
About A Girl 168

For most songs, the duration in the import table differs...

Name 4 Dauer
19th Nervous Breakdown 113
A Manic Depressive Named Laughing Boy 300
A Place for my Head 249
About A Girl 168

... from the duration of the songs in the database.

OO

&

O

o] 1 J

&

o] 1 J

&

C=4
Alle vom selben Typ I&schen 3: Attribut Dauer
4 @ 1: Objekte von Song Abbildung | Identifizieren | Log | Optionen
2: Attribut Name Aktive Sprache Abbilden auf | Dauer || Entfernen
3: Attribut Dauer Quelle 1: Objekte von Song w || Neu..
Import: Alle vom selben Typ [6schen
Export: Alles expaortieren

For the attribute “Duration" we use the import setting “Delete all of the same type.”

Name 4« Dauer
19th Nervous Breakdown

A Manic Depressive Named Laughing Boy

A Place for my Head

About A Girl

After the import, all attribute values of the attribute type duration have been deleted for these 4
songs.

1.5.1.5.5 Delete

The import setting “Delete” is used to delete exactly the one object/ exactly the one rela-
tion/exactly the one attribute value. If none or several objects/relations/attribute values
match the elements for import, an error message about this appears and the elements con-
cerned is not deleted.

1.5.1.5.6 Create new

This import setting creates a new property/a new object irrespective of whether the attribute
value or the object already exists. Sole exception: If a property may only occur once (ob-
serve the setting “May have multiple occurrences” for the attribute definition), then the new
attribute is not created and an error message appears noting this.

Es sind folgende Fehler aufgetreten:

Zeile Schema Wert Abbildung Beschreibung Kategorie
2 Dauer 120 3: Attribut Dauer Attribut "Dauer” kann nicht bei "'19th Nervous Breakdown' angelegt werden Fehler
3 Dauer 3086 3: Attribut Dauer Attribut "Dauer” kann nicht bei 'A Manic Depressive Named Laughing Boy' angelegt werden Fehler
4 Dauer 239 3: Attribut Dauer Attribut "Dauer” kann nicht bei 'A Place for my Head' angelegt werden Fehler
5 Dauer 168 3: Attribut Dauer Attribut "Dauer” kann nicht bei 'About A Girl' angelegt werden Fehler

1.5.1.5.7 Create if type not found

This import setting is only available for attributes. A new attribute value is only created when
the corresponding attribute does not yet have a value. The values do not have to be the
same; what matters is that one value or another exists, or does not exist, for the correspond-
ing attribute type. The simultaneous import of several attribute values to one attribute type
is not possible, as in this case it is not possible to decide which of the attribute values should
be used.

Example: Assuming that we have an import table that contains the musicians with their alias
names. A number of musicians also have several alias names. In this case, we cannot use the

Q00O

o] 1 J

&

o] 1 J

&

setting “Create type if not found,” because then all musicians with several alias names would
not be given one.

1.5.1.5.8 Create if value not found

This import setting is only available for attributes. A new attribute value is only created if the
object does not yet have this value for the corresponding attribute.

Example: Let's take again the import table that includes musicians wih their alias names.
Here we can use the setting "Create value if not found", because then the musicians with
several alias names can get all these alias names.

1.5.1.5.9 Do not import

The import setting “Do not import” allows us to specify that an object or a property should
not be imported. This is useful when a mapping has already been defined and we want to
use it again, however do not want to import specific objects and properties again.

1.5.1.5.10 Synchronize

The import setting “Synchronize” should be used with caution, because it is the only import
setting that not only affects the objects and properties in i-views that have values that match
those in the import table, but also extends to all elements of the same type in i-views. When
an import table is synchronized with i-views, in principle this means that after the import, the
result should look exactly the same as it does in the table.

If objects of one type are synchronized, all objects of this type that are not in the im-
port table are deleted. The objects that exist are updated and the objects that are not in
i-views are created as new objects.

Example: We would like to synchronize the music fairs in i-views (at the left) with a table with
the fairs and their date (at the right):

Name « Messedatum
26. - 27.09.2015
01. - 04.10.2015
15. - 18.04.2015
07. - 09.04.2016

Name Messedatum
Camlam Europe 26.-27.09.2015

CamJam Europe

chor.com Messe
Musikmesse 2015
Musikmesse 2016

15. - 18.04.2015
Musikmesse 2016 07. - 10.04.2016

For objects of the “Fair” type, we select the import setting “Synchronize;” for the individual
attributes Name and Date of fair the import setting “Update or create if not found” is used:
Synchronisieren 1: Objekte von Messe
4 @ 1: Objekte von Messe Abbildung | Identifizieren | Log | Optionen
2: Attribut Name Aktive Sprache
3: Attribut Messedatum

Typ Messe

Mit Objekten aller Untertypen

Import:

Export: Alles exportieren

The attribute name is the identifiable attribute of fair. There is no name for the object Music
fair 2015 in the import table. If we import the table this way, an error message is output:

Q00O

000

Zeile Schema Wert Abbildung Beschreibung Kategarie
4 1: Objekte von Messe Keine identifizierenden Eigenschaften in der Datenquelle vorhanden Fehler

After the import, we now see that the import caused two objects to be omitted that did not
have a counterpart in the import table. The date was updated for Music fair 2016:

Name 4 Messedatum
éCamJam Europe 26. - 27.09.2015
Musikmesse 2016 07. - 10.04.2016

When attributes are synchronized, the following applies: When an existing attribute is not
given a value by an import, it is deleted for the corresponding object of the import table. If
the existing attribute has a different value to the import table, it is updated, even when it is
allowed to occur several times. If the attribute does not yet exist, a new one is created.

When relations are synchronized, and they are not given a value, they are deleted for the
corresponding object. If the existing relation has a different value to the import table, it is
updated. If the target object does not yet exist in the database, a new oneis created, provided
that a corresponding import setting has been assigned to the target object. If the target
object cannot be created as a new one, because, for example, the import setting “Update”
was assigned, an error message appears notifying us that the target object was not found
and will not be created.

1.5.1.6 Table columns

When it comes to mapping database queries, the columns that are available for import are
specified by the database tables and/or the Select statement. When mapping files, it is pos-
sible adopt the columns with the “Read from data source” button from the file. But you
can also specify them manually. In that case you can choose whether to create a standard
column or a virtual property.

If you want to export from the semantic graph database you have to enter the columns
manually. You can export only standard columns, not virtual columns.

Virtual table column / virtual property

Virtual columns are additional columns that allow you to use regular expressions to trans-
form the contents we find in a column of the table to be imported. Example: Let s assume
that “a.d.” is appended to all the years in our import table. We can correct this by creating a
virtual column that adopts only the first 4 characters from the year column.

We can also define virtual properties during export.

We simply write the regular expressions into the column header (into the name of the col-
umn). During the process, partial strings enclosed in pointy brackets <...> are replaced ac-
cording to the following rules, with n, n1, n2, ... representing the contents of other table
columns with the column number n.

Expression Description Example Input Output
<np> Print output of content | Hits: <1p> 1 (inte- | Hits: 1
of columnn ger)
none Hits: none
(string)

OO

&

O

o] 1 J

&

o] 1 J

&

C=4
<ns> Output of string in col- | Hello <1s>! 'Peter’ Hello Peter!
umnn
<nu> Output of string in col- | Hello <1u>! 'Peter’ Hello PETER!
umn n in upper case
<nl> Output of string in col- | Hello <1I>! 'Peter’ Hello peter!
umn n in lower case
<ncstart-stop> | Partial string from posi- | <1c3-6> Columns | olum
tion start to stop from
columnn <1c3> umn
<1c3-> lumns
<nmregex> Test whether the content | <1mO0[0-9]>hi 01 hi
of column n matches
the regex regular expres- 123 (blank)
sion. The following ex-
pressions are only eval- | <1m$>test (blank) test
uated if the regular ex-
pression applies. 123 (blank)
<nxregex> Test whether the content | <1x0[0- 01 (blank)
of column n matches | 9]>hello
the regex regular expres- 123 hello
sion. The following ex-
pressions are only eval-
uated if the regular ex-
pression does not apply.
<neregex> Selects all hits for regex | <lelL+> HELLO LLL
from the contents of col- WORLD
umn n. Individual hits
are separated by com- | <le\d\d\d\d> | 02.10.2001 2001
mas in the result.
<nrregex> Removes all hits for | <1rL> HELLO HEO WORD
regex from the contents WORLD
of column n
<ngregex> Transmits the contents | <1g\+(\d+)\-> | +42-13 42
of all groups of the regu-
lar expression
<nfformat> Formats numbers, date | <1f#,0.00> 3.1412 3.14
and time specifications
from column n accord- 1234.5 1234.50
ing to the format format
specification <1fd/m/y> 1 May | 1/5/1935
1935
<1fdd/mmm> | 1 May | 01/May

1935

AN

&

OO0

o] 1 J

&

o] 1 J

&

Table columns can also be referenced independently from their column number by using
specially defined identifiers. The advantage in this case is that the allocation is not lost if the
column order is changed in the import table.

The identifier for the relevant column of the import table is entered in the column with the
heading Identifier in the column definition table. These columns are referenced by creating a
virtual table column that is given the identifier as its table column heading (see example 2).

Ex-| Description EX In-| Out-
pre ar pu{ put
sio pl

<$nRefshergexto a column by means of a unique column identifier name and | <$NaMEEMM-
subsequent transformation by means of the regex regular expression. panyPANY #1
The $ characters are a functional component of the identifier syntax.

Example 1: Use of regular expressions (reference via column number)

Let s assume we have an import table containing concrete objects without a name. However,
we want these objects to be modeled as separate objects in our data model. Example: for a
load point, column 88 contains its main value, which is torque. So we enter the expression
load point <88s> as the definition of our virtual column that will represent the name of this
load point. The resulting name for a load point with a torque of 850 would therefore be “load
point 850",

We can also use the virtual property to create a username consisting of the first 4 letters
of the first name and the last name. If the person is named Maximilian Mustermann and
we define the virtual column with the relevant expression <1c1-4><2c1-4>, the result is
“MaxiMust”".

The virtual property can also be used to create an initial password for a user during import.
The expression could be Pass4<2s>. The resulting password for Maximilian Mustermann
would be “Pass4Mustermann”.

A rather extensive example shows how the virtual property can be used to assign objects to
the correct direct top-level group:

Gruppe Nomenklatur mdi - Bezeichnung deu' Ergaenzung_DE Bezeichnung engl Ergaenzung EN <ImUG><2cl1-3>000 <Im><2cl-4>00 Heimtextil 2016
2 HG 010000 floor floor Heimtextil 2016
3 uG 010100 Teppiche Carpets 010000 Heimtextil 2016
4 010101 Handknupfteppic Handwoven carpe 010100 Heimtextil 2016
5 010102 Webteppiche abg Handwoven and 010100 Heimtextil 2016
3 010103 Teppiche, handge Carpets, handtuft 010100 Heimtextil 2016
7 010104 Antike Teppiche Antique carpets 010100 Heimtextil 2016
8 010105 Sonstige Verfahre Other processes 010100 Heimtextil 2016
9 010106 Briicken, Vorlager Rugs 010100 Heimtextil 2016
10 010107 Laufer, Bettumrar Runners, stair-car 010100 Heimtextil 2016
11 010109 Teppiche Carpets 010100 Heimtextil 2016
12 010110 Teppichunterlage Carpet underlays 010100 Heimtextil 2016
13 uG 010200 Teppichbdden Carpeting 010000 Heimtextil 2016
14 010201 Teppichbéden, ge Carpetings, tuftec 010200 Heimtextil 2016

The three right columns are virtual columns.

<ImUG>: The number of the top-level group of the object is only written to the first of the

00O
000
o I J

virtual columns if the term “UG” (for Untergruppe (sub-group)) occurs in the first column for
the object.

<2c¢1-3>000: The number to be written to the column consists of the first three characters of
the second column and three zeros.

<1m>: Only if the first column for the object is empty, i.e. contains no value, is the number
of the top-level group of the object written to the column.

<2c1-4>00: The number to be written to the column consists of the first four characters of
the second column.

Heimtextil 2016: This expression (the German term for home textiles) is written to the column
for all objects.

Example 2: Use of individual identifiers (in combination with regular expressions)

In the following example, the contents for the Company column are transformed into upper-

case letters by means of virtual columns: Column 5 uses one reference per column number,
column 6 uses one reference per column identifier.

import

CSV/Excel-Datei Optionen Log Registratur o
Import-Datei: C\Users\UserT\Importidata.csv . Tabelle anzeigen...

Export-Datei: Ci\Users\User1\Export\exportdata.csv Tabelle anzeigen...
Optionen

Tabellen-Dateiart CSV-Datei ~

1. Zeile ist Uberschrift [] Werte in Zellen sind in Anfahrungszeichen eingeschlossen

Spalten identifizieren Trennzeichen

Encoding: | UTF-2 ~
@) uber Spaltenaberschrift (O Tab
(O iber Position () Leerzeichen Zeilentrenner: | automatisch ~
(O iber Zeichenposition ®:
Spalten: Aus Datenquelle lesen o
Position Uberschrift Feldlange Typ Abbildungen Bezeichner Spalte
1 Company Variabel Zeichenkette 2: Attribut Name Comp A
2 Person Variabel Zeichenkette 5: Attribut Name B
3 Project Variabel Zeichenkette 8: Attribut Name C
4 active Variabel Zeichenkette 9: Attribut active D
5 <lu» Variabel virtuell E
& <SCompSu> ° Variabel virtuell F
@ : "
Bearbeiten Spa\te hinzufﬁgen Typ der Spalte: o
Standard Virtuelle Eigenschaft
Click on the preview to view the transformed column entries:
* Company Person Project active <Tux <SCompSu> o
2 Miller ple Pel Pri 1 MILLER PLC MILLER PLC
3 AnyMame Productions Pe2 Pri 1 ANYMNAME PRODUCTIONS ANYNAME PRODUCTIONS
4 Company #1 Pe2 Pr3 1 COMPANY #1 COMPANY #1

 SchlieBen |

The following figure shows the effect of swapped columns in an import table: If only reg-
ular expressions (<1u>) are used, the wrong column is transformed; if an identifier with a

000
o] 1 J

&

o] 1 J

&

downstream regular expression (<$Comp$u>) is used, the content remains the same.
Person Project active Company <Tu» «5CompSu=

2 Pel Pr1 1 Miller plc PE1 MILLER PLC

3 Pe2 Pr 1 AnyMame Productions PE2 AMNYMNAME PRODUCTIONS

4 Pe2 Pr3 1 Company #1 PE2 COMPANY #1

1.5.1.7 Configuration of further table oriented data sources
Databases

The database, user and password must be specified in the mapping for a PostgreSQL, Oracle
or ODBC interface.

Database specification

The database specification consists of the name of the host, the port, and the name of the
database. The syntax is:

Database system | Database specification

PostgreSQL hostname:port_database

Oracle //hostname:[port][/databaseService]

ODBC Name of the configured data source

MySQL Separate configuration of database and host name

Configure user name and password

The user name and password are specified as stored in the database. Under the Table option
it is possible to specify the table to be imported. However, for import there is also the option
of going to the “Query” option and formulating a query that specifies which data are to be
imported.

Encoding
In case of PostgreSQL mapping, it is possible to specify the encoding on the “Encoding” tab.
Special requirements of the Oracle interface

The function for direct import from an Oracle database requires that certain runtime libraries
are installed on the computer performing the import.

What is required directly is the “Oracle Call Interface” (OCl), and it is required in a ver-
sion that, according to Oracle, matches the database server to be addressed. That means
that the OCI in version 11 must be installed on the importing computer in order to ad-
dress an Oracle 11i database. The easiest way to install the OCI is to install the “Or-
acle Database Instant Client”. The “Basic” package version is sufficient. The client can
be obtained from the company operating the server, or from Oracle after registering at
http://www.oracle.com/technology/tech/oci/index.html.

After the installation, it must be ensured that the library can be found by the importing client,

Q00O

—

ol I J

either by placing it in the same directory or by defining environment variables that match the
relevant operating system (documented for the OClI).

Depending on the operating system on which the import will be executed, further libraries
are necessary, and these are not always installed.

e MS Windows: next to the required “oci.dll”, two further libraries are required: ad-
vapi32.dll (extended Windows 32 Base-APl) and mscvr71.dll (Microsoft C Runtime Li-
brary)

Apart from the XML import/export, all imports/exports are table-based and differ only in
terms of the configuration of the source.

1.5.1.8 Mapping of an XML file

The principle of XML files is to make the different details for a record explicit by means of tags
(<>) (and not by means of table columns). Accordingly, tags are also the basis for display
when XML structures are imported to i-views.

Example: Let s assume that our list of songs is available as an XML file:

<7xml version="1.0" encoding="IS0-8859-1"7>
<Contents>
<Album type="0Oldie">
<Title>Revolver</Title>
<Song nr="1">
<Title>Eleanor Rigby</Title>
<lengthSec>127</lengthSec>
<Artist>The Beatles</Artist>
<Topic>Mental illness</Topic>
<Mood>Dreamy</Mood>
<Mood>Reflective</Mood>
</Song>
[...]
</Album>
[...]
</Contents>

If we want to import this XML file, we choose the “XML file” data source when selecting the
type, which causes the editor for the import and export of XML files to open. Even the spec-
ification of the file location is different than in the editor for CSV files. We can now choose
between a local file path and specification of a URI.

JSON preprocessing makes it possible to convert a JSON file to XML before the actual import.

You can choose Transform with XSTL if you want to convert the XML data from the selected
XML file to different XML data before the import, for example in order to change the structure
or further separate individual values. Use the “Edit” button to open the XML file, where you
can then define the changes by means of XSLT.

Once the file has been selected, use the “Read from data source” button to read out the XML
structure, which is then displayed in the right-hand window.

00O
000
o I J

o dm
= B 00ASLPuR
XML-Import-Beispiel XML-Import-Beispiel
XML-Datei | Optionen | Log | Registratur

® Datei | C\Users\nproske\Desktop\songs.xml

Anzeigen

) URE: Anzeigen

[[] JSON preprocessing] Mit XSLT transformieren Bearbeiten

~
<Album:>
<Album type="..."
<Song>
<Title>
<Inhalt>
<Album>
<Interpret>
<lengthSec>
<Mood>
<Song>
<Song nr="..."

<Interpret>

Hinzufiigen Entfernen Aus Datenquelle lesen

XPath-Ausdricke:

Hinzufiigen Bearbeiten Entfernen

We want to import the individual songs on our list. So we create a new object mapping and
use the “Map to” button to select the <Song> tag. In contrast to a CSV import, where only the
attribute values have an equivalent in the CSV table and where an individual row represents
an object, which means that only the attribute values need to be mapped, semantic objects

are here mapped by the XML structure. Therefore a corresponding tag of the XML file must
be specified for each of the objects to be mapped.

O
ol X J
o X)
00 34
=#0
- B ASEEE LN
W' XML-Import-Beispiel 1: Objekte von undefiniert
@ 1: Objekte von undefiniert Abbildung | Identifizieren | Log | Optionen
Abbilden auf: ntfemen
Tvp | -

7

.

Mit Objekten aller Untertypen

Bitte auswahlen

Import: Aktualisieren oder neu anlegen wenn
<Album ="
Export: Alles exportieren <A|bum:ype
<Inhalt>

<Interpret>
<lengthSec>
<Mood>

<Song nr="...
<Thema>

<Title>

Abbrechen

As our example shows, the tags are not always unambiguous without context: <Title> is used
for both album titles and song titles. The object type only becomes clear in combination with
the surrounding tag. Often the context of the XML structure and the context of the mapping
hierarchy are synchronous: As we have already specified that the objects should be mapped
to the <Song> tag, the XML structure makes clear which <Title> tag we actually mean when
we map <Title> with the name attribute of songs. Where the mapping hierarchy and the tag
structure are not parallel, we can use XPath to form strings in the XML import in addition to
the tags occurring in the XML file.

w B

=a0
ASEEOUXR

W XML-Import-Beispiel
4 ® 1: Objekte von Song
& 2: Attribut Name Aktive S,

2: Attribut Name Aktive Sprache

Abbildung | Import | Identifizieren | Log | Optionen | Sprache | Wertzuweisung

<Title> Entfernen

)
T
Bitte auswahlen =

<Album type="_" -
<Album> L
<Inhalt> |

Abbilden auf:

Quelle Neu...

Import:

r4

[Ubernehmen

Attribut:

<Interpret>
<lengthSec>
<Mood>
<Song nr="_"
<Song>

< a>
{<Title>

Abbrechen

Name Primarname

As with the CSV import, it is necessary to use the “Identify” tab to specify for object mapping
which attribute values should be used to identify the object in the semantic graph database.
The first created attribute for an object is once again used automatically as the identifying

00O

o] 1 J

&

o] 1 J

&

attribute.
Options with XPath expressions

Let s assume we only want to import songs from albums with the “Oldie” music style. In
our XML document, the information for the music style is specified directly in the album
tag under type="..". That means we have to use the editor to define an XPath expression
describing the path in the XML document that contains only songs from oldie albums. The
right-hand lower section of the editor contains a field for adding XPath expressions.

XPath-Ausdriicke:

EI"hEi'.E"l Entfernen

The correct XPath expression is:
//Album[@type="01die"]/Song

Explanation in detail:

//Album Selects all albums; their position in the document is irrelevant.

Al- Selects all albums of the “Oldie” type
bum[@type="0ldie"]

Album/Song Selects all songs that are sub-elements of albums.

We can now use this expression to define an equivalent for the object mapping of songs.

=30
- B ASEEE O
XML-Import-Beispiel 1: Objekte von Song
4 @ 1: Objekte von Song Abbildung | Identifizieren | Log | Optionen
2: Attribut Name Aktive Sprache Abbilden auﬁ@ ;;A|bum[@1ype:"o|die"]@ .. || Entfernen
Typ g

Mit Objekten aller Untertypen

XPath also offers many other useful selection functions. We can, for example, select elements
by their position in the document, use comparative operators, and specify alternative paths.

Alternative: XML import mapping for XML-based RDF files

If the schema in the semantic network is too specific for the existing RDF file or if the RDF
file is too specific or the rdf schema is missing so that it cannot be imported by the import
mechanism correctly, we can use the XML import mapping for specified import.

00O
000
o I J

‘1 Create new
Marme

AML Import

Data source

(® Create new

LDAP

MySQL interface
ODBC interface
Oracle interface
Postgre5QL
XML file

() Use registered data source

Choose

Cancel

In most cases, we will need to use XPath expressions for dedicated value assignment. Pay at-
tention that for the XML import mapping, an interactive step-by-step import is not available.

ot

T
ki

XPath

Cancel I Read from data source

XPath expressions:

Examples for XPath expressions

Note: For Xpath expressions, the namespace (built up on to the qualifier) is not considered
by the system for import mapping.

00O

o] 1 J

&

o] 1 J

&

Input RDF-XML

XPath

Mean-
ing

/1

Top-
level
of the
RDF

One
level
above

A Ixyz

Two
levels
above,
from
there
the
node
below
called
“xyz

"

<rdf:label>

/label/

Tag
“label”

<rdf:prefLabel xml:lang="en">
Example
</rdf:prefLabel>

prefLabel[@lang="en"]

Node
with
at-
tribute
and
cer-
tain
at-
tribute
value.
Out-
put
="Exan

ple".

000
o 1

&

ol I _

&

ancestor::termEntry/attribute::id Su-
per-
ordi-
nate
node
on
any
level
with
name
(“ter-
mEn-
try”)
and
at-
tribute
(“id")

/myparent/mychild[text()] Text
be-
tween
cer-
tain
tags

1.5.1.9 Further options, log and registry
1.5.1.9.1 Further options at the import

In the “Options” tab, the following functions are available for selection irrespective of the data
source:

Import

) In einer Transaktion importieren [Journalin_ 4.096
® Mehrere Transaktionen verwenden [Metriken aktualisieren

Trigger aktiviert
[Automatische Namensgenerierung fiir namenlose Objekte

Import in one transaction: This is slower than an import with several transactions and
should only be used if a conflict would occur during an import with several transactions
because many people are working in Knowledge Builder at the same time or because you
want to import data where it matters that individual pieces of data are not viewed separately
from each other. Example 1: Every hour, an import is executed with the machine load status.
The combined load values must not exceed a certain value as that could result in a power
failure. To ensure this rule can be taken into account (e.g. by means of a script), all values
must be viewed jointly and then imported. Example 2: An import is executed with persons of
which no more than one person may have a master key because only one master key exists.
The import must also be performed in one transaction here because several transactions
could result in missing the error that the attribute for the master key has been set for two

persons.
Use several transactions: Default setting for fast import.

Journaling: Journaling should be used if very large amounts of data are deleted or modified
in one import. The changes or deletions for these entries are only to be made to the index
after 4,096 entries (the figure is variable). This speeds up the import because the index does
not have to be used for every single change/deletion. Instead, these changes are copied to
the index after a maximum of 4,096 changes.

Update metrics: Metrics are supposed to be updated if the import significantly affects the
number of object types or property types, that is, if a large number of objects or properties
of a type are added to the semantic graph database. If the metrics were not updated, this
could negatively affect the performance of searches in which the corresponding types play a
role.

Trigger activated: You can use this checkmark to determine if the trigger is supposed to
be activated or not during import. If you wish to apply one trigger but not another one,
you have to define two different mappings with the corresponding semantic elements. For
information on triggers, refer to the Trigger chapter.

Automatic name generation for nameless objects: Enables the automatic name genera-
tion for nameless objects.

If there is a table-oriented source, we can make the following settings:

Datenquelle
®) Komplette Tabelle einlesen (Vorwartsreferenzen vorhanden)

() Tabelle zeilenweise einlesen (ohne Vorwartsreferenzen)

Trennzeichen innerhalb einer Zelle:
Spalte Trennzeichen
Titelname

Genre

Import entire table: Even though it can take longer to import the entire table at once, it
makes sense to select this option if there are forward references, i.e. if relations are to be
drawn between the objects to be imported. In this case, both objects must already be avail-
able, which is not the case if the table is imported one row at a time. Furthermore, the
progress display is more precise than for importing one row at a time.

Import table row by row: A table should always be imported one row at time when the
table contains no source reference since this procedure speeds up the import.

Separators within a cell: Refer to the chapter Mapping several values for an object type for
an object.

If we have an XML-based data source, the following functions are available:

Datenquelle
L] Inkrementeller XML-Import

Partitionierendes Element:

L] DTD einlesen

Incremental XML import: The XML import is performed step-by-step. These steps are spec-
ified by the partitioning element.

Import DTD: Imports the document type definition (DTD).

1.5.1.9.2 Log
The functions in the “Log"” tab allow changes that are made upon import to be tracked.

CSV/Excel-Datei | Optionen | Log | Reqgistratur

L] Erzeugte Wissensnetzelemente in einen Ordner stellen

[] Veranderte Wissensnetzelemente in einen Ordner stellen
() Meuer Ordner

® Ordner

L] Fehlermeldungen in eine Datei schreiben

Letzer Import £1.08.2015 10:08:51

Letzer Export

Place generated semantic elements in a folder: If new objects, types or properties are
generated by the import, they can be placed in a folder in the semantic graph database.

Place changed semantic elements in a folder: All properties or objects with properties
that were changed by the import can be placed in a folder.

Write error messages to a file: Errors can occur during import (for example, there may
have been an identifying attribute for several objects, which is why the object could not be
identified uniquely). These errors are displayed in a window following import by default,
and the option of saving the error log is provided. If this is to occur automatically, then a
checkmark can be placed in the box and a file can be specified here.

Last import / Last export: The date and time of the last import performed and the last
export performed are displayed here.

Q00O

/—
)
—
&

i

1: Objekte von Song

Abbildung | Identifizieren éLog Optionen

@) Logeintrage keiner Kategorie zuordnen

) Kategorie fiir Logeintrige

] Wert in Fehlerlogs schreiben

The “Log" tab is also available in the case of the individual mapping objects. When necessary,
a category can be entered for log entries here. Moreover, it is possible to define that the
value of the corresponding object/corresponding property should be written into the error
log. This is not activated by default, in order to avoid revealing sensitive data (e.g. passwords).

1.5.1.9.3 Registry

The function “Set registration key” can be found under the “Registry” tab, and can be used to
register the data source for other imports and exports.

The function “Link existing source” allows a registered source to be used again.

“References” shows other places where a data source is being used:

00O
000
o I J

=4
CSV/Excel-Datei | Optionen | Log | Registratur
Die Datenquelle ist als "song-1" registriert und wird in 2 Abbildung(en) verwendet
10¢ Registrierungsschlissel setzen | Bestehende Quelle verknipfen
@ Verwendungen | = = X |
Beschreibung Teil von Typ
: I
Abbildung
* 2 B
sow O 00ALLER
= SongA SongA
«® 1 Objekte von Sor | CSV/Excel-Datei | Optionen | Log | Registratur
& 2: Attribut Nam Import-Datei: | C\Users\nproske\DesktopsongA.cs | ... | Tabelle anzeigen...
L6 i :
6: Attribut Daue Export-Datei: .. | | Tabelle anzeigen...
4 " 3: Relation hat ¢ .
° Optionen
Fl - 1
4: Objekte vo Encoding: V Zeilentrenner: | automatisch erkennen ¥
A 5 Attribut §
) 1. Zeile ist Uberschrift Werte in Zellen sind in Anflihrungszeichen ei
Spalten identifizieren Trennzeichen
< >) Gber Spalteniiberschrift) Tab

1.5.2 Attribute types and formats

One frequent job of attribute mapping is to import specific data from concrete objects, for
example from persons: Telephone number, date of birth etc.

For the import of attributes for which i-views uses a specific format (e.g. date), the entries
of the column to be imported must be provided in a form that is supported by i-views. For
example, a string in the form abcde... cannot be imported to an attribute field of the date
type; in this case, no value is imported for the corresponding object.

The following table lists the formats that i-views supports during the import of attributes. A
table value yes or 1 is, for example, imported correctly as a Boolean attribute value (for a
correspondingly defined attribute), while a value such as on or similar is not.

Attribute Supported value formats
Selection The mapping of import to attribute values can be configured
with the “Value allocation” tab.

OO

&

O

o] 1 J

&

o] 1 J

&

Boolean The mapping of import to attribute values can be configured
with the “Value allocation” tab.

File It is possible to import files (e.g. images). For this to happen,
either the absolute path to the file must be specified, or the
files to be imported must be in the same directory (or a subdi-
rectory that needs to be specified) as the import file.

Date

o <day> <monthName> <year>, e. g. 5 April 1982, 5-APR-
1982

e <monthName> <day> <year>, e. g. April 5, 1982
e <monthNumber> <day> <year>, e. g. 4/5/1982

The separator between <day>, <monthName> and <year>
can be a space, a comma or a hyphen, for example (but other
characters are also possible). Valid month names are:

e January, February, March, April, May, June, July, August
, September, October, November , December
e 'Jan’, 'Feb’, Mar’, 'Apr’, May', ‘Jun’, Jul’, 'Aug’, 'Sep’, Oct’, 'NoVv’,
Dec'.
Please note: Two-digit years are expanded to 20xy (so 4/5/82
becomes 4/5/2082).
If mapping is set to “Freely definable format”, the following
tokens can be used: YYYY and YY (year), MM and M (month
number), MMMM (name of month), MMM (abbreviated name
of month), DD and D (day)

Date and time

For date and time see the corresponding attributes. The date
must come before the time. If the time is omitted, 0:00 is used.

Color

Import not possible.

Fixed point figure

Import possible.

Integer e Integers of any size
e Floats (separated by a point), e.g. 1.82. The figures are
rounded during import.

Internet link Any URL possible.

Time <hour>: <minute>: <second> <am/pm>, e.g. 8:23 pm (be-
comes 20:23:00) <minute>, <second> and <am/pm> can be
omitted.

If mapping is set to “Freely defined format”, the following to-
kens can be used: hh and h (hour), mm and m (minute), ss
and s (second), mmm (millisecond)

String Any string. No decoding is performed.

Q00O

o] 1 J

&

o] 1 J

&

Boolean attributes and selection attributes

Selection or Boolean attributes can only assume values from a specified set; for selection
attributes this is a specified list, and for Boolean attributes this is the value pair yes/no in the
form of a clickable field. When importing these attributes, you can specify how the values
from the import table are translated to attribute values of the semantic graph database. One
option is to adopt the values as they are listed in the table; if they do not correspond to any
possible attribute values defined in the semantic graph database, they are not imported. The
other option is to specify value allocations between table values and attribute values, which
are then imported.

1.5.3 Configuration of the export

The export of data from a semantic graph database int a table is prepared in the same editor
and in the same way as the import.

1. A new mapping is created in a table mapping folder in the main window.
2. In the table mapping editor, the file to be generated is specified.

The difference to the import is that the columns are not imported from the table now but
have to be created in the table mapping editor. Since the import and export editor are one
and the same, you first have to select whether a new column to be created is a standard
column or a virtual property. However, virtual properties cannot be used for export.

Exporting structured queries

It is possible to export the result of a structured query. This procedure makes sense if only
certain objects that have been restricted by a search are supposed to be exported. Lets
assume, for example, we want to export all bands that have written songs that are more the
10 min long. To do this, we first have to define a structured query that collects the desired
objects.

=0

+ [@3pand
o + ist Autor von |© + QSong

a SongDauerl0Min
|4 Daver | % wert >

We then access this structured query from the configuration of the export. To do this, we
select the mapping of a query rather than an object mapping in the mapping configuration
header. The structured query can only be accessed with a registration key.

Ay 2 A
$ou O 00a Lo
Beispiel-Export Beispiel-Export

This has the effect that only the results of the structured query are exported. For these

00O
000
o I J

objects, we can now create properties that are to be included in the export: e.g. year the band
was founded, members and songs. However, we might not want to export all of the songs of
the bands we have thus compiled but only those songs that also match the search criterion,
which is songs longer than 10 min in our example. To do this, we can assign identifiers to
the individual search conditions in the structured query. These identifiers in turn can be
addressed in the export definition.

=#0

wsww O AL
Beispiel-Export 1: Abfrage: Bands mit Songs tber 10 Min (ID: songsUeber10Min)
4 47 1: Abfrage: Bands mit Songs (iber 10 Min | Abbildung | Identifizieren | Log
2: Attribut Name Aktive Sprache Abfrage
4 &% 4: finderHandle SongDauer10Min Bands mit Songs dber 10 Min (ID: songsUeber10Min) . || Offnen
3: Attribut Name Aktive Sprache
5: Attribut Dauer

Exporting collections of semantic objects

Collections of semantic objects can also be exported. These also need a registration key,
which you can set under TECHNICAL -> Organizing folder.

= 00A /s {aR

Beispiel-Ordner-Export Beispiel-Ordner-Export

Exporting the frame ID

The mapping of the frame ID enables us to export the ID of a semantic element assigned in
the semantic graph database. To do this, we simply select the object, type or property for
which we need the ID and then choose the “New mapping of Frame ID" button:

weww O AJLEEIX
Beispiel-Export 4: finderHandle SongDauer10Min
4+ 1: Abfrage: Bands mit Songs (ber | Abbildung Log
2: Attribut Name Aktive Sprach
4 &% 4: finderHandle SongDauer10M

We can also decide if we want to output the ID in string format (ID123_456) or as a 64-bit in-
teger.

finderHandleM|_$ongDauer10Min

Export via script

Finally, we have one additional powerful tool for the export: script mapping. For further
information on this subject, refer to the “Script mapping” chapter.

Export actions for database exports

) (

oI I J
oI I J

Mapping the properties of an object for an export into a database takes place exactly like
mapping for an import and all other types of mapping. The only difference is that the export
action has to be specified for the export. This specifies which type of query is to be executed
in the database. Three export actions are available:

The following actions are available in the selection dialog that opens:

e Create new data records in table: New data records are added to the database table.
This action corresponds to an INSERT.

e Update existing data records: The data records are identified via an ID in the table.
They are only overwritten if the value has changed. If there is no suitable data record, a
new one is added. This action corresponds to an UPDATE.

e Overwrite table content during export: All data records are first deleted and then
written again. This action corresponds to an DELETE on the entire table followed by an
INSERT.

1.5.4 RDF-import/export

RDF is a standard format for semantic data models. We can use the RDF import and export
to exchange data between the semantic graph database and other applications, and also to
transport data from one i-views semantic network to another.

During an RDF export, the entire semantic network is exported into an RDF file. RDF import,
in contrast, is interactive and selective. That is, we can specify at schema level as well as for
individual objects and properties what is supposed to be imported and what not.

Reconciliation from RDF with the existing objects in the semantic network

If the RDF data originates from the same schema as the network into which itis imported, e.g.
from a backup copy, the RDF import automatically assigns objects and object types by means
of their ID. Just like for table and XML imports, we can use the import settings to determine,
e.g. whether existing objects are to be updated by the import or if new ones are supposed
to be created.

If the data originates from another source, the default setting of the import is into a separate
subnet. We can also integrate this external information into our stock by means of manual
assignments using the "Map to" function in the Mapping interface.

1.5.4.1 Basic principles

In this section we have a look on the basic principles of RDF and the special cases to
be obeyed for import mapping. For further information about the RDF standard, see:
w3c.org/rdf. In general, the i-views Knowledge-Builder supports XML-RDF.

For identifying the content within the RDF file and the Knowledge-Builder as well, the RDF-URI
is used. It comprises the base URI (= base URL) and the RDF-ID:

[RDF-URI] = [Base URI] + [RDF-ID]

The Base URI syntaxin RDF is constructed by the "xml:base" prefix, like in "xml:base=http://example.org/".

The base "base" is only a namespace for individual domains; the qualifier "xml" is for read-
ability reasons in terms of XML transportation, which is irrelevant for import.

A relative URI in RDF is built up by the syntax "rdf:about". Attribute values are most likely
text between tags: <rdf:prefLabel xml:lang="en">Example</rdf:prefLabel>, surrounded by

Q00O

o] 1 J

&

o] 1 J

&

the translation layer identified by "xml:lang". Relations will be formed by RDF-entries like
"rdf:resource". IDs will only be created via import in the Knowledge-Builder if they are lit-
erally written in the RDF file. The RDF-ID is no absolute identifying characteristic! It is not
recommended to set RDF-IDs manually in the RDF file, since duplicate values can lead to
data being mislocated.

Global settings

The Knowledge-Builder Base URL is defined in the settings menu and it is valid for both im-
port and export:

i Settings — m] %
Personal System Index configuration
Folder Base URL: http://fi-views.com/i-views-content®
User Qualifier: v
Syst: it
ystem accounts Additional namespaces
Right
g Add Remowe
Trigger
Qualifier MNamespace
Top Types firds http://iirds.tekom.defiirds#
Languages iirdsMch http://iirds.tekom.defiirds/demain/machinery#
schema http://schema.org/
Locking
Print configuration
Registry
RDF
Certificate authorities
LDAP authentication
SMTP
Maintenance
Client performance analysis
£ >
oK

“Additional namespaces” is for export only.

Note: Always use a local copy of the network for trying out RDF-Import. If all settings led to
a successful import, then make the import on the real instance.

Possible issues

e In most cases when importing external RDF (RDF which didn t have been created by the
Knowledge-Builder itself out of the same knowledge network), the namespaces possibly
won t fit. This results into lots of types within separate main types being created in the
network.

Therefore we can prepare the import as described at the end of this section.

¢ In RDF, the definition and assignment of properties can lead to creation of many objects
in the network which normally should be formed into an attribute value of some certain
object instead.
Therefore a manual correction of the type assignment in the mapping or an alternative

AN

&

OO0

—

ol 1}

&

o] 1 J

&

XML import using XPath expressions (Xpath 1.0) might be needed.

e Don t choose the option “ldentify objects with global URI also by local ID" if the base URL
in the RDF differs from the Knowledge-Builder base URL. Furthermore, some RDF-ID in
the RDF file could be identical by accident with some existing ID in the network, resulting
into the object in the network being overwritten!

Always use the RDF-URI for identification.

e If your RDF file doesn t contain a base URL, the file path of the RDF will be used as the
base URL instead.
This can be checked by opening the import dialog first. We then can add the RDF-URI or
RDF-URI-Alias accordingly and then check the assignment again by opening the import
dialog once again.

Preparation before import

Imports can be prepared regarding type assignment in the case that the RDF files contains
foreign base URLs. Because RDF imports can lead to schema changes, it is always recom-

mended to try the RDF import on a local copy of the knowledge-network before. To do so,
we continue as follows:

1. Before importing, first create the scheme manually (object types, attribute types and
relation types).

2. Forthe types, add the RDF properties by clicking on “Add attribute or relation”

i1 Choose property - O X

Choose property
[
Marme Defined for Supertype 2
RDF-Ontology Instances of Top-Level-Typ, Types of = Attribut

RDF-URI Instances of Tep-Level-Typ, Types of = Attribut
RDF-URI-Alias Instances of Top-Level-Typ, Types of = Attribut

v

RDF-Ontology: Attribute for RDF base URI “xml:base”
RDF-URI: Attribute for “rdf:about”

RDF-Alias: Further attribute, if the element is being fed by several RDF with different
URIs

3. Open import dialog and check import mapping.

4. If the adjustments lead to the intended mapping, start the import and check the result.

AN

&

OO0

o] 1 J

&

o] 1 J

&

1.5.4.2 RDFimport

For accessing the RDF import mechanism, go to the global actions settings and choose Tools
> RDF > RDF-Import.

-—
—
Change password -
Velume information Tools]
Script Messages Administrator H]
RDF » RDF import
Exports 5 ROF export
Dev Service -]
Meod) »
A dialog opens for choosing the import file:
‘#2 RDFimport - O X

L] Import referenced resources
Ignore HTTP errars
[Identify objects with global URI also by local ID

Mext Cancel

Options:

e Import referenced resources:
If this option is chosen, all referenced resources specified in the RDF file are going to be
imported additionally.
Note: Be aware that the referenced resource itself can contain further references, lead-
ing to much more data being imported than initially intended.

e Ignore HTTP errors:
The Knowledge-Builder will return error messages if the RDF namespace label is missing
after the URL; only the namespace http-URL at the top will be considered.

¢ Identify objects with global URI also by local ID:
This option only makes sense if the rdf to be imported is originated from the same
knowledge network for which it is intended to be imported. Importing RDF with only
considering the ID can lead to data being overwritten when the RDF is from another
domain and the IDs match accidently. This option does not make sense when the RDF
base URL differs from the knowledge network base URL.

Note: When importing RDF, for every unknown namespace a separate main type will be
created in the knowledge network. The assignment of RDF content to dedicated knowledge
network types depends on how the information is represented in the RDF file.

Setting the import options
1. Manual supertype mapping:
Per default, the RDF-URL (RDF ontology) will be used as supertype assignment.

For every type within the RDF, you can choose the supertype mapping in the semantic
network manually if a different type assignment is needed:

Import | Update or create if not found v

Choose for subelements

Supertype

m Open Remaove

In order to be sure about which supertypes will be created by the import, you can check
this in the “Schema changes” tab. By clicking on “Show in tree”, you can quickly jump to
the location of a type in the hierarchy structure. The “Legend” tab explains the import
mapping symbols.

2. Import options:

Opticns
] #llow schema changes

[] Avoid duplicate properties
[] Allow deferred relation creation
[] Triggers activated

[Import qualifier/namespaces

a. Allow schema changes: Since you don t want a file to change the schema, it is recom-
mended to disable this option

b. Avoid duplicate properties: Because in RDF properties cannot be assigned with an ID,
a unique identification of properties and their values within the knowledge network is
not possible when importing RDF without krdf. When you want to import a foreign RDF
without krdf, it is recommended to enable this option.

When transferring RDF between knowledge networks, knowledge network specific at-
tributes can be identified by means of the enhanced krdf syntax. This includes proper-
ties for view configuration, REST configuration, attribute values, relation targets, meta-
properties on relations etc. In this second case, it might be needed to disable the op-
tion. Pay attention that krdf adds the internal frame IDs for instances and properties
whereas external IDs have no impact on identification of such content. The Knowledge-
Builder automatically creates unique frame IDs when new elements are created within
the knowledge network - either by an import or by the user.

Q00O

—

ol I J

c. Allow deferred relation creation: When importing data from public resources, the at-
tribute “reference to URL" can be created as a substitute reference for (temporarily un-
available) dependencies. The attribute then can be used for re-identification in deferred
imports. This might be useful when empty parts including URL without type definition
exist within the RDF file.

d. Triggers activated: Normally, triggers are not activated during RDF import. If you nev-
ertheless wish triggers being activated, enable this option.

e. Import qualifier/namespace: This option only makes sense when re-importing RDF
that has been previously created out of the same network. If you import a RDF with a
foreign namespace, skip this option.

3. Log options:
a. Create folder with imported objects: This option allows you to inspect the imported
objects within a folder that will be created in the working folder.

b. With relation targets: When the RDF file contains new objects with relations to targets
that already exist in the knowledge network, the relation targets will be included in the
folder of imported objects.

4. Transaction options:
a. Importin a single transaction: This is the most common import method.
b. Use multiple transactions for import: This option is recommended when the RDF file
contains a huge amount of content or when the connection to the external resource
might be weak or unstable. When an error occurs, the amount of content affected by a
rollback will be less due to the increased import steps in terms of transactions.

5. If you checked all settings, start the import and check the result.

Alternative: XML import mapping

If the schema in the semantic network is too specific for the existing RDF file or if the RDF
file is too specific or the rdf schema is missing so that it cannot be imported by the import
mechanism correctly, we can use the XML import mapping for specified import.

In most cases, we will need to use XPath expressions for dedicated value assignment. Pay at-
tention that for the XML import mapping, an interactive step-by-step import is not available.

Examples for XPath expressions

Note: For Xpath expressions, the namespace (built up on to the qualifier) is not considered
by the system for import mapping.

Input RDF-XML XPath Mean-
ing

OO

&

O

o] 1 J

&

o] 1 J

&

1/

Top-
level
of the
RDF

One
level
above

A.Ixyz

Two
levels
above,
from
there
the
node
below
called
iy 7"

<rdf:label>

/label/

Tag
“label”

<rdf:prefLabel xml:lang="en">
Example
</rdf:prefLabel>

prefLabel[@lang="en"]

Node
with
at-
tribute
and
cer-
tain
at-
tribute
value.
Out-
put
="Exan

Q00O

000

ancestor::termEntry/attribute::id Su-
per-
ordi-
nate
node
on
any
level
with
name
(“ter-
mEn-
try”)
and
at-
tribute
(“id")

/myparent/mychild[text()] Text
be-
tween
cer-
tain
tags

Further RDF import/export possibilities

RDF files also can be imported or exported via the REST interface by means of a JavaScript
mapping. In this case, only global options for import are available as specified in the
JavaScript APl documentation:
http://documentation.i-views.com/5.3/javascript-api/$k.RDFImporter.html.

Exceptions: Within i-views content, URIs are generated automatically for the semantic ele-
ments when being created in the knowledge network.

1.5.4.3 RDF export
Exporting the whole semantic network as RDF

On the global actions menu, select Tools > RDF > RDF export.

Q00O

000

Change password

Recently Closed Windows »

Volume information Tools ¥
Script Messages Administrator »
ROF 3 RDF import

Exports > RDF export

Dev Service >

Meod »

Exporting parts of the network

It is possible to export just a part of the knowledge network, for example:

e Listed elements from an objects list
e Elements from within a semantic elements folder

e Elements from within a graph editor bookmark
If you wish to export listed elements without collecting them in a folder:

e Select the list elements to be exported. Open the context menu by means of a right
click. Then choose “RDF export".

For collecting the elements to be exported, there are severely possibilities:

1. Create a semantic network elements folder and add the elements:
a. In your private or working folder, create a semantic network elements folder.
b. Go to the objects list of your choice an add the elements to the folder by dragging &
dropping them.
or
Select the elements in the object list and open the context menu by means of a right
click. Then choose “Store selected elements in folder”.

2. Right-click on the semantic network elements folder and choose “RDF export”.
If you wish to put all selected list elements into a semantic network elements folder:
1. Open the context menu by means of a right click. Then choose “Copy semantic elements
to new folder”.
2. Right-click on the semantic network elements folder and choose “RDF export”.
If you have already created a bookmark of a graph editor view, you simply can export
them: Right-click on the bookmark and choose “RDF export”.

Note that only the content of the selection (of the folder or bookmark) will be exported. In
terms of an object, this will be the cluster containing the attributes and the relation halves
directly attached to the contained object only.

Note: When no base URL is specified in the global settings of the Knowledge-Builder, the

OO

&

O

o] 1 J

&

o] 1 J

&

534
path name of the RDF export file will be used as base URL instead.
RDF Exporting settings
‘2 RDF export - O X
File: [
Base LIRL: http://localhost/dokuTestMets
Cualifier: kinfinity
Synatx IDs
Use OWL (® Local IDs (rdf:ID)
Use KRDF (") Use full URLs (rdf:about)
[] Create attributes for generated URLs and [Ds
Scope
[] Do not use stored URLs and IDs
Export labels Frame-IDs
Export meta properties
Export extensions Export Frame-1Ds of types and objects
[] Enhanced comments] Export Frame-IDs of attributes and relations
Export Cancel
Syntax

e Use OWL: Since OWL (web ontology language) allows more options than the conven-
tional RDF syntax, this option is always recommended except the case that the RDF is
going to be reused for another system which does not accept OWL.

e Use KRDF: The KRDF syntax is i-views specific. It allows more enhanced constructions
or representations compared to RDF or OWL like the following:
o Instances that have several supertypes
o Domains that consist of an intersection of supertypes
o Frame IDs of semantic knowledge network elements

Scope
Note: The scope options comprise only schema (types) of the whole export

e Export labels: If activated, labels will not be exported as an attribute but in forms of a
label literal with the syntax <label xml:lang="eng">.

e Export meta properties: In terms of official RDF specification, meta properties are
out of scope. Nevertheless, meta properties can be regarded as a construct with state-
ments about statements, as described in the reification rules of the RDF specification.
Therefore, this option is useful when re-importing into an i-views semantic knowledge
network is intended.

OO0
O
O
O

IDs

Export extensions: This option allows the export of extensions of semantic objects.

Enhanced comments: When enabled, XML comments with real name will be created.
The exported RDF file will contain comments for dividing up into sections for objects,
related objects and referenced schema hereafter, including statements about the rela-
tionships from each individual object to the related object.

Local IDs (rdf:ID): This option only makes sense when re-importing the resulting rdf
into the same knowledge network or into a highly similar knowledge network with the
same namespace and correct IDs. If the target network accidently has existing elements
with same ID, the elements might be overwritten without further recognition.

Use full URLs (rdf:about): This option should be preferred, since the full RDF URL con-
tains the namespace and thus ensures correct mapping when reimporting the RDF, pro-
vided the base URL of both RDF file and settings being identical.

Create attributes for generated URLs and IDs:
Do not use stored URLs and IDs:

Frame-IDs

Use frame URLs (krdfframe): This option is only available in combination when used
with full URLs instead of IDs. It provides internal URLs built up by frame IDs of the
semantic knowledge network elements additionally.

Export Frame-IDs of types and objects: Exporting frame IDs only is useful in the case
if duplicating parts of the existing network is intended. Since frame-IDs change in vari-

ous cases and differ highly due to their randomized creation (229 possible values), they
cannot be used for another knowledge network.

Frame-IDs keep the same when:

0 Changing the type of an instance
o Downloading a network

o Updating a network

Frame-IDs change when:

o Changing relations into single-sided relations

o Another instance of knowledge network is used

o Creating objects, even if they will be given identical properties

Export Frame-IDs of attributes and relations: Exports frame-IDs of properties (at-
tributes and relations) as well. As for exporting frame-IDs of objects and types, this
option is useful for (partial) duplicating networks, but not for reuse into foreign net-
works

1.5.5 Restore deleted individuals from a back up

The RDF export and import is suitable for restoring deleted individuals from a backup net-
work. Proceed as follows to do so:

1.

Open the backup network in the Knowledge Builder

00O
000
o I J

2. Create a new folder and save the individuals to be restored to it. To do so, right-click to
open the context menu in the list view of the individuals to be copied, and select “Copy
content to new folder” while selecting the new folder as the destination.

3. Open the RDF export on the newly created folder using the context menu

4. Specify a file name in the export dialog, select the options “Use URLS (rdf:about)” and
“Use frame URLs (krdfframe:)” and execute the export:

Datei: export.rdfs
Basis-URL: http://localhost/ Test
Cualifier; export

Syntax

OWL verwenden
KRDF verwenden

Urnfang

Labels exportieren
Metaeigenschaften exportieren
Erweiterungen exportieren

[] Erweiterte Kommentare

IDs
() IDs verwenden (rdf:ID)

(@ URLs verwenden (rdf:about))

[] Attribute fiir generierte URLs und IDs anlegen

[] Gespeicherte URLs und IDs nicht verwenden

Frame-IDs

(Frame-URLs verwenden (krdfframe:k)

Frame-I1Ds von Typen und Objekten exportieren

[] Frame-IDs von Attributen und Relationen exportieren

Export Abbrechen

Note: the option “Use KRDF" results in i-views additionally copying specific content that
cannot be mapped in full by means of RDF syntax.

5. Close the Knowledge Builder and open the target network in the Knowledge Builder

6. Open the RDF import dialog in the main menu under Tools > RDF > RDF import:

Volume-Information

Skriptmeldungen

RDF ¥
Exporte ¥
Dev Service »

Volume Report

7. Select the file and press “Next":

-—
—=
Passwort @andern -

Werlzeuge ¥
Administrator »
RDF-Import
RDF-Export

00O
000
o I J

URL: file:/// 2/ User/ export.rafy] Datei

[[] Referenzierte Resourcen importieren
HTTP-Fehler ignorieren
[] Objekte mit globaler URI auch durch lokale ID identifizieren

Weiter Abbrechen

8. Deactivate the option “Allow changes to the schema” in the selection dialog, and activate
“Create folder with imported objects”:

Hierarchie Schemadnderungen Zeichenerklarung

Suche

~v WI http://localhost/Test

I Klassen

B Eigenschaften

% Objekte
Optionen Log

(D Anderungen am Schema erlauben) (Ordner mit importierten Objekten anlegent

[] Eigenschaftsduplikate vermeiden [] Mit Relationszielen
[Verweise auf abwesende Ressourcen Transakiion
[] Trigger aktiviert O In einer Transaktion importieren
[] Qualifier/Namespaces importieren (®) Mehrere Transaktionen verwenden

Import Abbrechen

9. Execute import
10. Check the restored individuals

1.5.6 Transport selected schema

The Admin tool can be used to transfer the entire schema of a semantic network from one
semantic network to another via RDF export and import. However, if you only want to trans-
fer selected types, you should consider using the “Copy schema to folder” function, which is
available for all types via the context menu. This function creates a reference to the selected
type together with all other (property) types that are required to create the selected type or
objects of this type in the target network.

Once you have collected all required information in a folder, you can export this and import
it into the target network in the same way as described in the previous chapter. However,
the “Allow changes to schema” option should be deactivated in this case.

1.6 Access rights and triggers

This attribute handles the checking of access rights and triggers:

e Access rights regulate which operations on the semantic model may be executed be
specific user groups. They are defined in the rights system in i-views. The rights system
is located in the section Technical > Rights.

e Triggers are automatic operations that are triggered on a certain event and execute the
corresponding actions. The Trigger section is located under Technical > Trigger.

The rights system and triggers are initially not activated in a newly created semantic graph
database. These areas have to be activated before they can be used.

The procedure for creating rights and triggers is basically identical. Filters are required that
check if certain conditions are met or not. If these conditions are met, the rights system
grants or denies access, and a log entry is made or a script is executed for triggers. In the
rights system, the arrangement of filters is referred to as rights tree while that for triggers is
called trigger tree.

1.6.1 Check of access right

We use rights to regulate user access to the data in the semantic network. The two basic
objectives enabled by the rights system are:

e Protection of confidential data: Users or user groups may only see data that they are
allowed to read. This ensures that secrecy and confidentiality restrictions are applied.

e Work-specific overview: Certain users only need a section of the data of a model for
their work with the system. The rights system enables them to display only those ele-
ments that they need in order to complete their tasks.

The i-views rights system is very flexible. It can be configured precisely for different require-
ments of a project. By defining rules in a rights tree, consisting of individual filters and
deciders, a network-specific configuration of the rights system is created. There are many
options for compiling these rules for the rights system, which generates even more differen-
tiated rights. It is not possible to list all possible combinations of configurations; this requires
consulting in individual cases.

How does the rights system work?

Access rights in the system are always checked when a user executes an operation on the
data. The basic operations are:

Read: An element is supposed to be displayed.
e Modify: An element is supposed to be changed.

Generate: A new element is supposed to be generated.
e Delete: An element is supposed to be deleted.

If the access right is supposed to be changed in a certain access situation, the Rights tree is
processed until a decision for or against access can be made in this situation. The Rights tree
consists of conditions that are checked against the access situation. To check the conditions,
filters are used which filter the elements of the semantic network and operations. Deciders
are located at the end of a subtree of filters in the rights tree. These deciders either allow or
prohibit access.

In relation to the access situation, aspects are selected which are used as the condition for
allowing or prohibit access. In access situations, the following aspects are often used for the
decision:

e The operation (generate, read, delete or modify)
e The element that is supposed to be accessed
e The current user
It is possible that only one aspect of the access situation is selected as a condition but it

is also possible to query a combination of the aspects listed. Example: "Paul [user] is not
allowed to delete [operation] descriptions [element]".

1.6.1.1 The activation of the rights system

In a newly created semantic network the rights system is deactivated by default. Before it
can be used, it has to be activated in the settings of the Knowledge Builder.

Instructions for activation of the rights system

1. In the Knowledge Builder, call up the Settings menu and select the System tab. Select the
Rights field there.

2. Place a checkmark in the Rights system activated field.

3. In the User type field, specify the object type whose objects are the users of the rights
system. This is usually the “Person” object type. (Type must not be abstract.)

4. Once you have connected the i-views knowledge portal, enter a user (object of the pre-
viously defined person object type) in the Standard web user field.

Before activation of the rights system, the folder is called Rights (deactivated). Once the rights
system has been activated, the folder is called Rights. When the rights system is deactivated,
checks of the access rights are no longer performed. However, the rules defined in the rights
tree are retained and used again after renewed activation of the rights system.

Please note: If you access an element from the web front-end without special log-in, the
person specified under Standard web user is used. It is common to create a fictitious person
called “anonymous” or “guest” here.

To ensure the rights system also functions in the Knowledge Builder, the user accounts of
the Knowledge Builder must be linked to an object from the semantic model. The user ac-
count can only be linked to objects of the type for which activation of the rights system was
specified in the user type field.

The link is generally required for using the operation parameter User in query filters, or for
using the access parameter User in structured queries when the rights system or the search
is not executed in an application, but rather in the actual Knowledge Builder.

Instructions for linking Knowledge Builder users to objects of the person type

1. Open the Settings menu in the Knowledge Builder and select the System tab. Select the
field User there.

2. Select the user who is to be linked. Link can be used to link the user to a person object
that is not yet linked to a Knowledge Builder account.
The Unlink function results in the Knowledge Builder account link to the person object
is canceled.

Please note: The user currently logged in cannot be linked.

In general, users with administrator rights may perform all operations, regardless of which
rights were defined in the rights system. The definition as administrator is also implemented
in the Settings menu in the User field on the System tab.

1.6.1.2 The rights tree
Traversing the rights tree

The rights tree is comprised of rules that are defined in a tree. The branches of the tree,
also referred to as a subtree, are comprised of the conditions that should be checked. The
conditions are defined in the system as filters that are nested in each other. The system
works through the tree from the top to bottom when the evaluation occurs. When a condi-
tion matches the access situation, then the check continues with the next filter in the sub-
tree. This filter is, in turn, checked. This is implemented until the end of the subtree, when
there is an access right or denial. If a condition does not match the access situation, then a
switchover to the next subtree occurs. When the system encounters an access right or denial
when working through the rights tree, the rights check ends with this result. The branches
(subtrees) of the tree are therefore worked through successively, and the tree is “traversed”
until a decision can be made.

Filters and deciders are nested in each other in the form of folders, so that a tree construction
is produced that is comprised of different subtrees. A folder can have several subfolders
(several successor filters on one level), which produces branching in the rights tree. Folders
that are defined on one level are worked through successively (from top to bottom).

Structure of the rights tree

When creating the rights tree, it is important to group the rules in a sensible way because
once a decision as to whether access is allowed or denied has been made, no further rules
are checked. Hence, exceptions should be defined ahead of global rules.

The two main cases that you have to distinguish are:
e Negative configuration: Everything is allowed at the lowest subtree; denials are de-
fined above it.
e Positive configuration Everything is prohibited at the bottom, except for what is al-
lowed above.

The order of the subtrees is therefore crucial when creating the rights tree. The order of
the conditions in a subtree in contrast (whether we check the operation first and then the
property or vice versa) can be chosen freely.

Q00O

—

ol I J

You don t necessarily have to define all filter types to define a subtree of a rights tree. A
subtree consists of at least one filter and one decider. An exception is the last subtree which
generally consists of a decider only, which allows all remaining operations (which have not
been prohibited in the rights tree beforehand) or which prohibits all remaining operations
(which have not been allowed in the rights tree beforehand).

1.6.1.3 Decision maker in the right tree

Deciders are always at the last position of a rights sub-tree. The combination with filters
is used to determine access situations in which access is explicitly allowed or denied. If a
decider is reached while traversing the rights tree, the check of rights is answered with this
decision. The operation to be checked is then either allowed or rejected. The rights tree is
then not checked any further.

Sym- Access | Description
bol right

Grant access | Access is granted in the access situation to be checked.

Deny access | Access is not granted in the access situation to be checked.

In general, there are two different deciders, a positive one called Grant access and a negative
one called Deny access.

Instructions for creating a decider

1. In the rights tree, choose the position at which you want to create the decider.

2. Use the buttons 4 and 4 to create new deciders as subfolders of the currently selected
folder.

3. Assign a name to the folder.

1.6.1.4 Composing rights

To define rights, filters and deciders are combined in the rights tree. The Filters chapter
explains the different filter types and how they can be used. The deciders Grant access or
Deny access each represent the last node of the subtree of the decision tree. If the decider is
reached, this decision terminates the traversing of the rights tree.

The following functions are available for defining rules in the rights system:

Sym- | Function Description

bol
New operation filter A new operation filter is generated.
New query filter A new query filter is generated.
New property filter A new property filter is generated.
New organizing folder | A new organizing folder is generated.

Q00O

—

ol I J

Grant access A positive decider that grants access is generated.

Deny access A negative decider that denies access is generated.

Organizing folders can be used to structure rights in a meaningful way. They do not affect
the traversing of the rights tree. Their only purpose is to group large numbers of rights into
subtrees of the rights tree that have related content.

Changing the arrangement of folders in the rights tree
In order to sort the filters and deciders in the rights tree into the right order, right-clicking
opens a context menu:

Zugriff gewdhren

Umbenennen

Laschen
Export

Ganz nach oben

Mach oben

Mach unten

Ganz nach unten
The filter or decider can be renamed, deleted and exported in this context menu, and its
position in the rights tree can be changed. If two folders (filters or deciders) are on the same
level, the Upward or Downward function can be used to shift the folder further to the front

or the back in the rights tree. To the top and To the bottom shifts the folder to the first or last
position of the level in the rights tree accordingly.

If folders are to be nested in each other, meaning the level in the decision tree be changed,
this can be done using Drag&Drop.

Assembly of rights
Assembling filters and deciders in the rights tree creates a large number of possible combi-
nations for defining rights. By principle, there are 3 different procedures for defining rights:
e Definition of rights for every possible access situation
e Positive configuration
e Negative configuration
Because defining access rights for every possible access situation is a very complicated pro-

cedure, one of the two other means of configuration is generally used. They are explained in
the following two sections.

1.6.1.4.1 Positive configuration of rights

If rights are defined in the rights tree which only allow specific accesses and deny all other
accesses about which nothing is specified, then this is referred to as a positive configuration

Q00O

/—
p
e
p

i

of the rights tree. Rules are defined in each subtree of the rights tree, which allow specific
operations. All operations to be checked traverse the rights tree: If the operation to be
checked does not match the conditions of the subtrees, it is rejected at the end of the rights
tree.

Example: Positive configuration

This example shows how a positively formulated rights tree might look like in the Knowledge
Builder:

4 Rechte
e Lesen
4 /& Name, Dauer, Erscheinungsdatum
Zugriff erlaubt
e Anlegen
e Ohjekte von Song
Zugriff erlaubt

Zugriff verweigert

The first rights subtree defines read access to the attributes name, duration and publication date.
The read operation is allowed for these attributes. The second rights subtree allows new objects of
the type song to be created. All other operations are generally denied at the end of the rights tree.

1.6.1.4.2 Negative configuration of rights

When rules are defined in a rights tree to reject specific operations and permit all the op-
erations that, after a check, are identified as not matching those operations, this process is
described as a negative configuration. Specific operations are prohibited in the subtrees of
the rights tree. If one of the operations to be checked does not match the conditions of the
subtrees, the operation is permitted at the end of the rights tree.

OO0
000
ol X J

Example: Negative configuration

This example shows how a negatively formulated rights tree might look like in the Knowledge
Builder:

4 Rechte
e Ldschen oder Modifizieren
4 /& Name, Dauer, Erscheinungsdatum
Zugriff verweigert
e Meu Anlegen
4 /& Song gehdrt zu Album
Zugriff verweigert

Zugriff erlaubt

Unlike with a positive configuration, for example, the first rights subtree rejects the access rights
for deleting and modlifying the Name, Length and Publication date attributes. The second rights
subtree prohibits deletion of the relation that links the songs to the album they are contained in.
All other operations may be executed.

1.6.1.4.3 Example: Each user is allowed to change and delete items that he has cre-
ated himself

Why do you need to define this right in i-views? On the one hand, you need an operation
filter since this is about changing and deleting elements. On the other hand, the connection
between the user and the element on which the user wants to execute an operation must be
defined, which is only possible by means of query filters.

Operation filter

OO

&

O

o] 1 J

&

o] 1 J

&

Ausgewdhlte Operationen:

Léschen

Modifizieren

Hinzufiigen Entfernen

In the operation filter, the operations Delete and Modify were selected.

Query filter

NEaBeA R

o dm

Operationsparameter: Mégliche Operationsparameter:

Primarelement <= |(Obertyp ~
Benutzer
Eigenschaft v

®) Alle Parameter missen zutreffen () Ein Parameter muss zutreffen

®) Suchbedingung muss erfiillt sein

O Suchbedingung darf nicht erfallt sein
= Top-Level-Typ

-~
o s wurde erstellt von |) 4 | i Person e

In the query filter, “Relation created by” is selected with relation target “Person.” On the relation
target Person, the access parameter User was specified. The settings All parameters must apply
and Search condition must be met are selected. In this case, the operation parameter “Primary
semantic element” was selected.

A question relating to the schema is: On which elements is the relation was created by de-
fined? There are different options for implementing this relation in a semantic network:

1. Definition on objects and types: The relation is only used on objects and types.

2. Definition on all elements: The relation is used on all objects, types, extensions, at-
tributes and relations.

In the first case, it makes sense to use the operation parameter “Primary semantic element”
or “Superordinate element.” If you define the right using the superordinate element, this
does not apply only to the object itself but to all properties stored on the objects that were
created by the user. If you use the operation parameter “Primary semantic element,” the
right also applies to all meta properties of the object.

In the second case, the operation parameter “Accessed element” is used because only el-
ements may be changed on which the relation was created occurs with the corresponding
relation target, the user.

Compiling the right in the rights tree

There are two different variants for combining the filters. If there are no branches in the
rights subtree, the order of the subtrees is not relevant.

The graphic illustrates the two possible combinations: Version 1 (left) first operation filter, then
query filter, version 2 (right) first query filter then operation filter, in both cases the decider ‘Al
lowed” then follows last.

Recommendation: It makes sense to have the operation filter in the first position, which
makes it possible to create underneath it all other rights that filter on the same operation.
This creates a more simple, traceable structure in the rights tree.

Advanced right: Elements that were not created by the user may not be changed or
deleted

The right implies the denial for all elements that were not created by the user but we have
not yet expressed this in the definition of rights. To do that, we have to take into account the
Access denied decider during the creation of rights. If you look at both versions of rights and
combine these with a negative decider, this results in the following variants. However, the
two variants have different effects in the rights system.

If you add one decider Denied to each of the combination options presented above, the two ver-
sions are created: Version 1 (left) first operation filter, then query filter and decider “Allowed.” The
operation filter is also followed by a decider Denied in a second subtree. Version 2 (right) first
query filter then operation filter, and decider “Allowed.” In the version, the query filter is followed
by a second subtree with the decider “Denied.”

Effects on the different versions on the rights system
Version 1 (left)

e Allows modification and deletion of elements created by users themselves.
e Prohibits modification and deletion of all other elements.
e No statement is made in relation to all other operations.

Version 2 (right)

e Allows modification and deletion of elements created by users themselves.
e Prohibits all other operations on elements created by users themselves (e.g. read).
e No statement is made in relation to all other elements.

000

p
&

\
ol 1}
ol 1}

The items show that version 2 does not express the requested access right. Only version
1 formulates the desired access right: All users can modify or delete elements they have

created themselves and elements that were not created by the users may not be modified or
deleted.

1.6.1.5 Configuration of own operations

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs
are available in the main window. A number of operations can be configured in the Configure
tab.

W TR =40

Gespeicherte Testfille

Operationen

Alle Operatoren ~
4 Abfrage
In Strukturabfragen verwenden
4 Anzeigen von Objekten
im Grapheditor anzeigen
4 Bearbeiten
Attributwert validieren
Benutzerdefinierte Operation
4 Erzeugen
Attribut erzeugen
Enweiterung erzeugen
Objekt erzeugen
Ordner erzeugen
Relation erzeugen
Relationshalte erzeugen
Typ erzeugen
Ubersetzung hinzufiigen
4 Lesen
Alle Objekte/Eigenschaften des Typs lesen
Attribut lesen

Objekt lesen
Relation lesen
T‘_-g.p lesen v
StandardmiBig erlauben
Hinzufiigen Entfernen Standardoperationen initialisieren

The configuration of custom operations is generally only used when the Knowledge Builder
is used with other applications. A number of operations are application-specific operations
that should be checked together. This is a matter of checking a chain of operations, and not
just an operation.

Instructions for the configuration of custom operations

1. In the Knowledge Builder, select the Rights folder in the System area.
2. Select the Configuration tab in the main window.

3. Click on Add to create a new operation.

4. In the windows that follow, enter an internal name and a description for the new oper-
ation.

5. The new operation is added as a user-defined operation.
6. User-defined operations can be deleted again using Remove.

1.6.2 Trigger

Triggers are automatic operations that are executed in i-views when a specific event occurs.
They help support work flows by automating steps that always remain unchanged.

Examples for the use of triggers:

Sending emails due to a specific change

Editing of documents in a specific order by specific persons

Marking jobs as open or done on the basis of a specific condition

Creating objects and relations when a specific change is performed

Calculating values in a previously defined way

Automatically generating the name attribute for objects (e.g. combining properties of
the object)

How do triggers work?

Triggers are closely related to the rights system. They use the same filter mechanisms in
order to determine when a trigger is initiated. The filters are arranged in a tree, the trigger
tree, which is structured like the rights tree. It consists of filters that are used to define condi-
tions for the execution of a trigger action. If an access situation occurs because an operation
is performed, and that access situation matches the defined conditions, the corresponding
trigger action is executed.

Trigger actions are in most cases scripts that, depending on the elements of the access situ-
ation, use them to execute operations. This makes it possible to automate steps that remain
unchanged or perform intelligent evaluations on the basis of specific constellations in the se-
mantic network. Scripts can be used to execute any operations on elements that are depen-
dent on complex evaluations, and thereby ensure situation and application-specific require-
ments for the semantic network. Most triggers are therefore usually project and network-
specific; a consultation should be performed for each individual case.

1.6.2.1 Activate trigger

In order to be able to work with triggers, the trigger functionality must first be activated in
the Knowledge Builder.

Instructions for the activation of triggers

1. Call up the Settings for the Knowledge Builder.
2. Select the System tab there, and the Trigger field.
3. Place a checkmark in the Trigger activated field.

A Limit for recursive triggers can be specified here. The default setting is “None". Triggers that
call themselves are referred to as recursive triggers. This occurs when even operations in the

semantic network are implemented in the trigger script that, in turn, themselves match the
filter definition of the trigger.

Before activation of the trigger functionality, the Trigger folder in the technical area of i-views
is called Trigger (deactivated). The folder is renamed Triggers by the activation.

Note: If the current user is used in triggers (e.g. in query filters or using the corresponding
script function) and the user does not execute operations in an application, but rather in
the actual Knowledge Builder, then the Knowledge Builder user account must be linked to
a person object. The chapter Activation of the rights system explains how a link like this is
created.

1.6.2.2 The trigger tree

The trigger tree has the same structure as the rights tree. It is comprised of branches (sub-
trees), which are comprised of filters and triggers. The filters are the conditions that must be
checked for the trigger to be able to be executed at the end of the subtree when all conditions
to be checked beforehand have been satisfied.

The trigger tree is queried for the data when each operation is performed - the tree is “tra-
versed”. If a subtree applies to the access situation, then the trigger is executed. If the con-
dition of a filter does not apply to the access situation, then a switchover to the next subtree
occurs. Once the trigger action has been executed, traversal of the trigger tree continues, in
contrast to the rights system, which stops being worked through when an decider is reached.
In order to define that no other filters should be checked in the trigger tree after execution
of an action, the Trigger no other triggers button is used:

Sym- | Function Description
bol

Trigger no other triggers | The traversal of the trigger tree is ended.

At the end of a subtree, no decider is available, in contrast to the rights system, but rather
actions are available.

Sym- Function Description
bol

Define trigger A new trigger action is created.

The available trigger actions are:

e Enter log: Alog entry is written.
e Execute script > JavaScript: A script file in JavaScript is executed.
e Execute script > KScript: A script file in KScript is executed.

Structure the trigger tree

The order in which you define the triggers when designing the trigger tree usually has no
effect on the performance of i-views. There are design recommendation for the rights tree,

Q00O

000

but these cannot be applied to the trigger tree, as the trigger tree is further traversed after a
trigger action has been executed.

To provide a clearer structure for triggers, they can be collected in organizing folders. The
organizing folders themselves do not affect the traversing of the trigger tree.

Sym- Function Description
bol
5] Organizing folder Organizing folder for grouping subtrees

Example: trigger tree

This example shows a trigger tree that combines the names of persons and concerts auto-
matically from properties of the objects:

This simple trigger tree begins with an operation filter and splits into two separate subtrees after
the operation filter. If either the modify or the create operation is executed, it is let through by
the operation filter. The persons subtree filters operations that are performed on attributes and
relations of person type objects. If the operation affects either the first name attribute or the last
name attribute, it is let through by the property filter. The corresponding script that compiles the
name attribute of a person from their first and last name is executed. The second subtree also
applies to the modify or create operation filter. However, it filters attributes and relations that are
saved in concert type objects. The property filter only lets operations through if they are performed
on the attributes or relations of the date, the event location or the artist. If these conditions apply,
the corresponding script that compiles the name of the concert is executed.

This is what this trigger tree would look like in i-views:

AN

&

OO0

o] 1 J

&

o] 1 J

&

e Trigger

4 Modifizieren oder Erstellen

e Person
4 /& Vor- und Nachname
Skript ausfihren

4 Konzert

4 /& Kunstler, Ort und Datum

Skript ausfihren

1.6.2.3 Create trigger

As described in the Trigger tree section, triggers consist of filters and trigger actions. These
are combined in such a way that a specific trigger action is executed only when it is required.

The following functions are available in the trigger area:

Syn| Function Description
bol

New operation filter | A new operation filter is generated.

New query filter A new query filter is generated.

New property filter | A new property filter is generated.

New delete filter A new delete filter is generated.

New organizing | A new organizing folder is generated.
folder

New trigger A new trigger action is created.

Trigger no other trig- | A new “Stop” folder is created. It ends the traversing of the
gers trigger tree.

When creating triggers, you should consider two fundamental properties of the trigger mech-
anism:

e Execution of a trigger script can cause further triggers to be triggered. This occurs if
operations in the semantic graph database are executed in the trigger script itself.

e After a trigger action has been executed, traversal of the trigger tree continues. All
trigger actions of the subtrees that apply to the access situation are executed.

1.6.2.4 Trigger actions

Trigger actions are used to perform intelligent operations in the semantic graph database,
which, for example, automate or support work flows. However, they are only executed when
the access situation and the links in the semantic network assume a specific state defined by
the filter.

Instructions for the creation of trigger actions

1. Select the position in the trigger tree at which the trigger action is to be created.
2. Used the button -4 to create a new trigger.

3. Select the action type from the list: Enter the log or execute the script (if you wish to
execute a script, select the script language).

4. The trigger is created as a subfolder of the currently selected folder.

1.6.2.4.1 Script trigger

An operation parameter must be output for the script to be executed. In contrast to query
filters, only one operation parameter can be specified. Execution of the script starts on the
element contained in the operation parameter.

Time/type of execution

e Before the change: The trigger is executed before the operation is performed.

e After the change: The trigger is executed immediately after the operation has been
performed.

e End of transaction: The trigger is executed only at the end of the shared transaction.
¢ Job-Client: The Job-Client determines the time of execution.

Please note: Triggers that are executed for delete operations should preferably use before the
change as their time, as the element to be deleted will no longer be available otherwise. For
other operations, a more suitable time is after the change or end of transaction, as it is then
possible, for example, to add a property to the newly created element or automatically gen-
erate the name from various properties of an object if one or more properties were changed.

The import chooses the order in which the properties will be imported in i-views. Therefore a
trigger that is initiated during the import should not rely on the properties being available in
full.

Execute once only per operation parameter

If this setting is selected, the element selected in operation parameter is executed no more
than once per transaction. If this setting is chosen, the time of execution should be set to end
of transaction so that the final state of the element is used in the script.

Example: For persons, the name of the object is meant to consist of the first name and last
name. With this setting, the trigger is executed only once if the first and last names are
changed at the same time.

Execution does not initiate trigger

This setting specifies that the operations executed within a trigger cannot initiate any further
triggers. This setting can be used to avoid endless loops.

Continue to execute script in case of script errors

If this setting is active, an attempt is made to restart after an execution error and continue
with the execution of the script. This setting is predominantly useful for scripts that are
supposed to execute instructions that are independent of each other, and not for scripts
that build on previous steps of the script.

Abort transaction if trigger fails

Q00O
o ¥

&

o 1

/—
&

This setting defines the termination behavior in the event of script errors. If an error occurs
while the script is being executed and this setting is active, all actions of the transaction are
reversed. If this setting is not active, all actions are executed apart from the ones affected by
the error. The original action that led to the trigger being called is nevertheless written to the
knowledge network.

Execution during data refactoring

The term data refactoring describes operations for restructuring the semantic network, e.g.
Change type or Choose new relation target. Data refactoring operations can, in some circum-
stances, initiate unwanted trigger actions and, in some cases, even generate errors during
execution of the script. For this reason, it is possible to set for each trigger whether it is to be
executed during data refactoring.

The function body for script triggers is created automatically.

The script has three parameters:

pa- $k.SemanticElement The selected parameter

rame- | / $k.Folder

ter

ac- object Object with data of the change (new attribute value
cess etc.)

user $k.User User who triggered the change

The following example sets the attributes with the internal name “changedOn" / “changedBy.”
“Primary semantic core object" should be selected as the parameter here.

/%%

* Perform the trigger

* Q@param parameter The chosen parameter, usually a semantic element

* @param {object} access Object that contains all parameters of the access
* @param {$k.User} user User that triggered the access

*% /

function trigger(parameter, access, user)

{
parameter.setAttributeValue("geaendertAm", new Date());
var userName = $k.user() .name();
if (userName)
parameter.setAttributeValue ("geaendertVon", userName) ;
else
parameter.attributes("geaendertVon") .forEach(function(old) { old.remove });
}

The parameter "access" may contain the following properties (varies in each operation):

Property Description

OO

O

—
&

o] 1 J

&

o] 1 J

&

accessedObject Accessed element
core Core object
detail Detail

inversePrimaryCoreTopic

Primary relation target

inverseRelation

Inverse relation

inverseTopic

Relation target

operationSymbol

“read," "deleteRelation" etc.

primaryCoreTopic

Primary semantic core object

primaryProperty

Primary property

primaryTopic

Primary semantic element

property Property
topic Superordinate element
user User (identical to “user” parameter of the function)

1.6.2.4.2 Log trigger

If the user would like to monitor or document the trigger functionality for when which trigger
was triggered and which operators were executed in the semantic network, log triggers are
suitable. The log is written to the respective log file (bridge.log, batchtool.log etc.) in the
application environment that the operation that triggered the trigger is performed in.

Log entry lines State of the sem. network at the time
#pre before triggering

#post after triggering

#end at the end of the transaction

#commit when the transaction is successfully ended

Log entries are used to retrace whether a trigger was executed in a specific access situation
that actually occurred, and what it did. In contrast to this, a test can be performed in the test
environment to determine whether a trigger would be triggered or not in a specific access
situation, without the specific access situation being performed.

Instructions for the creation of log triggers

1. Select the trigger script that is to be logged in the trigger tree.

2. Using the

button to create a trigger of type Enter log in the trigger tree directly in front

WA

OO0

/
—
00

o0

~
&
—~
&

of the script trigger.

Example:

Mj Log - Editor

|Datei Bearbeiten Format Ansicht 7

28.10.2015 12:07:39: #pre: wert des Attributs "e-mail: userl@iv.de"” won "uUser 1" adndern Log
28.10.2015 12:07:39: #post: wert des attributs "e-mail: userl23@iv.com” wvon "uUser 1" dndern
28.10.2015 12:07:39: #end: wert des Attributs "e-mail: userl23@iv.com” von "User 1" andern
28.10.2015 12:07:39: #commit: Wert des Attributs "e-mail: userl23@iv.com” von "User 1" dndern

entry that documents the change of the attribute e-mail using a trigger.

1.6.2.4.3 ChangelLog Trigger

If you want to monitor the activities that users perform on objects, you should set up a
changelog trigger, also referred to as a change history.

For this purpose, you must first define a string attribute with the internal name “changelLog.”

This changelog attribute must be defined for all elements for which it is to document user
activities.

e 11

ungshistorie Offnen

m

L

Click “Open” to open the table showing who made the change, when they did so, what the
change is, to which semantic element it applies, and which value was used.

Tabelle > =

=)

Datum Benutzer Art der Anderung Wissensnetzelement Eigenschaft Wert
2018-12-20T09:06:26 Proske, Madine Andern Deutschland Alternativname Schland
2018-12-20T0%:06:14 Proske, Nadine Anlegen Deutschland hat gecgrafischen T Thiringen
2018-12-20T0%:06:04 Proske, Nadine Anlegen Deutschland hat geografischen T Hessen
2018-12-20T09:05:42 Proske, Madine Anlegen Deutschland ist aktives Land von ' Proske, Madine
2018-12-20T09:05:29 Proske, Madine Léschen Deutschland ist aktives Land von ' Proske, Madine

Exportieren Schliefen

The trigger must contain the operation filters that will log the change history, and the ele-
ments where the attribute is to be visible.

The trigger script looks like this:

/** x Perform the trigger * Qparam parameter The chosen parameter, usually a semantic element

Example

A change log is to be saved in all objects in a semantic network. The aim is to log the modifi-
cation, creation and deletion of properties in the objects. First, an operation filter is created
that reacts to the operations “Delete attribute”, “Modify attribute value”, “Create relation”,
“Create relation half” and “Delete relation half".

OO

&

O

Ausgewahite Operationes

Attribut I6schen
Attributwert modifizieren

Relation erzeugen

Verfugbare Operationen:

In the next step, a query filter was defined to determine the semantic elements on which
operations are performed.

yv Jo\ &y

r 0 &P . Ay
~ XVE 4
4/) =

Operationsparameter:

Ubergeordnetes Element

@ Alle Parameter miissen zutreffen

@ Suchbedingung muss erfilllt sein
O Suchbedingung darf nicht erfillt sein

#+ & Mein Wissensnetz

The “Superordinate element” operation parameter was added to the trigger script, because
it corresponds to the query filter.

The trigger rules (operation filter, query filter and trigger script) are located in the hierarchy
tree as follows due to their checking sequence:

4 Trigger
4 Anderungshistorie Trigger
4 fur alle Objekte
Skript ausfihren

1.6.3 Filter types

With the aid of filters, the conditions are defined in the rights tree or in the trigger tree to
allow access situations to be restricted when a decider or trigger should be executed. New
filters are created under the node currently selected in the tree. This way, they are nested in
each other.

The three filter types operation filter, query filter and property filter are available in the rights
system. In addition to the three basic filter types, the trigger area provides a specific filter -
the deletion filter.

There are different types of filters - when do we use which filter?

Sym- | Filter Description
bol

Operation filter Filters the operations; selection from list

Query filter Filters elements by means of structured query
Property filter Filters relations and attributes; selection from list
Delete filter Filters the deletion of elements

Operations can only be determined using an operation filter. Users can only be determined
using a query filter. Properties can be determined using either query filters or property

filters. The use of property filters makes sense when properties should be filtered regardless
of other properties in the semantic model such as relations to the user. Above all, when large
sets of properties are to be filtered, it is more straightforward and clearer to do so in a list
instead of in a structured query. If relations to the accessed element or to the user are to be
factored in, then a query filter must be used.

Instructions for creating a filter

1. In the rights or trigger tree, choose the position at which you want to create a new filter.
2. Use the buttons 4%, (3, %5 or 37 to create a new filter.

3. The filter is created in the tree as a subfolder of the currently selected folder.

4. Assign a name to the folder.

1.6.3.1 Operation filter

To specify the operations for which an access right should apply or a trigger should be exe-
cuted, operation filters are required. By selecting the required operation it is possible to add
it to or remove it from the filter.

00O
000
o I J

NWHBmA R L

Ausgewdhlte Operationen:

Attribut |&schen

Attributwert modifizieren

Hinzufigen Entfernen

Verfigbare Operationen:

Alle Operatoren

4 Abfrage
In Strukturabfragen verwenden

4 Anzeigen von Objekten
im Grapheditor anzeigen

4 Bearbeiten
Attributwert validieren
Benutzerdefinierte Operation

4 Erzeugen
Attribut erzeugen
Erweiterung erzeugen
Objekt erzeugen
Ordner erzeugen

Relation erzeugen

The operations are divided into groups. When you select the higher-level node of a group,
all lower-level operations are included in the filter. If, for example, you choose the Create
operation, the filter considers the operations Create attribute, Create extension, Create folder,
Create relation, Create relation half, Create type and Create translation.

The Operations chapter lists all available operations and also specifies which operation pa-
rameters can be used in combination. The various operation parameters are explained ac-
cordingly in the Operation parameters chapter.

1.6.3.2 Property filter

You can use property filters to filter attributes and relations. There are two different proce-
dures for using a property filter:

e Restriction on properties: Specify the properties to which the condition is supposed to
apply. Subsequent filters or deciders of the subtree are only executed if the access
property matches the selected property.

00O
000
o I J

e Exclude the following properties: Specify the properties to which the condition is not sup-
posed to apply. If the access property matches one of the selected properties, subse-
quent filters, deciders or triggers are not executed.

WhHh¥ea R 1A

(®) Einschrankung auf die Eigenschaften:

() Ausgenommen folgende Eigenschaften:

Dauer
Erscheinungsdatum

Mame Primarname
Hinzufdgen Entfernen Alle Keine Bearbeiten

Alle Eigenschaften | Generische Eigenschaften | Attribut | Relation | View-Konfiguration | Wissen
Magliche Eigenschaften:
Abfrage ‘]

Abfrage flr virtuelle Eigenschaften
Abiturnote

Absteigend sortieren

Abstraktionsgrad beeinfluBt Ahnlichkeit
Aktion (Objekte von Aktion (Logo Ansicht))
Alktion (Objekte von Aktion)

Aktion (Zeile) (Objekte von Aktion)
Aktionen (Auswahl) (Objekte von Aktion)
Alter

An konkreten Typ anpassen

Namialkt "Mikhes Waraelaoms b

You can use Add and Remove to select the properties listed below. All properties below can be
selected using All. None removes all selected properties. You can use the Edit field to call up
the Detail editor of the attribute or relation that is selected in the top selection field. The tabs
All properties, Generic properties, Attribute, Relation, View configuration and Semantic network
are designed to help users find the filtering properties more quickly. The Semantic network
tab shows all relations and attributes that the user has created.

1.6.3.3 Query filter

Query filters make it possible to include elements in the environment of the element that
is to be accessed. This allows not only individual properties, but also relationships between
objects, properties and attributes to be included in the rights or trigger definition. When
using query filters, it is necessary to specify an operation parameter to which the result of
the structured query is compared. All available operation parameters are explained in the

OO

&

O

o] 1 J

&

o] 1 J

&

Operation parameters chapter.

There are two ways to define query filters:

e Search condition must be met: This setting is selected initially. If the search result of the
structured query matches the operation parameter, the condition of the filter is met
and subsequent filters, deciders or triggers are executed.

e Search condition must not be met: If the structured query returns the same element as
the access parameter as its result, the condition is not met and the check of the rights
or trigger tree switches to the next subtree. If the result of the structured query differs
from the result of the access parameter, the condition is met and the subsequent filter,
decider or trigger is executed.

Wl Y- = &0

Operationsparametern: Magliche Operationsparameter:
Zugriffselement <= |[(Ober)typ ~
Benutzer
Eigenschaft -
@) Alle Parameter miissen zutreffen () Ein Parameter muss zutreffen

® Suchbedingung muss erfiillt sein

[_) Suchbedingung darf nicht erfillt sein

o Album

The objects of the type at the top left that match the search condition are the result of the
structured query. These are compared to the element that is transferred by the operation
parameter. Itis possible to use access parameters in the structured query. They can be used,
for example, to include the user, accessed element etc. in the query.

During selection of the operation parameter it is possible to configure whether

e all selected parameters must apply (All parameters must apply)

e or only one parameter must apply (One parameter must apply).
Please note: Initially, the setting All parameters must apply is selected. If, for example, the
operation parameters Accessed element and Primary semantic element are selected, the con-

dition is met only if the result of the structured query is both the accessed element and the
primary semantic element of the operation to be checked.

Example 1: Query filter in the rights system

A right should be defined that determines that already published songs may be viewed by
everyone; unpublished songs, in contrast, may not.

In this example, the user Paul would like to read song X. This operation is now checked by the
rights system. A query filter has been defined in the rights system which checks whether the song
has already been published. The structured query of the query filter searches of objects of the
“Song” type, with the restriction that the attribute “Publication date” is in the past. The structured
query delivers all songs that meet this condition. If song X is one of them, then the check by the
filter returns a positive result and the folder that follows the query filter (with a filter or decider) is
executed.

In the case of the query filter, the search condition settings must be met, and “All parameters must
apply” must be selected.

Example 2: Query filter in the rights system

In most cases, there is a connection between the user who wants access and the objects
and properties that the user wants to access. An example of this would be: “Employees of a
department who look after a branch may edit all customers of this branch.” Another version
of this example that is illustrated below would be: “Users who maintain an artist may edit
and delete this artist.”

00O
000
o I J

The left side shows a section of the semantic network: The object Paul is linked to the objects
Artist A, Artist B and Artist C via the relation Maintains. The inverse relation of “maintains” is
“maintained by,” which exists between the objects Artist A, Artist B and Artist C and the object Paul,
and is queried in the query filter. This relation in the semantic network represents that one person
is responsible for data maintenance relating to an artist.

LE%E A R4 = &0

Operationsparametern: Magliche Operationsparameter:
Zugriffselement < |(Ober)typ -
. |Benutzer
Eigenschaft o
@) Alle Parameter miissen zutreffen () Ein Parameter muss zutreffen
0

Suchbedingung muss erfillt sein

() Suchbedingung darf nicht erfiillt sein
o ,"KUnstIer

o o wird gepflegt von (0] o i Person
) [t
Zugriffsparameter

(Oberjtyp LA
Anwendung

Benutzer

Detail

Eigenschaft

Inverse Relation

Inverser Relationstyp
Kernobjekt w

Alles aus-/abwéhlen

Abbrechen

In this example, user Paul wants to delete the object Artist A. The corresponding query filter de-
livers all artists that were maintained by a certain user as the query result. The current user is
transferred to the structured query as an access parameter. The “Structured query” chapter ex-
plains access parameters in structured queries. Hence the search in this access situation returns
all artists that were maintained by Paul. Since Artist A is one of them, the query filter check returns
a positive result.

In this example, the access situation adds two aspects to the query filter: the artist to be
deleted and the user. The query filter can thus be defined in two different ways. The artist
is either transferred to the query filter as an accessed element and the user is used as the
access parameter in the structured query. Or the user is transferred to the query filter as
the operation parameter “User” and the company is used as the access parameter “Accessed

OO

&

O

o] 1 J

&

o] 1 J

&

element” in the structured query.

1.6.3.4 Delete filter

Delete filters are only available for defining triggers. They are used for testing in a deletion
situation whether the higher-level element is also affected by the delete operation. For ex-
ample, you want a trigger to not be executed if an object including all its properties is deleted
but a deletion filter must be used if a certain property of the object is deleted.

LR ANO = &0

Operationsparametern: Magliche Operationsparameter:
(Obentyp -
Benutzer
Eigenschaft -
@) Alle Parameter miissen zutreffen () Ein Parameter muss zutreffen

(@) Nicht vom Laschvorgang erfasst

[_) Vom Laschvorgang erfasst

When defining a delete filter, at least one operation parameter must be specified which de-
termines which deletion of an object is to be tested.

e All parameters must apply: All specified operation parameters must apply. For example, if
two operation parameters are specified (accessed element and primary element), then
it is checked whether the delete operation applies to both the accessed element and the
primary element. This can only be the case if the primary element is also the accessed
element.

e One parameter must apply: Only one of the specified operation parameters has to apply.

Note: In most cases, the operation parameter offers a superordinate element or primary
object because a check is to be performed as to whether only the property is deleted or if
the property is deleted because the entire object has been deleted.

e Not affected by the delete operation: The condition of the filter is positive if the element
transferred in the operation parameter is not deleted in this transaction.

e Affected by the delete operation: The condition of the filter is thus positive if the element
transferred in the operation parameter is deleted in this transaction.

Example: Delete filters in triggers

In this example, a trigger is only to be executed if the artist, location or date of an event is
modified or deleted, but not if the object containing the properties is deleted. The setting
Not affected by the delete operation is used for this purpose. If the delete operation affects
the superordinate accessed element, which in this case is the concert object itself, then the
checking of the subtree is aborted because the filter has returned a negative result.

Q00O

o] 1 J

&

o] 1 J

&

534
I GBREARO =*U
WISSENSNETZ Operationsparameter: Magliche Operationsparameter:
TECHNIK Ubergeordnetes Element < |(Obertyp "
» & Rechte . |Benutzer
4 7% Trigger Eigenschaft v

4 @ Loschen des Objekts?
4 Konzert

4 /& Kanstler, Ort und Datum

(®) Alle Parameter missen zutreffen () Ein Parameter muss zutreffen

(®) Nicht vom Laschvorgang erfasst
() Vom Laschvorgang erfasst
Skript ausfihren

The superordinate element operation parameter is used along with the Not affected by the delete
operation setting.

In this example access situation, the Date attribute with the value “19.10.” in the “Concert X" object
is deleted. The object itself is not deleted. The “Concert” query filter, which is defined by the “Su-
perordinate accessed element” operation parameter, and the “Artist, location and date” property
filter receive a positive response. The subsequent delete filter also returns a positive response, as
the object containing the property (superordinate accessed element) is not affected by the delete
operation - in line with the “Not affected by the delete operation” setting of the delete filter.

In this access situation the “Concert X” object is deleted by user Paul. Deleting the object automat-
ically deletes all properties of the object - and thus all attributes of the object as well. The check
of the trigger tree is executed for the deletion of both the object and the attribute. The “Concert”
query filter and the “Artist, location and date” property filter are fulfilled for the delete process of

Q00O

000

the attribute in the check of the trigger tree. The delete filter itself is not fulfilled in this situation,
as the “Concert X" object containing the “Date 19.10.” property is deleted.

Use of delete filters makes sense, for example, if the trigger script compiles the name of the
object from its properties. As a result, the name of the object is not modified several times
when the properties of the object are deleted; instead, the object and all related properties
are deleted without the script for compiling the name being executed. This usually saves un-
necessary calculation times and can make sense in specific application scenarios, e.g. if the
trigger sends an email notification that an object has been renamed (and this avoids sending
numerous superfluous emails regarding the name change).

1.6.4 Operation parameters

Operation parameters control the element to which the result of the structured query for the
condition check should be compared in query filters. In the simplest case, the result is com-
pared to the element that is to be used to execute the operation to be checked. Operation
parameters can be used to modify the transferred element. You can choose the current user
or elements from the element environment that will be used as the comparison element for
the query filter.

They are also used, among other things, in delete filters and script triggers. Based on the
element to which access is executed, they specify there the element on which the script is to
be executed, or on which the deletion of elements (and which elements) is to be filtered.

When is this useful? It can be essential if you cannot use an element from the environment
of the affected object instead of the object itself for comparison: when, for example, you
want to check access rights for creating new objects or types. It is not possible to define a
structured query that returns the object that has not been created yet. In this case, the query
filter must be compared to something else, i.e. the type of object to be created and, in case
of object types, to the super-type of the type to be created.

Operation parameter Description

(Super) type In the case of types, the (super) type is the super-type of the
type. In the case of objects, the (super) type is the type of the
object type. In the case of attributes or relations, the (super)
type is the type of the property.

User The user is the object of the users which executes the opera-
tion.
Property The property is the property that the operation affects (at-

tribute or relation). If the operation is performed on an object,
type or extension, the operation parameter property is blank.

Inverse relation If the property affected by the operation is a relation, the pa-
rameter contains the inverse relation half.

Inverse relation type The inverse relation type is the type of the inverse relation. This
can be used for the generation of relations.

OO

&

O

o] 1 J

&

o] 1 J

&

Core object

If the higher-level element is an extension, then the core object
is the object on which the extension is stored. Otherwise, the
core object is identical to the accessed element.

Folder

The Folder operation parameter is the folder affected by the
operation.

Primary property

In the case of meta properties, the primary property is the
property closest to the object, type or extension. Otherwise,
the primary property is identical to property.

Primary semantic core
object

If the primary semantic element is an extension, then the pri-
mary semantic core object is the core object of the extension.
Otherwise, the primary semantic core object is identical to the
core object.

Primary relation target

The primary relation target is the primary semantic element of
the relation target.

Primary semantic ele-
ment

If the superordinate accessed element is a property, the pri-
mary semantic element is the object, the type or the extension
on which the property is stored (transitive). Otherwise, the pri-
mary semantic element is identical to superordinate element.

Relation target

If the property affected by the operation is a relation, the Re-
lation target parameter contains the relation target of the rela-
tion half. (The source of the relation would be the higher-level
element in this case.)

Superordinate element

The semantic element is the object, the type or the extension af-
fected by the operation. In the case of properties, the semantic
element is the object, the type or the extension on which the
property is saved.

Accessed element

The accessed element is the element affected by the operation.

1.6.4.1 Operation parameter accessed element

The accessed element is the element of the semantic network that is currently being ac-
cessed. For query filters in the rights system, for example, the accessed element is the ele-
ment that is to be accessed by an operation. When checking an access situation, the element
is then transferred to the query filter on which the operation is supposed to be executed.
The query filter then compares the accessed element to the result of the structured query.

1.6.4.2 Operation parameter user

The “User” parameter is always the user object of the user who is currently logged in, re-
gardless of the accessed element. For this purpose, the Knowledge Builder account must be
linked to a semantic network object. The chapter on activation of the rights system describes

how this link is created.

Q00O

o] 1 J

&

o] 1 J

&

Accessed element

User

Object, type, extension
or property

Object of the user who is currently logged in

1.6.4.3 Operation parameter (super) type

The “(super) type” parameter is used, for example, if operations that create new elements
are to be checked in the rights system. When elements are created, the query filter cannot
be defined so that it finds elements that have not been created yet. The query filter must
work on the super-type or type of the element to be created. During the creation of objects,
attributes and relations, the type of the objects, attribute or relation is used. For types, the
super-type of the type to be displayed is used.

Accessed element

(Super) type

Object or extension

The type of object or extension

Type

The super-type

Property

The type of property

1.6.4.4 Operation parameter parent element

The semantic element is used if the direct properties of an element are to be retrieved.

Accessed element

Superordinate element

Object, type or extension

The actual accessed element

Property

Object, type or extension on which the property is stored

Meta-property

Property on which the meta-property is stored

1.6.4.5 Operation parameter property

Attributes and relations are understood to be properties. The operation parameter contains
the attribute or the relation on which the operation is performed. If the operation is per-
formed on an object or type, the operation parameter property is blank.

Accessed element

Property

Attribute or relation

The actual accessed element

OO

&

O

o] 1 J

&

o] 1 J

&

Object, type or extension

Blank

1.6.4.6 Operation parameter inverse relation

The inverse relation is the “opposing direction” of a relation half. If the relation half is consid-
ered as directed graphs, then there is a relation between two opposing graphs (the “forward
direction” and the “reverse direction” of the relation) that is attached between two elements.
The inverse relation is therefore the opposing relation half. The inverse relation has the rela-
tion source of the relation half as its relation target and vice-versa.

Accessed element

Inverse relation

Relation half

The inverse relation half

Object, type, extension
or attribute

Blank

1.6.4.7 Operation parameter inverse relation type

The inverse relation type is the type of the inverse relation.

Accessed element

Inverse relation type

Relation half

Type of inverse relation half

Object, type, extension
or attribute

Blank

1.6.4.8 Operation parameter relation target

The relation target is not the source, but rather the “target” of a relation half. It can also be
considered the inverse relation half.

Accessed element

Relation target

Relation half

The relation target is the relation source of the inverse relation

Object, type, extension
or attribute

Blank

OO

&

O

o] 1 J

&

o] 1 J

&

1.6.4.9 Operation parameter primary element

The primary semantic element always delivers an object, type or extension. If the primary
semantic element is executed on meta properties, the properties are processed transitively
until the object, type or extension to which the properties are appended is found.

Accessed element

Primary semantic element

Object, type or extension

The actual accessed element

Property

Object, type or extension on which the property is stored

Meta-property

Object, type or extension on which the property is stored on
which in turn the meta-property is stored (transitive)

1.6.4.10 Operation parameter primary relation target

In contrast to the primary semantic element of a relation half, the primary relation target is
not the object, type or extension on which the relation half is located but the object, type or
extension to which the inverse half of the relation is connected.

Accessed element

Primary relation target

Relation half

The primary semantic element of the relation target (object,
type or extension on which the inverse relation half is stored)

Relation half whose rela-
tion target is a property
or meta-property

The primary semantic element of the relation target (object,
type or extension of the meta-property or property on which
the inverse relation half is stored)

Object, type, extension
or attribute

Blank

1.6.4.11 Operation parameter core semantic element

The core object is used when work is done with extensions. Instead of the extension, the
core object delivers the object to which the extension is saved.

Accessed element

Core object

Object, type or property

The actual accessed element

Extension

The object to which the extension is saved

OO

&

O

o] 1 J

&

o] 1 J

&

1.6.4.12 Operation parameter primary semantic element

If you want the corresponding object or type to be processes for an element, you must use
the primary semantic core object. In contrast to the primary semantic element, no extensions
are permitted. In case of extensions, the core object is output.

Accessed element

Primary semantic core object

Extension

The object to which the extension is saved

Object or type

The actual accessed element

Property or meta-
property of an extension

The object to which the extension is saved

Property or meta-
property of an object
or type

Primary semantic element - object or type to which the prop-
erty is saved (transitive)

1.6.4.13 Operation parameter primary property

The primary property is always a property. It resembles the primary semantic element in that
it transitively processes meta properties. However, it delivers the last property that precedes
the primary semantic element, that is, the property stored directly on the primary semantic

element.

Accessed element

Primary property

Property

The actual accessed element

Meta-property (or meta-
property of a meta-
property)

The property that is closest to the object, type or extension

Object, type or extension

Blank

1.6.4.14 Operation parameter folder

If a folder from the Folder area of the semantic network is to be transferred to the search as
a parameter, the Folder operation parameter must be used.

Accessed element

Folder

Folder

The actual accessed element

Object, type, extension
or property

Blank

1.6.4.15 Examples: The use of operation parameters

Example 1: Accessed element and property in the rights system

The example below shows the access situation on the left side and the corresponding query
filter on the right side.

Access situation: User Paul wants to change the attribute Duration of song X.

Query filter: All attributes created by a certain user are filtered. In the structured query, the
access parameter “User” is used, which restricts the objects of user to the person who wants
to execute the operation. This corresponds to all attributes that were created by Paul.

Checking the access rights: To check the access rights, the attribute (accessed element/property)
on which the operation is to be executed is transferred to the query filter. If this attribute is
included in the set of search results, the query filter check returns a positive result.

Operation parameter: The attribute Duration is transferred to the query filter. In this case,
both the operation parameter “Accessed element” and the property can be used because
the attribute “Duration” is actually a property and represents the accessed element of the
operation.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter
on the right side.

Access situation: User Paul changes the Length attribute, which currently has the value
02:30 and is part of the Song X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were
created by a specific user; the currently logged-in user is the accessed element. Accordingly,
the query filter finds all the objects created by Paul.

Checking the access rights: If the result set of the query filter contains Song X, the following
folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the
effect that, instead of the “Length” attribute to be changed being transferred to the query
filter, the object in which it was defined is transferred to the query filter. This is the case
for Song X. In addition to the superordinate element it would also be possible to use the
“Primary semantic element” operation parameter in this case. The “Superordinate element”
operation parameter would have the result that all properties and the object itself are rated
positive by the filter. In addition, the “Primary semantic element” operation parameter would
also permit meta properties of the object, no matter how many properties are between the
object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in
this situation on the right-hand side.

Access situation: User Paul wants to create the attribute Length on the object Song X. The
value is to be 02:30.

Query filter: The query filter returns the attribute type “Length.”

Checking the access rights: If the attribute to be created has the “Length” type, the check
of the query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter
that returns the element to be created and is thereby able to check the access rights. This
means that a different operation parameter must be chosen as the accessed element when
creating elements. The “(super) type” operation parameter is suitable in these situations. In
this example, the attribute type is used, which is the Length attribute type.

1.6.5 Operations

Operation filters can be used to specify operations that are then permitted in the filter pro-
cess of operation filters. If a different operation is executed in the access situation than
specified in the operation filter, the system switches to the next subtree when traversing the
rights or trigger tree.

OO

&

O

o] 1 J

&

o] 1 J

&

The general operations Create, Read, Modify and Delete consist of multiple individual oper-
ations. If one operation group is prohibited, that means that all the operations it contains
are also not permitted; vice versa, if an operation group is permitted, all the operations it
contains are automatically permitted as well.

The table shows an overview of all available operations that can be applied in operation
filters. Depending on the operation, only specific operation parameters can be used in query
filters. These are specified in the “Operation parameters” column.

Note: Derived operation parameters such as primary semantic elements or primary semantic
core objects, for example, can be used whenever the parameter from which they are derived
can be used.

Special features of triggers

No read operations can be used for triggers. In addition, the operation groups Query (opera-
tion: use in structured query), Display of objects (operation: Display in graph editor) and Edit
(operation: Validate attribute value are not available for triggers.

In addition, the “Accessed element” operation parameter is available for triggers in the “Cre-
ate” operations if the time/type of execution is set to After the change or End of transaction.

Oper- | Operation Operation parameter

ation

group

Query Use in structured | Accessed element
query

Display Display in graph | Accessed element

of ob- | editor

jects

Edit Validate attribute | Accessed element, property, superordinate element, (pa-
value rameter to be checked: attribute value)

User-

defined

opera-

tion

Generate | Generate at- | (Super) type, superordinate element
tribute
Generate exten- | (Super) type, superordinate element, core object
sion
Generate object (Super) type
Generate folder Folder

Generate relation

(Super) type, superordinate element, relation target, in-
verse relation type

Generate relation
half

(Super) type, superordinate element, relation target

Generate type

(Super) type

OO

O

—
&

o] 1 J

&

o] 1 J

&

Add translation Accessed element, property, superordinate element
Read Read all ob- | (Super)type
jects/properties
of a type
Read attribute Accessed element, property, superordinate element
Read object Accessed element, superordinate element
Read relation Accessed element, superordinate element, property, in-
verse relation, relation target, inverse relation target
Read type Accessed element, superordinate element
Delete Delete attribute Accessed element, superordinate element
Delete extension | Accessed element, property, superordinate element
Delete object Accessed element, superordinate element
Delete folder Folder
Delete relation | Accessed element, inverse relation, property, superordi-
half nate element, relation target, inverse relation target
Delete type Accessed element, superordinate element
Remove transla- | Accessed element, property, superordinate element
tion
Modify Modify attribute | Accessed element, property, superordinate element
value
Modify folder Folder
Modify schema Accessed element, superordinate element
Change type Accessed element, superordinate element
Use tools | Export
Import
Edit/execute
script

Read object

The operation Read object is used to display objects for the corresponding object type on
the Objects tab. The operation does not prevent the display of the object when it is called
up using a linked object. In this case, the operations for properties Read attribute and Read
relation then apply.

Read all objects/properties of a type
This operation specifically controls the access rights check when processing a structured
query. A structured query checks all intermediate results by default. A search for all employ-

Q00O

000

ees with a wage greater than €10,000 would therefore not result in any hits when the wage
cannot be read, even if the corresponding employee objects could be read. This response
is often preferred, however is seldom performant. In the case of an extensively configured
rights system in particular, processing of which requires a lot of processor capacity, we rec-
ommend using a control that does not require intermediate results of a structured query
to be checked because a check of the final results is sufficient. In most semantic networks,
permission can be issued for all property types (“top-level type for properties”).

Operationsparameter:

(Ober)typ

@ Alle Parameter miissen zutreffen

@ Suchbedingung muss erfiillt sein
(O Suchbedingung darf nicht erfiillt sein

e Top-Level-Typ flr Eigenschaften

To examine which intermediate results are checked, this information can be made to appear
in a structured query. This is done using “Settings->Personal->Structured query->Show ac-
cess rights checks”.

Use in structured query (obsolete)

If a negative access right has been defined for an element that is filtered for the operation
Use in structured query, then the element may not be used in a structured query. It will not be
factored into structured queries even when the (abstract) super-type is specified.

Validate attribute value

The operation Validate attribute value is used when the attribute value to be set must sat-
isfy certain conditions. The definition of the condition for the attribute value is made in a
structured query. Two possible definitions are available there for validation of the attribute
value:

e Condition for the attribute value to be set:
The new value of the attribute can be validated by a comparison with a specified value
in the structured query.

G Abiturnote | 4F < |40

Example: The attribute value may only be less or equal to 4.0.

e Compare with the attribute value to be set:
This compares the current value with the new value.

o Alter | £F <

Example: The new value of the attribute age may only be greater in this case. Smaller values
are not permitted.

e Compare the value to be set with the result of a script:

This initially determines a comparative value by means of a script.

+ Geburtsdatum | |2} >
The script is called using a parameter object that contains the following properties:
Different comparative operators are available for the validation, which can be used to check
the attribute value to be set with another value.

If the new value does not match the defined condition, the filter check produces a negative
result when the initial setting Search condition must be satisfied has been selected.

Modify schema
The modify schema operation concerns changes to the definition area of relations and
changes to the type hierarchy (is a subtype of and is a super-type of relations).

1.6.5.1 Example: The use of operation groups in the right system

This example shows how groups of operations (read, generate, modify, delete) can be used
sensibly when defining rights. All operations are to be prohibited for the Song type and its
objects. This includes the following actions:

e Deletion of the object type Song

e Deletion of specific songs (objects of Songs)

e Deletion of attributes that occur on a Song

e Deletion of relations that occur on a Song (relation target and source)

e Deletion of extensions that extend objects of Song

e Deletion of attribute and relation types that have objects or subtypes of Song as their

definition area

For example, if all delete operations for an object and the corresponding type are to be pro-
hibited, you have to ensure you cover all delete operations by means of the corresponding
parameters when selecting the operation parameters in the query filter of the right:

The only condition of the query filter used is the object type Song, for which the setting Objects and
Subtypes is selected. The operation parameter “Accessed element” covers the object type “Song”

00O

o] 1 J

&

o] 1 J

&

and all objects that belong to this type. The parameter Core object covers the extension objects that
belong to songs. Attributes and relations are covered by the operation parameter “Superordinate
element.”

In the rights tree, the operational filter for the delete operation comes first. This is followed
by the query filter depicted below and finally the decider “Access refused.”

LEYE A R 4 =0

Operationspararmeter: Magliche Operationsparameter:

Kernobjekt < |(Obertyp ~
Ubergeordnetes Element . |Benutzer
Zugriffselement Eigenschaft o

{1 Alle Parameter missen zutreffen @) Ein Parameter muss zutreffen

(® Suchbedingung muss erfiillt sein

() Suchbedingung darf nicht erfiillt sein

e Song

”

Query filters used in the example: “Core object,” “Superordinate element” and “Accessed element
have been selected as operation parameters. The settings used are “One parameter must apply
and “Search condition must be met.”

”

Extension of the right with attribute and relation types

Athus defined right covers all but one of the above described requirements on the right. Only
the deletion of attribute and relation types that have been defined for objects and subtypes
of songs are not taken into account in this definition of rights.

The definition of rights is extended with the following filter:

R Y- PR ==

Operationsparameter: Magliche Operationsparameter:

Zugriffselement < |[{Ober)typ -
Benutzer
Eigenschaft o
(@) Alle Parameter missen zutreffen () Ein Parameter muss zutreffen

®) Suchbedingung muss erfillt sein

1 Suchbedingung darf nicht erfllt sein
e Top-Level-Typ fur Eigenschaften
7 = Definiert fur |) = Song

The query filter includes all property types (attribute and relation types) that have been defined for
objects or subtypes of songs. In the query filter definition, the parameter “Accessed element” and
the setting “Search condition must be met” are used.

00O
000
o I J

1.6.6 Test surrounding

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs
are available in the main window. The test system area is found in the Saved test cases tab.
The test system for triggers is called in the Triggers folder by means of the System area.

Saved test cases can be tested again here. The test interface in which the test cases can be
defined can be called using the Open test environment button.

SEERSE R |

Gespeicherte Testfalle J) Konfigurieren

Testfalle:

Beschreibung

Benutzen Fischer, Franz; Detail: Mame: Tennis
(Ober)typ: ist Themna von; Benutzer: Fischer, F
(Ober)typ: beschiftigt sich mit Thema; Benut
Benutzer: Fischer, Franz: Detail: Katzen ist The

i

Uberprifen Offnen Entfernen

=#0

Erwartetes Ergebnis Ergebnis Entscheidungspfac
Zugrniff erlaubt
Zugnff erlaubt
Zugriff erlaubt
Zugriff eraubt

>

Testumgebung 6ffnen

In addition to the functionalities that are described in the following chapters, Testing an ac-
cess situation and Defining test cases, there is the option of testing access rights directly on
an object or type. Select the access rights function using the context menu (right click). The
following menu items can be selected there:

e Object: All operations (modify, delete, read and display in graph editor) are tested on
the object and their result is output.

e All: All operations (modify, delete, read and display in graph editor) are tested on the
object and all their properties (attributes and relations) are tested.

e Rights system test environment: The test environment for checking rights opens.

1.6.6.1 Test the access right situation

Two areas are relevant for testing the rights system and the trigger functionality:

e The actual test environment: The test environment offers the option to test the access
rights or when a trigger is executed for a certain test case.

e The Saved test cases tab: This lists the test cases and makes them available for subse-
quent checking.

Instructions for opening the test environment

1. Select the folder Rights or Triggers in the Technical area in the Knowledge Builder.
2. Ifyou are working in the rights system, select the Saved test cases tab in the main window.

3. Click Open test environment (bottom right) so that the test environment opens in a new
window.

The test environment is comprised of several areas: The user and the element to which the
property that is to be checked is attached is defined in the upper area. The elements can be
an object, a type or a property (when this is transferred as an element).

The properties area lists all properties of the selected element. Non-italic properties are spe-
cific properties that are already on the object or the property. Italic properties, in contrast,
are properties that can be created based on the schema, but have not yet been created. If
creation of a new property is to be tested, the property in italics must be selected.

The operation that is to be tested can be selected in the Operation window. Depending on
the parameters selected, checking rights either is possible or not.

Please note: If a property of a property, this being a meta-property, is to be tested, then
the property must be marked in the property window and the As element button must be
selected. In the case of relations, for example, the specific relation between two objects or
properties is selected as an object. All properties of the specific relation are now available in
the properties window. (This can also be done with attributes.) The Sem. element button can
be used to reverse this step.

00O
000
o I J

@ Testumgebung Berechtigungssystem

erweitert Objekt
hat Auszeichnung
hat Eigenschaft

hat Erweiterung

ist ausgezeichnet in
ict (Yhiekt vnn

Als Elernent

Offnen

Element Eigenschaft
Stand By Me
Stand By Me

Benutzer: John Lennon
Element Stand By Me
Relationsziel

Inverse Relation ist Interpret von
Eigenschaften

Testfall

hat Interpret (Objekte von Person) Objekt erzeugen

Operation

Relation erzeugen
Relationshilfte erzeugen
Relation erzeugen

Relationshilfte erzeugen

Uberg. Element X

Operation

" Attributwert validieren

4 Erzeugen
Attribut erzeugen

Erweiterung erzeugen

Ordner erzeugen

v Relation erzeugen

Relationshélfte erzeugen

Trion nrzaiiman

Zugriff erlaubt Entscheidungspfad Zeit
Ja Rechte -» Zugriff gewdhre 18
Ja Rechte -» Zugriff gewdhre 18
Ja Rechte -» Zugriff gewdhre 18
Ja Rechte -» Zugriff gewdhre 18

The result of the test is displayed in the bottom window. The Check button must be selected
for this. The results window displays all tested cases.

e Element: the object, the type or the property on which the property is defined.

tested)

Property. the specific property that is to be tested (is blank when italic properties are

Operation: that operation that is to be tested

Access allowed: the result of the test in the test case

Decision path: the corresponding folder which leads to the test result
Time: the time required for the rights check

Please note: When testing relations, the relation, the inverse relation and the both relations
halves are generally tested separately.

1.6.6.2 Define test cases

In order to monitor the functionality of the rights system, it is possible to save test cases.
This is particularly important if changes are made to the rights system and you want to check
afterwards whether the new result still matches the expected result. All saved test cases are
displayed on the Saved test cases tab. There it is possible to check all test cases at the same

time.

Instructions for defining a test case

1. In the test environment, select the element and the property you wish to check.

2. Select the operation to be tested.

3. Press the Check button. Now the access rights are tested for the delivered parameters.

OO

O

o~

o] 1 J

&

o] 1 J

&

4. In the results output, choose the test case you want to save. (You can only ever save
one operation as a test case.)

5. Press the Test case button. The selected test case is saved and is available for future
checks.

Test multiple test cases simultaneously
BEVE AR 4 =0

Gespeicherte Testfille | Konfigurieren

Testflle:
Beschreibung Erwartetes Ergebnis Ergebnis Entscheidungspfad
Benutzer: Miller, Moritz; Detail: |~ Zugriff verweigert Zugriff verweigert Rechte -» Loschen oder Iv
Benutzer: Fischer, Franz; Deta Zugnff erlaubt Fugriff verweigert Rechte -» Loschen oder Iv
{Ober)typ: ist Thema von; Benu | Zugriff erlaubt Zugriff erlaubt Rechte -> Zugriff gewahre
(Ober)typ: beschaftigt sich mit™ | Zugriff erlaubt Zugriff erlaubt Rechte -» Zugriff gewahre
Benutzer: Fischer, Franz; Detail: | Zugnff erlaubt Zugriff erlaubt Rechte -» Zugriff gewshre

Offnen Entfernen Testurngebung 6ffnen

Screenshot with saved test cases, the second test case is displayed in red.

All test cases whose test result matches the expected test result are displayed in green. If a
test case is displayed in red, the result of the check differs from the expected test result. The
expected test result is determined by the fact that the check of the test case was performed
for the first time during the definition of the test case. The result of this first check is displayed
as the expected result during later checks of the test case. In the test system, the expected
result is either Access permitted or Access refused; for triggers, the expected result is either
Execute script or “nothing happens” in the form of a hyphen.

Saved test cases can be deleted with Remove. If you want to edit a test case, you can use the
Open test environment button to do so. In that case, all the parameters of the test case are
transferred to the test environment.

1.7 View Configuration

The view configuration makes it possible to configure various views of the data in i-views. The
configured views are deployed in applications. It is possible, for example, to display sections
of the semantic model or create specific compilations of data (e.g. in forms, tables, results
lists etc.).

This allows us to answer the following questions, for example, and create the required views
with view configurations:

000

&

—
ol 1}
ol 1}

e How should the properties of specific objects be displayed?
e In what order should the properties be displayed?

e When we create a new object, which attributes and relations should be displayed in such
a way that they cannot be overlooked and thus not filled out?

e What should the list of objects for a type look like?

e Should it even be a simple list, or should the objects be displayed in tables?
e Which elements should be displayed in the individual columns?

e Should relation targets be displayed directly? Or only specific attributes?

e Should we define different tabs that summarize properties and attributes that go to-
gether? ...

Example: Specific persons have the properties Name, Age, Gender, Address, Phone number,
Email, Cell number, Fax, knows, is friends with and is a colleague of. Now we can use the view
configuration to create more structure for the data view by defining a tab with the heading
“General information”, which contains the name, age and gender; a tab with the heading
“Contact data”, which contains the address, phone number, email, cell number and fax; and
a tab with the heading “Contacts”, which contains the knows, is friends with and is a colleague
of properties.

@ 1arcel.Lazare Dourgnon

& Neoklassizismus S Museum

wurde erstellt von wurde erstallt wnn
ist Schépfer von ist Thema von Sehenswiirdigkeit

ist Thema von Sehenswiirdigkeit
Wiki-Text hat Verweis

wurdeeelitvon S Altagyptische Kunst

1.@5.““9‘ o Wiki-Text hat Verweis
: Wiki-Text hat Verwric
ist Thema von Seherswiirdigkeit
wurde erstellt von Niki-Tevt fiat Verweis

‘Wiki-Text hat Verweis % Agyptisches Museum Xt hat Verweis

. wirde 711latzt nesndert von
wurde zuletzt geandert von hat Seher Agypti: Museum
Attribute
‘ Kairo ausblenden: Nein

Wiki-Text hat Verweis
changelog: 0:CR;t:2011-06-27T13:07:32;m:1D11738_

Created: 27.06.2011 15:07:32

Image small: Egyptian_Museum_19_klein jpg
Last changed: 19.08.2013 14:34:20

Name: Agyptisches Museum

Pasition: N 30° 02.500 E 31° 14.100

UUID: eT21baTe-04dd-493¢-a5bb-72e4965b1943

wurde zul

wurde erstellt von

hat Teil
0 Agypten
wurde zuletzt gedndert von
"‘@B\e(hs(hm'\dt Anja
Alternative
Details | Wiki-Verweise
Bild und Text Eigenschaften Ahnliche Sehenswirdigkeiten
Agyptisches Museum hat Thema Altagyptische Kunst Name 4 4+ befindet sich in
Egyptian_Museum 19 hat Thema Museum Museum Angewandte Kunst Fi Frankfurt a.M.
Das 4gyptische Muse hat Thema Neoklassizismus Museum fir Fotografie, Berlin - Berlin
e —— Museumsufer Frankfurt a.M.
>Das Ägypti; .
<P B S Nationalmuseum Bangkok Bangkok
[atribut binautigen | Marcel-Lazare Dourgn Neues Musour Beriin
Kairo

Example of a view configuration. Upper screenshot: Unconfigured section of an object in the
graph view with all its properties. Lower screenshot: Configured view of the same object, where

the properties that go together have been grouped, unimportant relations have been left out, and
similarity relationships are displayed directly.

One special case of view configuration is the configuration of the data view in the Knowl-
edge Builder, because the Knowledge Builder is also an application which allows various data
views. This is helpful if we want to use the Knowledge Builder as a preview in order to try out
specific configurations. The view configuration in the Knowledge Builder can be configured
so that important properties that need to be added can be requested in a clearly visible way,
for example the detail pages for objects. This is particularly helpful if data are to be collected
systematically.

1.7.1 Concept

The concept of i-views is that semantic elements can be used for configuration. The views in
the Knowledge Builder are generated with the help of a preset view configuration.

1.7.1.1 View Configuration

The purpose of the view configuration is to format the data of the semantic network for
applications in such a way that it can be displayed either in Knowledge Builder or as an
application in the web front-end via a bridge.

In the semantic network, special “view configurations” can thus be created for use in Knowl-
edge Builder and for applications such as the ViewConfiguration Mapper.

The view configuration in Knowledge Builder contains the following categories:

e Applications

Graph configuration

Configuration of the KB folder structure
Panel

Relation target search
Start view (KB)
Search field (KB)

00O
000
o I J

34
S Anwendung Graph-Konfiguration Ordnerstruktur (KB) Panel Relationszielsuche Startansicht (KB) Suchfeld (KB) =M
TECHNIK M H =
CIERIEIE] x o = =
» & Registrierte Objekte &
» 4% REST Konfigurationsname ~ Identifikator Bestandteil von (Name/Beschriftung)
« | View-Konfiguration Graph-Editor grapheditor
* W Ermittlung der View-Konfiguration Knowledge-Builder knowledgeBuilder KB-Schnellsuchfeld, Organizer, KB-Schnellsuchfi
@ Objekttypen Knowledge-Portal knowledgePortal
W Anwendung Net-Navigator netNavigator
4 W Knowledge-Builder-Kenfiguration Topic-Chooser kmultipletopicchooser
W Ordnerstruktur (KB) Viewkonfiguration-Mapper viewConfigMapper
W Relationszielsuche
W startansicht (KB)
W Suchfeld (KB)
4 @ Konfigurationselement
W Facetten-Ansicht
&2 Graph-Konfiguration
W icon-Konfiguration . >
i) Menu
» W Objektkonfiguration . D x + ‘ m
: z::::&i::;:smht W Viewkonfiguration-Mappe -

it Tabelle

» W Nachgeordnete Konfiguration Korfiguration | KB | Kontext

* W Panel-Konfiguration =
0 style dentifikato = viewConfigMapper

» ” Relationstypen Ko ationsname = | Viewkonfiguration-Mapper
v £ Attributtypen
42 Nicht verwendet
» £F Gesamtwissensnetz

» £ Kerneigenschaften v

Communil
= < >

For more information, see the “Context/using view configurations” chapter.

1.7.1.2 View Configuration Mapper

The view configuration mapper is used to map the preconfigured views of the view configu-
ration to the web front-end of the browser.

The structure of the view configuration mapper is generally structured in hierarchical fashion
and contains the panels for building the layout (= content arrangement) of the web front-end.
To display the contents, a panel needs a sub-configuration, which is referred to as a “view"
(= prepared content).

In concrete terms, the view configuration mapper contains one main window panel and any
number of dialog panels. The main window panel reflects the entire display area of the
website in the web front-end and contains the following panels, for example:

e Window title panel
Panel with defined view

Panel with flexible view

Panel with linear layout

Panel with changing layout

Please note that the view configuration mapper is a single-page application; this means it
is not the visibility of panels over several pages that is controlled, but the visibility of the
elements featured in the permanent panels.

1.7.1.3 Create and update the view configuration

Create

OO

&

O

o] 1 J

&

o] 1 J

&

In Knowledge Builder, there are two places where you can create a new view configuration:
1. Semantic element-oriented configuration

The first place makes sense if a view configuration is to be generated for a certain object
type: On the “Details” tab, you can edit the view configuration for details views and lists.

The displayed hierarchy has the sub-item “View configuration” with four additional subitems.

e Object -> Details: This is where you can configure the details view for objects.

e Object -> Object list: This is where you can configure the object list that shows the ob-
jects of the selected type in Knowledge Builder.

e Type -> Details: This is where you can configure the details view for types.

e Type -> Object list: This is where you can configure the object list of subtypes of the
selected type that can be seen in Knowledge Builder.

Ubersicht ~ Details

Wissensnetz Typ View-Konfiguration : Objekt : Objektliste : Topic
B Comment Definition
@ Country/lurisdiction 4 Schemadefinition n
Evidence Objekt MName Typ Kontext Typ
Finding Typ Abyiakt Tahelle Obickte (Mynbasierte Ordrerctruldtur N
® Lizenz 4 View-Konfiguration o o .
1 Methodik 4 Objekt
P = Ohbject / Static model /| Details
#i Organisation Objektliste
£ Person 4 Typ
» 1 Prozessschritt / Control Details
¥ L Richtlinie / Regularie / P Objektliste
Risk Type
& Role
. Topic

You can create view configurations for this type or objects of this type on the object type on the “Details” tab.

You can create view configurations for this type or objects of this type on the objects type on the
“Details” tab.

Click on “New" E to create a new view configuration. For object lists you automatically
create a new view configuration of the table type. For details, a dialog opens in which you
can select the desired view configuration element (on this subject, see the “View configuration
elements” chapter).

By clicking on the Edit button or double-clicking on the selected view configuration, open the
editor with which you can configure the view.

Note: On the “Context” tab of the respective configuration, the entry “use in” specifies in
which application the configuration is to be displayed:

Application context “apply in" Result

Knowledge Builder The details view or the list for a type or ob-
ject in Knowledge Builder is displayed.

View configuration mapper The details view is used for the web front-
end.

If there is no entry for the application context and the view does not receive an application
content through inheritance from a higher-level element (view or panel), the view is not as-
signed and therefore deactivated.

Special case: Hierarchy + object list

A possible use case for the details view of the Knowledge Builder is to display a domain-
specific hierarchy with object details. In this case, “Knowledge Builder” must be entered for
the application context in the “Knowledge Builder” hierarchy view, and to configure the de-
tails, the configuration name must be entered in the hierarchy view. Assigning a different
application context in this constellation can lead to an endless cycle in the view configura-
tion.

2. View-oriented configuration

The second position presents itself if an application is to be generated from scratch the many
view configurations are to be created at once. To this end, Technical > View configuration >
Object types contains all view configuration elements that are in use in the semantic network
or for which a new view configuration can be created.

To configure a web front-end, use the panel configuration Technical > View configuration >
View configuration mapper. For more information, see chapter 3 “View configuration mapper.”

Update

To ensure that changes to the view configuration are copied to the application, you have to
update the view configuration in Knowledge Builder by clicking on the “View configuration
update” 7 button. This button is always located in the respective View configuration menu
bar.

1.7.1.4 Context / Use of view configurations

The context in which a view configuration element is used is shown in the properties editor
under the “Context” menu tab.

Q00O

—

ol I J

W Graph - Objekt .

Konfiguration Menis Styles KE él(onte):té

Graph

Graph-Konfiguration

Context

The context area is used to define the semantic elements for which the view configuration
applies, and to define where, i.e. in which applications or in which other view configurations,
it is displayed:

e “Apply to": The semantic element for which the view is being used must be specified
here. If the view configuration is defined by the object type, the object type is entered
automatically. Additional object types can be specified as necessary
Example: If the view is a node category of the Net-Navigator, then the object type for
which the objects are shown can be specified under “Apply to.”

e “Apply to subtypes”: This is selected to show the type itself, and its subtypes, using the
application.

e “Apply in"” specifies the application context, i.e. which application (mostly: ViewConfigu-
ration Mapper or Knowledge Builder) or configuration the view is applied in.

If no application has been entered for using the view configuration, then the view configura-
tion will not be shown, apart from the following exceptions. View configurations are defined
as a tree structure in which the principle of inheritance applies. This is why the application
does not have to be specified separately for sub-configurations. They are shown as part of
the top-level configuration. A property configuration is shown, for example, when this is part
of a group for which its use was specified. A view configuration is also shown when it is part
of a panel which, in turn, is defined in an application.

The following applications are available from the start:
e Graph editor: The configurations have an impact on the display in the graph editor.
The graph editor is used for visualizing the semantic elements and their relationships.

e Knowledge Builder: The view configurations are used in the actual Knowledge Builder.
Along with the detailed configurations, the object list configurations are also available
here.

e Knowledge portal: The knowledge portal is a component of i-views which can be used
as a front-end. It shows the objects of the semantic network on details pages and in
context boxes on the basis of their semantic contexts.

e Net-Navigator: This is used for visualizing semantic elements. In contrast to the graph
editor, which is part of the Knowledge Builder, it can be used in the Knowledge Builder
and ViewConfiguration Mapper applications.

e Topic chooser: It allows relation targets to be selected in a window.

e ViewConfiguration Mapper: The ViewConfiguration Mapper is an intelligent front-end
which, in contrast to the knowledge portal, uses the view configurations. It can be used
to create straightforward and fast views of the data.

Moreover, it also allows any individual applications to be defined, which can be linked to the
view configuration at this point.

References

“References” refers to the reuse and continued use of a view configuration within another
view configuration:

e “Is included in panel:” Indicates which higher-level panels there are in the view configu-
ration hierarchy

e “Has sub-panel:” Indicates which panels there are in subordinate hierarchy levels

e “Order”: Determines the order of the panel when the higher-level panel has a linear
layout (horizontal or vertical)

e “Sub-configuration:” Refers to a subordinate configuration that contains the view (= spe-
cific display of the content)

e “Activate actions from panel”; Indicates that an action in this panel is influenced by the
action in another panel (for example: Display of the search result in one panel is influ-
enced by the search input in another panel)

e “Show result from action.” Determines that the action by another panel causes a result
to be displayed in a defined form in this panel (for example: Net-Navigator shows the
elements for the object that was clicked in another panel s search result field)

e Other relations (“Table of”, “Context of”, “Configuration for meta properties of”, “Action
of”, etc.) show the contexts in which a view configuration is used. A view configuration
can be used in any number of view configurations.

1.7.1.5 The validity of view configurations

The chapter Using the view configurations already noted that the application in which and
the objects and types for which the view is displayed are decisive for view configurations.
Nonetheless it is possible that the view configuration is not displayed in the selected applica-
tion. This question is: When is a view configuration valid? And for which object or type is the
view configuration valid?

Inheritance of view configurations

In relation to inheritance, view configurations respond like properties. Subtypes or objects of
subtypes inherit view configurations.

Q00O

000

Application of the most specific view configuration

The subtypes use the super-types according to the inheritance principle as long as they don t
have their own view configurations. The most specific view configuration is always used: This
is the configuration that is defined directly on the type. If that is not the case, it is checked
whether there is a view configuration on the super-type. If that is not the case, the next level
up in the type hierarchy is checked to determine if a view configuration has been defined.
The view configuration that is closest to the object type is then used. If no view configuration
is found on the super-types, the default configuration is used for the administrators.

What happens when there are two equivalent view configurations?

If there are two equivalent view configurations, no view configuration is displayed. If the
application or object type was not defined for one of the view configurations, this is not
considered to be an active view configuration. In this case the other view configuration is
used. If you want to display different views for different users, you can define a rule in the
detector system. In this case, the view configuration is used in accordance with the defined
rule as long as the rule only has one view configuration dependent on the user.

1.7.2 Menus

Menu configurations contain buttons, so-called actions, which allow the user to execute a
range of functions.

The menus mainly serve two functionalities in the handling of actions. On the one hand, they
can be used to structure actions, and on the other, they can be used to specify where the
menus are deployed. The Knowledge Builder and ViewConfigMapper contain many locations
where the contents of menus are displayed, for example buttons at the head of an editor, or
the context menu for an individual property. Currently it is not yet possible to apply menus
to all places where menus are theoretically possible.

The next section describes the direct setting options for a menu, as well as the existing menu
types and how to use them.

Name Value

Label The menu type and the interface handling the display de-
termine whether the label is displayed.

Replaces standard menu This parameter currently only affects the Knowledge
Builder. Some editors, e.g. for a table, display standard
menus. These can be switched off with the help of this pa-
rameter.

Menu type The menu type describes the use of the menu in the indi-
vidual components. The menu types are described further
down.

Menu types:
Menu bar

000

p
&

\
o ¥
ol I

Name Value

Add standard actions This icon is only displayed if standard actions can be added.
This is currently possible for table and search configurations.
This function offers the option to reactivate some or all de-
fault menu entries and to change the order of the individual
actions if the parameter Replaces standard menu is set.

Notes

e If the parameter Replaces standard menu is not set, the actions that are not included in
the menus are appended sequentially.

e If the order of the standard actions is supposed to be changed, the parameter Replaces
standard menu must be set. Following that, standard actions can be added using the Add
standard actions action. The standard actions can now be sorted in any way you wish
and mixed with your own actions.

Context menu

Icon

Knowledge Currently it is possible to expand or define context menus for a table
Builder row and an object editor.

Object configuration:

You can use the Menu tab to create menus in any top configuration of
an element. You can also switch off the standard menu here by setting
the Replaces standard menu parameter.

Table configuration:

The context menu contains two sections for a table row. The first relates
to the selected element, the second relates to the table. There are two
different configuration locations for the two sections. For the first case,
the menu for an element must be linked to any configuration, ideally
a new one, which in turn is attached via Apply in to the table that is to
display the context menu. In the second case, the menu can be attached
directly to the table.

ViewCon- This is currently not used in the ViewConfigMapper.
figMapper
JSON

"label" : ‘“Menu (context)’’,

"actions" : [{...}],

"type" : "contextMenu"

List

00O
000
o I J

Icon B
Knowledge This is only used in the start screen configuration. The configured ac-
Builder tions are displayed in a list.
If labels are assigned for the menus, these are also displayed and there-
fore offer a structuring option.
Oberes Menii
Menil
0 Hello Worlc — Beschriftung: Oberes Menli
Mit zwei Aktionen
O8 Handbuc
Ry
E-Mail Menu2
= Beschriftung: E-Mail
‘—‘ Support-E-Ma Mit einer Aktion
ViewCon- This is currently not used in the ViewConfigMapper.
figMapper
JSON
"label" : ‘Menu (List)",
"actions" : [{...}],
"type" : "listMenu"
Toolbar
lcon @
Knowledge The actions contained in the menus are added in sequence. Subdivision
Builder by menus and labelling of menus are currently not considered.
ViewCon- The actions contained in the menus are added in sequence. Subdivision
figMapper by menus and labelling of menus are currently not considered.
JSON

"label" : ‘“Menu (toolbar)’’,
"actions" : [{...}],
"type" : "toolbar"

00O
000
o I J

1.7.3 Actions

The actions in i-views are divided into preconfigured action types. These action types are
categorized as follows:

e Universal actions (can be used in knowledge and ViewConfiguration Mapper)

e Actions specific to Knowledge Builder

e Actions specific to ViewConfiguration Mapper

e Internal actions (for administrative use only)

Depending on the action type and application, additional configurations are required, for
example creating additional panels for displaying the results of an action.

1.7.3.1 General
Functionalities can be specified in the view configuration using actions.

All the configured actions are displayed in the Knowledge Builder as additional buttons. The
script contained is executed when selection occurs.

The actions configured are generally displayed as buttons in the web front-end (ViewConfig-
uration Mapper). Actions can be summarized in a menu, or be defined directly for a view
configuration.

Untertypen | Sprint
©o|#|* 0|2 [TLR
|

Action on an object list

The label is displayed as a tooltip in the Knowledge Builder. The selected symbol (any image
file) is scaled to the size of the button.
Please note: If no symbol is specified, no button is displayed in the Knowledge Builder.

Buttons with a label and/or a symbol image are possible in another application. A tooltip can
also be configured.

Important note: Actions of any type can be attached at a wide range of positions. In most
cases, they are also displayed. There is no guarantee that this action can be executed in the
content in which it is currently being used.

Setting options

Name Value

Action type The type of action. The different types are explained further
down. A script overwrites the action defined by the action
type.

execute in the view View in which the action is to be executed.

(VCM-specific)

00O
o] 1 J

&

o] 1 J

&

Notification

Text shown in a notification that appears after the action.

Label

A label can be defined for the button for the action here.

Show result in panel
(VCM-specific)

A panel in which the result of the action is to be displayed.

Script for target object
(VCM-specific)

Prompt before execution

Atext can be specified here which is to be shown to the user
in a dialog box before the action is executed. The dialog
provides the option of canceling or continuing the action.

Context of

Close panel
(VCM-specific)

Defines whether the panel is to be closed after the action.

Script

The script that is to be executed for this action. Not avail-
able for all action types.

Script (ActionResponse)
(VCM-specific)

A script specified here executes a so-called ActionResponse
after the action. Not available for all action types.

Script (enabled)

A script can be used here to determine whether the button
for the action is to be activated, and should therefore be
able to be executed.

Script (visible)

A script can be used here to determine whether the button
for the action is to be displayed.

Script for notification

A script can be used here to determine the content of the
notification.

Script for label

A script can be used here to define the label.

Script for prompt before ex-
ecution

A script can be used here to determine the text for the con-
firmation dialog for the action. If a blank string is returned,
the dialog does not appear.

Script for tooltip

A script can be used here to determine the content of the
tooltip for the action, instead of using the text of the label.

Start semantic element of

Symbol A symbol can be selected here that is to be displayed on the
button for the action.
Tooltip The content of the tooltip for the action can be defined

here, instead of using the text of the label.

Use original position

)OO

O
ol 1}
) X)

-

/—
p
e
p

1.7.3.2 Universally applicable actions

Universally applicable actions can be used in both the Knowledge Builder and in the web

front-end using the ViewConfiguration Mapper. This includes the action types “Display graph-
ically”, “Delete” and “Search”.

1.7.3.2.1 Action type "Display graphically”

The “Display graphically” action is used in a view configuration to graphically depict object
types, relations and objects in the Net-Navigator. Here the configuration is as follows:

(£
o)

Konfiguration Styles KB Kontext

nfigurationsname GraphAnzeigen .

fung Auswihlen

Graphisch darstellen v
Skript visualize
kript (ActionResponse] Auswihlen

ausfihren in Vie Graph

ihrung Auswihlen

For this purpose, a panel must be specified under “Show result in panel” that contains a graph
object as its sub-configuration. The graph object in turn must contain a graph configuration
for the definition of the elements to be displayed:

.l!:‘ Tabelle - Objekt ' Graph u Graph-Konfiguration

Aktion (Auswahl) Sub-Konfiguration

Ergebnis anzeigen in Panel

Graph-Konfiguration

u GraphAnzeigen . Graph - Objekt

1.7.3.2.2 Action type "Delete"

This action type deletes the respective element.

P Beschriftung X

Aktionsart Léschen A

00O

:: i-views 5.3
00 224534

In Knowledge Builder, the "Delete" action type is preconfigured for object lists:

Untertypen Objekte

poERRc: -

Laschen lStrg L)

Name

Like any other configuration in Knowledge Builder, the default configuration can be replaced
with a customized configuration. In this case, use “Delete” as the action type.

Deleting by action with script

In the web front-end, action type “Delete” is not practical as the deleted element is no longer
displayed afterwards, i.e. there is nothing left to see. Hence, we almost always implement an
action with a script in the web front-end.

The script for deleting an element is created under the “Script” entry of the action:

(7
o

Konfiguration Styles KB Kontext

Konfigurationsname = | AbbrechenUndLoeschen

» Beschriftung = | X
Aktionsart = ~ [
Skript = [JavaScript Ty
Skript (ActionResponse) = | Auswihlen [I1]
ausfiihren in View = .
Transaktion {ActionRequest) = b

¥ Frage vor Ausfithrung =

b Skript fiir Frage vor Ausfilhrung = | Auswahlen sen

Attribut oder Relation hinzufiigen

The syntax for this could look as follows:

function onAction(element, context) {
element.remove() ;
return;

00O
000
o I J

One possible use for this is the configuration of a dialog panel for creating new objects whose
Cancel button then deletes the temporarily generated object.

Keep in mind that no action type for the action has to be deleted with this script as the script
overwrites the action type.

1.7.3.2.3 Action type "Search"

This action triggers a search. This function has been integrated into the menu bar of object
lists in the KB (shortcut Ctrl + S):

©|# |~ o) PILER

When used for the configuration of the web front-end, the action is assigned to an action by
means of the drop-down menu under the entry “Action type:”

(4
o)

Konfiguration Aktionen Styles KB

| AFOFSD & & 2 u
searchAction
Konfiguration ~Styles KB Kontext

Konfigurationsname searchAction

-

Beschriftung Search

Aktionsart = |Suchen vl
Skript = | Auswiahlen see
Skript (ActionResponse) = | Auswihlen s
ausfiihren in View = WEdit
Transaktion (ActionRequest) = v
» Frage vor Ausfiihrung =
» Skript fur Frage vor Ausfithrung = | Auswahlen sss
|mtocenie |

Tip: If a search function with string input (keyword search) is required, then the search field
element in the view configuration can be used as an alternative. An input line and search
button are preconfigured here; the search result can be displayed in combination with the
search result view.

1.7.3.3 Actions for the knowledge builder

These action types can only be used for configurations in the Knowledge Builder.
Note: The KB-specific action types are only available in the “KB” tab of an action from KB
version 5.2.2 or higher.

1.7.3.3.1 Action type "Update"

In KB, this action recalculates the visible content of table cells. This option is available via the
“Update” button in the object list menu bar (shortcut: F5).

00O

:: i-views 5.3
o0 226/534

©+ 1> 0] 2 LSO

1.7.3.3.2 Action type "Print"

This action is used in the menu bar of list views. The preset configuration can be used to
print out object lists or output them in an Excel table, without having to create an export

mapping.

o+ - o] 2 LEENO

The “Print” action opens the Print dialog in Knowledge Builder.

12 Tabelle X

Drucken von 384 Elemente

Druckvorlage Excel Export e

Druckausgabe Microsoft Bxcel (xlsx Datei) b
Kopien drucken Drucken Abbrechen

The Print action is also available in the results lists of structured queries. To configure in-
dividual views in Knowledge Builder, the action must be added to the respective view or
configuration element:

w

Konfiguration Styles KB Kontext

Konfigurationsname = | | ~
» Beschriffung = | |

Skript fiir Beschriftung = e

Aktionsart = |Drucl-cen VHII

The prerequisite for being able to use the action type “Print” is that the Printing component

00O
000
o I J

exists, which can be installed retrospectively via the Admin tool if necessary.

1.7.3.3.3 Action type "User guide"

cee
s-
()
-
(7]

[95]
(K™

This action opens the i-views web manual in the browser.

Handbuch

Support-E-Mail

In contrast to the “Web-link” action type, this is a link to a preconfigured address, like the
“Manual” action type.

Setting options

Name Value

URL Preconfigured weblink to the i-views manual.

1.7.3.3.4 Action type "Homepage"

This action type can be used for the start view of the KB. The home page is opened in the
browser.

00O
000
o I J

000

o] 1

cee
<,
M
2
Ly

@ Handbuch

m Support-E-Mail

Setting options

Name

Value

URL

Link to a website

1.7.3.3.5 Action type "Show in tree"

The Show in tree action can be used to display the location of an element from the semantic
network. Executing this action has the effect that the location of an element (e.g. an entry
in a list view) appears at the corresponding point in the structure tree of the organizer (left
column of the KB) and opens in the details view of the element.

ORBEBEA - G-

1.7.3.3.6 Action type "Save query result"

If searches are executed in the Knowledge Builder by means of a structured query, you can
save the results by clicking the button in the menu bar:

OO

ol 1}

/—
&
~
&

&

O

i

This action saves the query result in a folder you can choose:

Ordnername

Strukturabfrage Funnamed search (1 Treffer)

Meuen Ordner erstellen in

ORDNER
Arbeitsordner (workingFolder) {Organize
Privatordner

£ >

Abbrechen

Note: The saved search is an object list based on the configuration of a structured query re-
lating to currently existing semantic elements. If changes are made to the relevant elements
after the search result has been saved, this will have an effect on the saved results as well:
When the relevant element is deleted, it no longer exists in the saved search result.

1.7.3.3.7 Action type "E-Mail support"

This action type can be used for the start view of the KB. The actions contained open a dialog
in which you can send an email to the configured address.

O
00® i-views 5.3
088 230534

O

Sesi-views

OO 520

Aktion)
Aktion - Objekt q

Konfiguration Styles KB Kontext

Konfigurationsname =

» Beschriftung = ‘ |
Skript fiir Beschriftung = sne
Aktionsart = ‘ Support-E-Mail (spezialisierter Web-Link) A ‘ EI
ausfiihren in View = ‘ ‘ -
Transaktion (ActionRequest) = ‘ w |

» Frage vor Ausfithrung = ‘ |

b Skript fiir Frage vor Ausfihrung = (11}
URL = ‘ support@i-views.com ‘ n

Attribut oder Relation hinzufiigen

Setting options

URL Email link

00O
o] 1 J
o] 1 J

i-views 5.3
23124

1.7.3.3.8 Action type "Web link"

The “web link” action type can be used for the start view of the KB. It differs from the “manual”
action type in that you can assign any web address as the hyperlink.

Aktion)
Aktion - Objekt m

Konfiguration Styles KB Kontext

Konfigurationsname =

» Beschriftung = | |
Skript fiir Beschriftung = ses
Aktionsart = |Homepage (spezialisierter Web-Link) ~ ‘ Izl
ausfihren in View = | | -
Transaktion (ActionRequest) = | V|

» Frage vor Ausfiihrung = | |

» Skript fir Frage vor Ausfilhrung = [I1)
URL = | https//i-views.com/de/]

Attribut oder Relation hinzufiigen

Note: In later KB versions (KB 5.2.2) the “"home page” action type is only available on the “KB”
tab.

L

Aktion - Objekt

Konfiguration Styles KB Kontext

Urspriingliche Position verwenden= [

Aktionsart = | Homepage (spezialisierter Web-Link) hd E

Attribut hinzufiigen

Setting options

URL Address of the web link.

00O
000
o I J

1.7.3.3.9 Action type "Recently accessed objects"

Shows the objects (semantic elements) that were last used in the respective table. Objects
might be filtered depending on the definition of the table.

©+11° LORE

In Knowledge Builder, this action is preconfigured for list views and can be called up using
the key combination Ctrl+R.

1.7.3.3.10 Action type "New"

The new action creates new types or new objects in the semantic network. The new action is,
for example, used in the menu bar of object lists in the Knowledge Builder.

CEaBER xos =

Note: Instead of the new action, a script must be used in the web front-end. For more
information, see the chapter “JavaScript-API".

1.7.3.4 Actions for the viewconfiguration mapper

The actions for the ViewConfiguration Mapper can only be used for the web front-end and
are split into different action types.

1.7.3.4.1 Action type "Show"

This action initiates a re-calculation of a suitable view for the semantic object that is the target
of the action. You typically use this action if you want to change the view. The result of the
action is the new view.

You can use “Show result in panel” to determine in which panel the view is to be displayed.

00O
000
o I J

i-views 5.3
233534
Konfiguration Styles KB Kontext

Konfigurationsname =
Skript fiir Beschriftung = ses
P Aktionsart = | Anzeigen v ‘ EI
Skript = sne
Skript (ActionResponse) = ans
sas

Nach der Ausfﬂhrung {Panels) Anzeige (Active-Flag und Inhalt)

Alktualisierung (ohne Flag, nur Inhalt)

4 Ergebnis anzeigen in Panel Lazy (Lazy-Flag, kein Inhalt)

Aktivierungsmodus

Auswihlen [T

O

Skript fiir Aktivierung

Skript fir Zielobjekt

Panel schlieBen

Attribut oder Relation hinzufiigen

The “Activation mode” determines the update behavior of the view:

Dis- The view is recalculated if the display action is influenced or if any change is made
play | tothe content, irrespective of whether or not the panel is activated (= visible).
(Ac- This mode makes sense, for example, when calling up a dialog panel.

tive
flag
and
con-
tent)

“Push
re-
sponse|'

Q00O

I
)

Up- This view is only recalculated if the content changes:

?v?lit:h e When the panel is called up for the first time, the view is calculated.

out e If a view exists, it is kept even if another panel is called up in the meantime.
flag, The view is “stored” for the duration of the session until it has to be recalcu-
con- lated because the content has changed.

tent | An example of this is the display of a graph: As long as no changes are made to
only) | the graph, the same, unchanged graph panel is displayed every time the graph is
= called up.

“Delta

load"

Lazy | If the content changes, the view is not calculated until the panel is called up. By
(lazy | setting the Lazy flag, a separate request only loads the new view if the panel is
flag, | activated.

no An example of this is a shopping cart: The composition of a shopping cart can
con- | change constantly but the content of the shopping cart only needs to be displayed
tent) | at certain times.

“Pull

re-

sponse’

If no activation mode has been selected, the “Display (active flag and content)” mode applies
by default.

1.7.3.4.2

Action type "Selection"

This action corresponds to the “Display” action, with the only difference being that the action
is executed on the parameter “selectionElement,” i.e. on a selected element. Please note:
This effect also applies to any script that might be available.

The “Selection” action is used only (but not necessarily) in order to call up a display from
another panel when clicking on a table entry or list entry in a search result. This is often used
to display detailed information on a semantic element.

Example

00O
000
o I J

 Viuchergebris Tabell -
| TH
* N { Suchergebnis s
» | # NN-Explain-Spalte
» N { Qualitat Konfiguration Sortierung Tabelle Zeilen KB Kontext
= |V:Suchergebnis_Tabelle
= | Auswihlen Y
= Suchergebnis auswahlen
= (10
=
=0
= | Auswahlen (11]

Suche

V:SuchergebnisAnsicht
spalte= [

I I

Keep in mind that the respective “Selection” action specifies the panel that this action is sup-
posed to affect. This is specified under “Show result in panel.”

Nach der Ausfiihrung (Panels

1]

4 Ergebnis anzeigen in Pane

P:ReiterRechtsObjektinfo

S = Auswihlen see
= Auswihlen [T1]
= [

1.7.3.4.3 Action type "NN-Expand"

NN-Expand is an action type that makes it possible to expand a graph node in the Net-
Navigator. This means that you can see all the nodes that are connected to this node via
a relation and that are permitted by the graph configuration. The affected relations between
the nodes are also displayed. Nodes that are already displayed in the Net-Navigator only
display the relevant relations in addition.

Display with a plus sign as shown in the image below is the default setting. If you click on
the plus button and it involves too many relations, a dialog window appears, and that dialog
window has also been configured already. In this dialog you can choose which nodes should
be displayed.

00O
000
o I J

o N /
o O Semantic

ht

o—

__o.

@

In the graph configuration this action is attached to all node categories that are supposed
to be equipped with it. A menu that can contain all NN actions is created on the “Node”
tab. In the action itself, it is only necessary to select the “NN-Expand” action type, all other
specifications are optional. The action type may not be available in the drop-down menu;
further action types are available from the neighboring “..."” button.

Fy Y

Konfiguration Kategorie Knoten Kontext

Menls Styles
eSS & X 2 @
[satellit

Konfiguration = Aktionen Styles KB

| 7FOFS2 & & 2 u

nn-expand
Konfiguration Styles KB Kontext

figurationsname = |nn-expand

Auswihlen (L]

NN-Expand ~ | -

Auswshlen s

Auswshlen (L1

]
<

1.7.3.4.4 Action type "NN-Hide"

With the configuration of this action type, a menu button is provided in the graph nodes that
hides the selected graph nodes and its displayed relations one time (see crossed-out eye in
the image). The node can, for example, be displayed again when another connected node is
expanded.

00O
000
o I J

o O Semantic

ht

_0.

O .

The NN-Hide action is configured like the NN-Expand action, but “NN-Hide" is chosen as the
action type instead of “NN-Expand”. In order to configure more than one action type on a
node, multiple actions must be created for a menu.

Konfiguration Kategorie Knoten Kontext

Mens ~ Styles
HFOFY? & X 4 @
[satellit w

Konfiguration Aktionen Styles KB

| sJOFSS & B 4 m

nn-expand

nn-hide | 5}

Konfiguration Styles KB Kontext

nn-hide

tung Auswihlen
Aktionsart NN-Hide Ml -
Auswihlen

Auswihlen

1.7.3.4.5 Action type "NN-Pin"

The NN-Pin action is used to configure a menu button that allows a node to be pinned down
in the Net-Navigator. When the graph is automatically restructured, for example when ex-
panding another node, the node that was pinned down remains in its position. Despite this,
the node can be repositioned manually and the pin is released when the graph is reloaded.
Clicking on the pin again also releases it again. The “pinned” status is displayed by a change
in the graphic (the pin points downwards instead of lying at an angle).

The configuration of the action type is performed as described in the “NN-Expand action”.

00O
o] 1 J
o] 1 J

i-views 5.3
238534

Knotenkategorie Q'.

Konfiguration

[
HFr:? & % 2

Mend
e &

e
| s JOF3 & X 2

Meniis

oo Aktion L?".
nn-expand B

nn-hide

v o o

Konfiguration

Konfigurationsname = - i

» Beschriftung = ‘ | I
Skript fiir Beschriftung = (11}
Aktionsart = ‘ MNN-Pin ~ ‘ Izl
Skript = (1Y)
Skript (ActionResponse) = see
ausfuhren in View = | .

Transaktion (ActionRequest)

1.7.3.4.6 Action type "Save"

The Save action stores the form data from the web front-end in the semantic network. The
web front-end automatically recognizes the action type and sends it to the configured view.
If no view has been defined as the recipient of the action, the web front-end tries to find a
suitable view in a neighboring panel.

To do this, the action type “Save” is assigned to the action in a menu:

Meni - Objekt

Konfiguration ~Aktionen E

Aktion ;
saveAction *

Konfiguration Styles KB Kontext

Konfigurationsname = |saveActi0n -
* Beschriftung = |Save |
Aktionsart = |Speichern v||z|

Skript =

Skript (ActionResponse)

V:Edit

ausfiihren in View

]
<

. Transaktion (ActionRequest) =

The Save action can be used, for example, to replace the individual Save buttons in several
edit fields in a dialog with a customized Save button.

Note: If you want to to use the save-action to do more than just to save (e.g. add another

OO

&

O

—

ol 1}

&

o] 1 J

&

object to the object you just edited), you have to use "Script (after action)" instead of "Script".
The reason is that otherwise the save action would be overwritten by the script action.

1.7.3.5 Internal actions

The use of internal actions requires expert knowledge.
If in doubt, please contact i-views support: support@i-views.com.

The actions listed here are only included for reasons of completeness. This includes actions
such as:

Show action

Sorting action

Jump action

Create target action

Script action: If there is a script on an action, it causes it to be executed automatically,
and therefore overwrites the integrated function of the respective action type.

1.7.3.6 Scripts of actions

1.7.3.6.1 Script (onAction)

This script is executed when the action is executed. The return value is passed on to the
optional ActionResponse script.

function onAction(element, context) { return element;

}

Arguments

-The semantic element, in the context of which the action is executed. The “Selection”
+ action forms the only exception - in this case, “Element” is equivalent to the element
neslected, and is therefore identical to “context.selectedElement.”

3 M D

oiDther predefined variables that describe the context of the action in more detail.
text

()

The script of an action can access the following predefined variables contained in context:

Detail editor

Variable Value
selectedElement Object selected or type selected
type Object type. If the element is a type, the actual type is used

Object list

OO

&

O

o 1

&

ol I _

&

534
Variable Value
selectedElement Object selected or type selected. Undefined if no ele-
ments, or several elements, were selected.
selectedElements Elements selected
elements All elements of the object list
type Object list type

Transactions

A transaction is required for write changes. This is automatically the case when executed
using the ViewConfigMapper.

By principle, no transaction is active in the Knowledge Builder. The script itself must control
transactions.

Knowledge Builder

Another variable for interacting with the user is available in the Knowledge Builder:

Variable Value

ui Object $k.UIObject

For example, an alert can show:

ui.alert(‘‘Current Element: " + element.name());

1.7.3.6.2 Script (actionResponse)

This script is executed after the action has been executed. Its main task is to prepare the
result of the action for the ViewConfigMapper (or other front-ends). The script must return
an object of the type $k.ActionResponse.

function actionResponse(element, context, actionResult) { var actionResponse = new $k.ActionRespor
actionResponse.setData(actionResult) ;
actionResponse.setFollowup("new");

actionResponse.setNotification(‘‘done","warn") ;

return actionResponse;

OO

&

O

o] 1 J

&

o] 1 J

&

534
Arguments
ele- The semantic element in the context of which the action is executed
ment
con- More predefined variables that describe the context of the action in more detail
text (see previous section)
ac- The return value of the onAction script or, if not defined, the return value of the
tion- configured action type.
Result

ActionResponse

The ActionResponse can be supplemented with values for Followup / Data and Notification.
These values can be evaluated by other applications such as the ViewConfigMapper.

In the Knowledge Builder, the following values for Followup are possible in tables:

re- | Renders the current table again without recomputing the list
fresh

up-| Recalculates the table
date

showselects the element in data in the table. Alternatively, the “data” element can handle
elementobject by means of {"element": actionResult, "viewMode": "edit} in order to open
the result in a new Detail editor.

Followup is not evaluated in detail editors.

1.7.3.6.3 Script (actionVisible)

function actionVisible(element, context) { return true;

}

The return value is used to decide whether the button is displayed or not.

In the case of actions on the elements, the following function is called up in tables, which
transfer an array of elements and expect an array of Boolean values. This can be used to
compute the visibility for the elements more efficiently in one go.

function actionsEnabled(elements, contexts) { return elements.map(function (element, index) { rett
b;
}

Q00O

—

o I

1.7.3.6.4 Script (actionEnabled)

function actionEnabled(element, context) { return true;

}

The return value is used to decide whether the button is active.

In the case of actions on the elements, the following function is called in tables, which transfer
an array of elements and expect an array of Boolean values:

function actionsVisible(elements, contexts) { return elements.map(function (element, index) { rett
b;
}

1.7.3.6.5 Script with Ul specific actions

The script that implements the action can access Ul-specific functions in the Knowledge
Builder using context.ui.

Ul functions should not be executes within transactions when possible, as the display is not
updated within the transaction.

context.ui.alert(message, windowTitle)

Shows a message.

context.ui.requestString(message, windowTitle)

The user can enter a string.

context.ui.confirm(message, windowTitle)

Opens a cancel dialog.

context.ui.choose(objects, message, windowTitle, stringFunction)

Have an object selected from a set.

context.ui.openEditor(element)

Open the default editor for the object.

context.ui.notificationDialog(notificationFunction, parameters, windowTitle)

A wait dialog or notification dialog is opened. Depending on how it is configured, it can be
canceled.

Possible parameters:

Parame- | Description Default
ter value

Q00O

ol I _

&

o 1

&

autoEx- The dialog display area is opened initially. true
pand

canCan- | The dialog can be canceled. true
cel

stay- The dialog remains open after the end of the function. true
Open

Example:

ui.notificationDialog(
function() {
ui.raiseNotification("start");
for (var 1 = 0; i < 10; i ++)
ui.raiseNotification("" + i + "*" + i + "=" + (i*i));
ui.raiseNotification("end");
return undefined;
1,
{ "canCancel" : false },
"A wait dialog"

Messages can be output in the display area using the following raiseNotification function.

$k.UI.raiseNotification(message)

This message is only captured by the notificationDialog function, and the message is only
output in the display area there.

1.7.3.7 Action sequences

Often you will want to summarize the changes that the user makes to the semantic network
and that are split into several sequential actions. Example: in one action, a new product is
created, and in the next action the properties of the product are described. Aborting the
second action would create a product without a description in the semantic network. What is
required is an "All or nothing” behavior to ensure that either all actions that belong together
are executed, or that none of them are. You also want to ensure that other users can only
see the change to the semantic network once it has been completed. You can achieve such
behavior by encapsulating the actions in a “Transaction”.

In order to summarize a sequence of actions in a transaction, you mark the first action with
“Transaction - start” and the final action with “Transaction - end".

Careful: The transaction is started only if the first action actually modifies the semantic net-
work. When creating new objects in a sequence of actions you also have to ensure that the
order of newly created objects is deterministic, so whenever an action script is repeated the
creation order is the same as before. If the set of created objects varies dependent on the
actual situation, make sure to sort the originating set in a deterministic way before creating
the objects (e.g. by idString()).

Q00O

o] 1 J

&

o] 1 J

&

The transaction end can also be brought about dynamically via the “setTransactionCommit()"
script function.

If the transaction is to be canceled, you can achieve this by means of an action of the “Cancel”
type. Canceling means that all previous changes to the semantic network conducted within
the transaction are undone. The “setFailed()” script function can be used to dynamically initi-
ate a cancellation.

As a transaction is always coupled to the duration of a session, a transaction is canceled
automatically when the session ends in which the transaction was started. If, for example,
you open a dialog at the start of the transaction and the dialog is closed before the transac-
tion was completed, the transaction is canceled automatically. This does not apply to dialogs
that are opened while a transaction is already running, because this creates a new session
on the session stack. Dialog sequences (one dialog is closed and another dialog is opened
immediately) do not interrupt the transaction either.

1.7.4 View configuration elements
A view configuration describes how objects or types are to be shown. The different element
types that are available in the view configuration are described in the following.

The individual view configuration elements can, in part, be plugged together in any way. The
configurations can also be used multiple times as a sub-configuration.

List of the different detail configuration types

Configuration type Top-level config- | Can include the following sub-
uration configuration

Alternative X any

Property

Properties X property

Group X any

Hierarchy X any

Script-generated content X

Static text

Search Table

Setting options that all detail configuration types have in common

Name Value

00O
000
o I J

Configuration name

This is not used in the user interface. The user who cre-
ates a configuration has the option of assigning a name
that is comprehensible for the user in order to be able to
find this configuration more easily later on, and to be able
to use it again in other configurations.

Script for window title

Only for use in the Knowledge Builder. If an object is, for
example, opened by double-clicking in the object list, a
window with the properties of this object opens. The title
of this window can be determined using a script.

e

onfigurierter Titel fir Sehenswurdigkei!

Alternative
Details i Wiki-Verweise

Bild und Text Eigenschaften

» Name = |Alhambra hat The= europdische Geschichte
Image = | Alhambra_in_the_evenir f D hat The= Islamische Architektur
Wiki Te= | Zur Alhambra muss ma = -5} ‘
Wiki Te= | <p></p><p>Zur Alhat 3

Granada

 Relation hinzufizgen

Note: The setting options for the individual configuration types are described in the following
sections. The obligatory parameters are printed in bold.

1.7.4.1 Alternative

An alternative is used to configure many different alternative views on an object. You can use
tabs to switch between the views in the application.

Setting options

Name

Value

Label

A label is only used if this configuration is embedded in an-
other configuration, e.g. an additional alternative.

has default alternative

The sub-view that is supposed to be selected initially can be
specified here.

Display in an application

If the views are exported into JSON, the individual sub-views are attached to the alternatives

KEY in an ARRAY.

Si-views

OO

&

O

o] 1 J

&

o] 1 J

&

Example of an alternative in an application: You can use the tabs to switch between the views
“Example,” “Branches” and “Create own data.”

Display in Knowledge Builder

In Knowledge Builder, the various configured views of an object that are linked to the alter-
native are made available to users by means of tabs

» Name Branche

Example of an alternative in Knowledge Builder: You can use the tabs to move between the view
“Tab 1” and the view “Tab 2.”

Configuration of tabs

If a view configuration of the “Alternative” type has been created, you can use the button
“Create new objects of object configurations” to add a new tab.

v
PoiX48 W

U Gruppe
1) Alternative - Objekt

Konfiguration Mends Styles KB Kontext

It usually makes sense to use the view configuration type “Group” as the tab as any number
of view configurations can be placed therein. The label of the view configuration is also the
label of the tab.

1.7.4.2 Groups

You can use a group to summarize different sub-configurations in one view. The subelements
are then shown in order. However, there are exceptions that only apply for the front-end: The
configuration element Property cannot be a direct sub-configuration of a group. This initially
requires the properties configuration.

Setting options

Name Value

Label Alabel is only used if this configuration is embedded in an-
other configuration, e.g. Alternative.

Display in an application

If the view is exported into JSON, the individual subviews are attached to the KEY group in an
ARRAY.

00O
000
o I J

Gruppe (ohne Beschriftung)

Sydney ist eine Stadt in Australien und die Hauptstadt des Bundesstaates New South Wales. Sie E]gensch aftsliste mit Nam e, Bi Id’ Text
wurde am 26. Januar 1788 gegriindet und ist mit 4,63 Millionen Einwohnern (2011) im — ; n
stadtischen Gebiet (Urban Centre) die groBte Stadt des australischen Kontinents. un d d em AttrlbUt BeVOl ke ru ng
Zahlreiche Universititen, Museen und Galerien befinden sich hier, Sydney ist rémisch-
katholischer und anglikanischer Erzbischofsitz.
Falschlicherweise wird Sydney oft fir die Hauptstadt Australiens gehalten, diese ist jedoch
Canberra.
[Quelle: wikipedia, Foto © Robin Bechold |
Bevélkerung 4,293,000

—= B
Sehenswiirdigkeiten Eigenschaftsliste mit Uberschrift und
’, T der Eigenschaft ,hat Sehenswurdigkeit”
Sydney Opera House =—=
Land Suche mit Gber die Region gezogener

Australien indirekter Beziehung zum
0 = Land der Stadt
Display in Knowledge Builder

A frame is drawn around a group in the Knowledge Builder. This frame then shows the views
of the sub-configurations.

Bild und Text Eigenschaften Ahnliche Sehenswirdigkeiten
Bild und Te Eigenschaft E =W
» Name = 12 Apostel hat Thema = Gebirge + befindet sich in
Image small = | 12Apostel-klein.jpg o™ = - Kap Halbinsel
Wiki Text shorl= | Es sind wirklich genau 12 = 2 Eaplialbinsel
_ _ Kap Halbinsel, Kapstadt
Wiki Text = <p> Es sind wirklich geng befindet sich = Kap Halbinsel

Italien, Stidfrankreich

”

A group with the following sub-configurations: the “Image and Text” property list, the “Properties
property list and the “Similar points of interest” query

1.7.4.3 Hierarchy

The configuration type “Hierarchy” displays elements of a semantic model as a hierarchy in a
tree structure, in which individual branches can be expanded and collapsed.

Either relations or relation targets can be used for work. The hierarchy is structured from
the start element of the view configuration, for which all subordinate relations or objects and
their subordinates must first be determined. After this, the higher-level relations or objects
are determined for each element. This element result set is then shown in the hierarchy.

Setting options

Name Value

AN

&

OO0

o] 1 J

&

o] 1 J

&

Label

A label is only used if this configuration is embedded in an-
other configuration, e.g. Alternative.

Script for label

It is also possible to define a label using a script.

Display the hierarchy root
banner

Only relevant for the Knowledge Builder: Banner is dis-
played.

Action (selection)

Reference to an action that is called when a hierarchy ele-
ment is clicked.

Hide details view

The details view of a selected object is displayed (Knowl-
edge Builder) or output (json, as a subview) by default. By
activating this option, no details view is displayed or output.

Script for visibility

Generate subelements
without name query

When new subelements are generated in the hierarchy,
what their name should be is queried by default. A check-
mark here generates nameless objects without a name

query.

Deny manual sorting

By default, the user can reattach elements in the Knowledge
Builder to the schema by means of Drag&Drop. If this op-
tion is activated, this is no longer possible.

Setting options for sorting

Name

Value

Sort downward

Controls if sorting is in ascending or descending order. If
this parameter is not set, sorting occurs in ascending order.

Primary sort criterion

Selection option for the criterion used for sorting the prop-
erties:

e Position: The order defined in the configuration is used
(default).

e Value: The content of the attribute or display name of
the relation target is used.

e Script for sorting: The script saved in the attribute Script
for sorting is used for determining the sort criterion.

Secondary sort criterion

Sort criterion for properties which have the same value for
the primary sort criterion. The setting options are analo-
gous to those for the primary sort criterion.

Script for sorting

Reference to a registered script that returns the sort key for
the primary or secondary sort criterion.

AN

—
)

OO0

o] 1 J

&

o] 1 J

&

Options for determining the elements that form the hierarchy

Name Determining of...
Relation (descending) Subelements
Relation (ascending) Top-level elements
Structured query (descend- | Subelements

ing)

Structured query (ascending) | Top-level elements
Script (descending) Subelements
Script (ascending) Top-level elements

Actions and styles

Actions and styles can be attach for both the entire hierarchy and for the individual nodes.
From version 5.2 or higher, style classes can be automatically assigned using a script.

Display in an application

The JSON representation of a configuration of type hierarchy is only available from version
4.1 or higher.

Themenumgebung

~ & Natur

~ [y Landschaft
Gartenkunst

F:,

Gebirge
Héhle

Oase

Wadi
Wiiste

& Felswiiste

g g g

& 8

& Kieswiiste
» &y Pflanzen
&) Tiere
& UNESCO-Weltnaturerbe

Display in Knowledge Builder

A hierarchy appears in the area on the left in the detailed display of an element. The element
is displayed with a view configuration without hierarchy in the area on the right. This view
configuration must be defined separately and the configuration name of the hierarchy must
be specified under Reference >> Apply in. Alternatively, the sub-configuration can also be
specified directly in the hierarchy under Sub-configuration.

OO

&

O

o] 1 J

&

o] 1 J

&

Hierarchie
QLKLY

@ Thailand
@ Bangkok
@ Chiang Mai
» @ Ko Phi Phi

Notes
Elements are not always represented by their name in hierarchies. It is not possible to

display anything other than the name, or information supplementing the name, directly
in the hierarchy.

The values of all properties that can be filled out for forming the hierarchy are relations.
The individual attributes such as relation - descending can be assigned multiple times.

The relation or relations are determined and collected for each attribute type. If differ-
ent attribute types are specified, the subsets are used to form an intersect.

Example - application case

Hierarchies are typically used to represent supertopic/subtopic relations or part-of relations.
1. Relation that forms a hierarchy
The most direct variant. The relations that form the hierarchy are entered.
Relation (aufsteigend [hat Oberthema]
Relation (absteigend [hat Unterthema]
2. Structured query that forms the hierarchy
The relations can also be determined by means of a structured query.

Strukturabfrage (aufsteigend) Oberthema Hierarchie

+ [hat Oberthema]
#* [\ Thema| #*
3. Script that forms a hierarchy

A script can also be used to collect the relations that potentially form a hierarchy. The current
element is passed to it as a parameter, and it must return a set of relations. Instead of
working on relations, working on elements is also possible.

Skript (aufsteigend hatOberthema

Script has supertopic

function relationsOf (element)

{

return element.relations(hasSupertopic’);

}
function targetsOf (element)
{
return element.relationTargets(hasSupertopic’);

}

1.7.4.4 Tree

Just like a “hierarchy,” a “tree” is based on the configuration of a hierarchical tree structure. In
contrast to a hierarchy, a tree can also include static nodes. Hence, it is possible to create a
tree without a semantic network source element. Another difference is that the sub-nodes of
a “tree” can be configured differently whereas all nodes of a “hierarchy” respond in the same
way for a given semantic element.

A tree configuration generally distinguishes two types of nodes:

e Static hierarchy node: Nodes of this type always exist if there is a connection to the root
of the tree. The “context element” relation can be used to optionally integrate the node
into a semantic element. Please note: The top node of a tree is always static and always
invisible.

e Hierarchy node patterns: This type can map several nodes for each level. A node is
formed for each relation target that can be reached from an element of the higher-level
node. You can set the property “transitive” to map several levels. You can the property
“apply to” to restrict to which element types the node pattern is applicable. Otherwise
the node pattern can be applied to all elements that fall into the target validity area of
the configured relations.

The sorting of tree nodes can be configured in the same way as that of the “hierarchy.” How-
ever, this configuration does not globally apply to the tree but each node configuration ap-
plies to the respective sub-nodes.

Finally, the image and label displayed can be configured for each node type, either directly
or via script.

1.7.4.5 Properties

The Properties configuration is a list of individual configurations. The sub-configurations can
be exclusively of the Property type, each of which is linked to an attribute or a relation of a
semantic network object or type.

Setting options

Name Value

Label Display name of the collection of properties. If no la-
bel is specified, the string Properties is used in Knowledge
Builder.

AN

&

OO0

o] 1 J

&

o] 1 J

&

C=4
Script for label Alternatively, the display name can also be determined via
a script.
Script for visibility Control of the visibility of the properties by a script.
Initially expanded If this configuration in included e.g. as a meta-configuration,

this parameter can be used if this is supposed to be ex-
panded already when opening Knowledge Builder.

Note: The web front-end does not display the affected
meta-property if the checkmark is not set here.

Setting options for sorting

Name Value

Sort downward Controls if sorting is in ascending or descending order. If
this parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the prop-
erties:

e Position: The order defined in the configuration is used
(default).

e Value: The content of the attribute or display name of
the relation target is used.

e Script for sorting: The script saved in the attribute
Script for sorting is used for determining the sort cri-
terion.

Secondary sort criterion Sort criterion for properties which have the same value for
the primary sort criterion. The setting options are analo-
gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for
the primary or secondary sort criterion.

Display in applications

The views of the configuration of individual property elements are stored in an ARRAY during
output in JSON format and appended with the KEY properties.

00O
000
o I J

Themen——— Prominente Darstellung der Beschriftung
d
Eigenschaft der Eigenschaftsliste mit drei
Kunst Objekten
Kunsthandwerk
Museum

Display in Knowledge Builder

The label set in the configuration is displayed prominently. This is followed by views of the
configured properties.

- : Prominente Darstellung der
Attributes and Re'@Beschriﬂung

P Name = Bern

[

P Bevélkerung 126598

i

¥ Alternativname/Synonym

[

Image sma Bern_luftaufnahme-klein.png

i

Wiki Text short Bern ist Bundesstadt - in der Sch

[

Wiki Text <p>Bern ist Bundesstadt - in der
Note

Meta properties are appended using the same process.

1.7.4.6 Property

The Property view configuration can be used to define individual attributes or relations to be

displayed in a list of properties. It is also possible to use an abstract property that groups a
set of properties.

Setting options

Name Value

Sort downward Controls whether the properties are sorted by name in as-
cending or descending order. If this parameter is not set, sort-

ing occurs in ascending order.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Display type

Available in two cases:

1. The property is a relation:

Selection option for the display of the label of a relation target.
This setting is only available if the Relation target view setting
has the value Selection or Relational structure.

2. The property is a file attribute:

Selection option for the display of the value in a file attribute.

Selection options:
e [con (topiclcon): Icon of the relation target / file as an icon
e [con and string

e String (name attribute: Name of the relation target / name
of the file

Label

Display name of the property. If no label is specified, the name
of the property type is output.

Property

Link to the property type that is to be displayed.

Script for virtual proper-
ties

Alternative to Property : Script for calculating the values to be
displayed.

If you set the “Automatic updates” meta flag, the KB is auto-
matically updated when a value on which a calculation was
based is changed. Careful: if you set this flag, this can have a
significant effect on performance, depending on the script.

Display relation target

Only available for relations.

By default only the name of the relation target is displayed.
When you click the name, the relation target opens in another
editor.

But if you choose the Display relation target option, the rela-
tion targets are displayed directly, which means not just their
names, but also all their properties.

Show additional proper-
ties

Only relevant in the view for editing objects: If this option is
set, another property is shown in addition to the property, so
this can be filled quickly and conveniently. It must be permit-
ted for the property to occur multiple times.

Kunst

hat Oberthema
Persische Architektur

hat Oberthema

¥ vhart o
nat Ubertnema

Show new properties

Only relevant in the view for editing objects: If this option is
set, the property is shown only if the property has not been
created yet. This makes it quick and easy to complete and less
easy to forget.

Antike

000
o] 1 J

&

o] 1 J

&

Display filter

Only relevant in the view for editing objects: This option can
be used to create a prompt that decides whether this config-
uration is displayed. The prompt is filled with the object of
this property. The property is displayed for editing only if the
prompt receives a result.

Configuration for
bedded meta properties

Specification of the configuration to be used to display meta
properties. The meta properties are embedded, i.e. the prop-
erty is displayed after the value. The name of the property
type is not displayed.

» Name Agypten

Bevélkerun

82060000 2013

(L]

Configuration for meta

properties

Specification of the configuration to be used to display meta
properties. The meta properties are displayed under the value
of the property.

For display in the web front-end, the properties with the meta
properties must be set to “initially expanded.”

* Name Agypten
4 Bevdlkerung 82060000
Jahr zu Bevdlkerung 2013

Relation target view

If a relation is chosen as the property, this parameter can be
used to define the view of the relation targets:

e Selection: All relation targets are listed and displayed with
a preceding checkbox. In case of existing relations, the
checkbox is equipped with a tick.

e Drop-down: This setting is only useful if the relation may
appear only once. A drop-down list is displayed showing
all relation targets available for selection.

e Relational structure: All relation targets are listed in the left
area, rather like a hierarchy. The right area then shows
the details view for the selected relation target. This view
is only effective if the configuration is directly subordinate
to a top-level configuration.

e Table: Table view of the relations. The table view can not
be applied in the Knowledge Builder. For the table view,
the Table setting must be filled in.

o Table (relation targets). Table view of the relation targets.
This table can be applied in the Knowledge Builder.

Script for label

The label can be determined by means of a script specified
here.

OO

&

O

o 1

&

ol I _

&

Script for relation target | This script can be used to control how the relation target is
identifier displayed for relations. If no script is entered, the object name
of the relation target is used for the display.

Application example: A person belongs to a department with
the name Dpt. IV . Using a suitable script, it is possible to
change the output for the person from Dpt. IV to Darmstadt
city administration, Dpt. IV .

Script for sorting The script is used to determine a value for sorting. See the
example below.

Search for target selec- | The search determines which semantic elements are offered
tion as possible relation targets. For configuration of the search,
see also the Search / queries chapter.

Table Only available if the Relation target view has the value Table or
Table (relation targets), in which case it is obligatory. The ta-
ble configuration specified here determines which properties
of the relation targets are to be output in table form. For the
relation target to be displayed, at least its name must be con-
figured in the table. For configuration of a table, see the Table
chapter.

Example of a script for sorting

Precondition: The sortKey attribute can be attached to all properties.

function sortKey(element)

{
if (element instanceof $k.Property)
{
var attribute = element.attribute(’sortKey’)
if (attribute)
{
return attribute.value();
};
};
if (element instanceof $k.Domain)
{
var attribute = element.type().attribute(’sortKey’);
if (attribute)
{
return attribute.value();
};
};
return undefined;
}

Property display for a person

OO

&

O

o] 1 J

&

o] 1 J

&

(@
4 Vorname : Herlinde
sortkey = 1
4 Vorname : Trude
sortkey = |2
4 Name : MNeumayer

sortkey = |3

Configuration of a property

A property can only be configured as part of a list of properties. It is acceptable for the list to
contain only one property.

L] Gruppe: Beispiel - oIEd
- =

® o))
U Objekte von TermSet U

47 Alternative - Objekt

40 Reiter 1
4\ Eigenschaften - Objekt G
¥ Name

o : Konfiguration Mends Styles KB Kontext
W& Eigenschaft - Objekt

U Reiter 2

» Beschriftuna =

= | Auswahlen

In this example, the Properties view configuration already contains the “Name” property. A second
property is created by selecting an attribute or a relation under “Property” (marked in orange).

Note

In case of the Name attribute type, the value 3 is entered for sortKey , so this temporary value
is at the end of the list.

1.7.4.7 Edit

This configuration type is used to make attributes and relations of a Properties configuration
editable. For this purpose, it is assigned to the relevant Properties element at a higher level.
Next to a button for saving changes, a Delete button is displayed next to every property
where this is possible.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-
other configuration, e.g. Alternative.

Edit mode switchable If this option is selected, the properties are first displayed
only as a normal list. However, a switch is offered as an
addition, which can be used to switch between the normal
view and the edit view.

Only custom buttons If this option is set, the Save button is not displayed.

Q00O

o] 1 J

&

o] 1 J

&

1.7.4.8 Table

Tables can be used as a sub-configuration for displaying results of queries of the configura-
tion type “Query,” or as a separate configuration for displaying the object lists in the Knowl-
edge Builder.

A table lists specific objects, properties or subtypes of a specific type. Whether all objects,
properties or subtypes, or only a selection, is displayed, can be managed using the input in
the heads of the columns. The values entered are used to execute a structured query accord-
ing to suitable objects, properties or subtypes and display the result as a table. Moreover, in
the case of object lists, a new object, a new property value or a new subtype can be generated
with the properties that were filled in after entering values in the heads of the columns.

A subcomponent of the table configuration is the column configuration. This, in turn, con-
tains a column element or a menu cell. This layout is used to separate properties relevant to
the column (such as order and name of the column in the table) and to assign which con-
tents should be displayed in the column. Column elements, in turn, allow the assignment of
properties, script modules and structured query modules.

Since version 5.1, not only column configurations, but also additional tables can be added
to a table configuration. This provides the option of summarizing frequently used columns
in a table configuration and add them to another table in full. The intermediate tables are
removed when determining the overall table. There is only one level of columns.

. L
]
.H-

V! Table - Instance

Configuration Sort Table Rows KB Context

Script for [abel Choose
orting O
n filtering O
hle a
Script for visibility Choose
Restore last column filtering/sorting |

The hierarchical display of all sub-configuration elements in the table configuration exhibits
a menu line that is assigned with actions as follows:

. . Create and link a new subelement.
. Search through all potential subelements that already exist and link (= add) the
slected subelement.

o Delete link again. When this occurs, the subelement is retained as an object and can
be used again in other configurations.

. Delete complete subelement selected. If used in other configurations, a warning will
appear before deleting which highlights all existing links.

00O
000
o I J

. Move selected subelement up in the list.

. Move selected subelement down in the list.

Note: The availability of an action depends on the currently selected table element in the

hierarchy on the left side.

Example of a simple table configuration

For a list of objects, certain properties should appear in a table. The name attribute used to
represent the objects in the first column should not be forgotten.

QOLEXEY

i Instances of Subtype 2
4\ ¢ Name

\ i Name
aNiD

ViiD

Setting options (table)

Configuration Menus Styles Context

— —
Subtypes Instances of Subtype YZ —3 'ﬁ'

ol T+ (0]~ LIS

Name

abc

&

123
456

Name

Value

Configuration

Configuration name

The configuration name is used for identi-
fication and reuse of the configuration.

Label

Defines a static heading for the table.

Click action

Determines an action which is performed
when clicking into a table row.

Script for label

Script which returns a string as substitute
for the label.

Without initial sorting

No sorting occurs. Default process: the
first column is used for sorting.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Sort order

For instance lists in the Knowledge
Builder, each table configuration is
represented in a separate tab.

By specifying an integer, the user can con-
trol at which position the tab is displayed,
provided that several tables are config-
ured for the same instance type or for the
same folder structure element.

The tables are sorted using two criteria,
which are checked in the following order:

1. Attribute Sort order specified:
If yes, then this is used as the sort cri-
terion.
If no, then the configurations for
types are shown first, followed by
those for objects.

2. Sorting by display name

Without column filtering (VCM)

Suppresses the indication of column fil-
ters in the web frontend. In the Knowl-
edge Builder, column filters are always
displayed.

Page size (VCM)

This specifies how many rows (= search re-
sult hits) should be display on one page.
Default value: 20

Label for empty table (VCM)

A label configuration which is displayed in-
stead of the original label when the table
is empty.

Script for visibility (KB)

Script which returns a Boolean for
whether the table is visible or not. For in-
stance lists in the Knowledge Builder, the
whole tab will not be displayed if visibility
is set to false. In the web frontend, this
script has no effect.

Restore last column filtering/sorting (VCM)

Restores the recently selected filtering or
sort order for the duration of the web
frontend session.

Sort

Column

Column configuration for which the sort-
ing takes effect.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Sort priority

An integer value determines the order by
which table column values the assortment
of the table rows will be influenced first.
Example: If an ID is more important for
sorting instances than the primary name,
the column for ID gets the sort priority
1 and the column for primary name gets
sort priority 2.

A higher sort priority overrides the sort di-
rection ("Sort downward") of another col-
umn.

Sort downward

Determines if the values are sorted up-
ward (alphanumerical order) or down-
wards.

Table

Tab "Menus"

For the Knowledge Builder, the menu
actions at the top of the table can be
configured here. For more information,
see chapter "Actions for the Knowledge
Builder™.

Tab "Styles" (VCM)

For the web frontend, different styles can
be applied on the whole table at once.

Rows

Tab "Styles" When using a table for the Knowledge
Builder, styles can be used for rows of the
table for the purpose of character format-
ting.

KB

Automatic search

e Automatic search

e No automatic search: No automatic
search is performed.

e Automatic search up to threshold
(system settings)

Creating elements without question by name

When this option is enabled, new ele-
ments can be created by clicking on the
button "New", without a dialog asking for
a name before creating the element. As an
indication for the missing name, a period

."is shown as name instead.

Script for window title (KB)

A script can be used which returns a
string for the window title whenthe table
is opened in a separat window.

000
o] 1 J

&

o] 1 J

&

Script for windowstatus (KB) A script can be used which returns a
string for the bottom line of the Knowl-
edge Builder application or the window (if
the table is opened in a separate window).

Without inheritance If the table is used for instance lists in the
Knowledge Builder, only the instances of
the currently chosen type are displayed,
without instances of subtypes.

Context

apply to Restricts the context to the instances of a
given element type.

apply to subtypes Restricts the context to the subtypes of a
given element type (instead of instances).

apply in Application context for within the view is
applied. For the table to be displayed
within the Knowledge-Builder at all, the
application "Knowledge-Builder" must be
selected here.

Usage Within the section "Usage", the "Context
of" relation reveals for which view the cur-
rent element is used as application con-
text. It is the counter part of the relation
"apply in" of the other respective element.

Table of Indicates the superordinate view configu-
ration element within which the table is
used.

Actions and styles

Actions and styles can be defined for the entire table, as well as for rows.
Use

The Context tab specifies where the table is used.

The object type specified under Apply to is the type to which the table should be applied.
Tables can be used again in other view configurations. If the table module is a different view
configuration, this is displayed under [inverse] Apply in.

The property Apply in refers to an application. Several links are possible.
Examples:
e If the table to the right in the main window in the Knowledge Builder is to be used by

the folder structure during navigation, then the table configuration must be linked to
the corresponding folder structure element.

e If potential relation targets are displayed as tables in the Knowledge Builder, then the
table must be linked with the Knowledge Builder application.

Tables / Object lists in the Knowledge Builder

00O
000
o I J

To configure the way objects or types are displayed in a table in the Knowledge Builder,
the Details tab contains the section View configuration -> Instance/Type -> Object list next to
the respective type. Creating and maintaining the table configuration is explained using the
objects of Subtype YZ as an example.

Subtypes Instances of Subtype YZ
ol T+10] - FER

Name Internal Name

Subtype YZ

Subtype YZ
Overview Details
Knowledge Graph Type View configuration : Instance : Object list : Subtype YZ
©® Subtype YZ Definition
4 Schema definition n
Instance Name Type Context Type
Type

Instances of Subtype YZ Table Knowledge-Builder Subtype YZ

4 View configuration . . . -
Objekt Table Objects (Type based folder structure Knowledge Graph
4 Instance

Details

Object list
4 Type

Details

Object list
< >

No table configuration has yet been linked with this type. The greyed entry shows a standard
configuration which is inherited from the upmost type "Knowledge Graph" of the type hier-
archy by default. By clicking on the New E button, a new, blank configuration is generated
here. The configuration can then be selected and be edited as needed. As soon as the appli-
cation context has been specified (e. g. "apply in: Knowledge Builder"), the configuration is
applicable after updating the view configuration.

1.7.4.8.1 Column configuration

As mentioned before, column configurations contain properties used to define the display
and behavior of the column in the table. The column is only displayed once properties are
configured in the column elements contained in the column configuration.

Setting options

Name Value
Configuration
Configuration name The configuration name is used for identification and reuse

of the configuration.

Label Displayed in the caption of the column. Please note that the
label is used for display in the table, but the column config-
uration also contains the configuration name attribute. This
name is used only to manage and find the configuration in-
ternally and is not displayed or output.

Script for label As an alternative to the static label text, a script can be used
which returns a string for the label.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Bookmark identifier

The bookmark identifier is used to represent a query pa-
rameter in forms of an expression within the web frontend
URL. It can be used for query views and table column filters
and synchronizes parameter value and URL in both direc-
tions.

Column width (%)

A percentage value is expected here for the column width
(so for 60% you have to enter “60").

Standard operator

The operator used initially in the search for a search text.

Search string

Preset search text for the column filter.

Do not show If this value is set, the complete column is hidden. This is
used, for example, to sort a search result using hit qualities
without displaying them.

Mandatory for query If this value is set, the column must be filled out for the

search to be permitted.

Not sortable

Prevents the table from being sorted when clicking onto the
column header.

Script for input field prepro-
cessing

For preprocessing any search text input in the column fil-
ter before passed on as parameter for the column element
query, a script can be used.

Operators

Configuration name

The configuration name is used for identification and reuse
of the configuration.

lcon Symvol that will be shown in the dropdown selection of the
column filter.

Key Operator designator that defines which kind of operator
is used (e.g. "word" or "containsPhrase"). See the oper-
ators explained in the chapter about runtime genereated
queries.

Label Tooltip that will be shown in addition to the symbol in case
of mouse-over.

Modifier Name of the indexer string filter.

Menus

For the column, a menu can be configured for the web frontend which is displayed besides
the label text at the label (header) of the column.

Styles

For columns, there are following style settings which can be applied within the view con-

figuration mapper:

e hideFilters: Suppresses the column filters from being displayed in the web frontend.

e hidelLabel: Suppresses the column label from being displayed in the web frontend.

Context

OO

&

O

o 1

&

ol I _

&

534
Sub configuration of Specifies for which table configuration(s) the column con-
figuration is used.
Sort order Specifies at which order the column is arranged within the

table, compared to another column. If there is more than
one column with the same sort order, the columns are or-
dered alphabeticaly by column label.

Sorted column of Indicates that the column is used for sorting the table con-
tent.
Sort priority Specifies the sort priority of the column used for sorting,

compared to other columns used for sorting.

Example
- 0

N Instances of Subtype YZ

\ { Name p

Configuration Operators Menus Styles Context

» Labe MName

Column width (% 15

Operator - Instance

I

:(

g w
i

I

]

T

o 0o

cript for input field preprocessing Choose

Column configuration for the Name column

1.7.4.8.2 Column operator

The column operator configuration determines which comparison operator can be used in
the table view when entering a term into the table filter. In most cases, operators like "equal",
"contains phrase" or "contains string" might be needed.

For example, the difference between "contains phrase" and "contains string" is as follows:
e "contains phrase": When entering several words (= phrase) into the filter, only content
with the same word order will be found

e "contains string": When entering several words into the column filter, content match-
ing an arbitrary combination of the entered words will be found

O
000 i-views 5.3
088 266534

Name Synonym

Graph Knowledge| e =

Contains phrase: word order sensitive

Name Synonym
Graph Knowledge =
Knowledge Graph Knowledge Network

Contains string: word order insensitive

This allows to use different filtering behaviors when filtering large tables to narrow down the
search results to specific content.

For all filter operators, a dropdown provides a selection of all operators defined for the re-
spective column:

Standard operator ﬁ @ Operators

Synoflym

Name

Il f—

Knowledge Graph Knowjedge Network

m m

Net-MNavigator aph

View configuration mapper ‘I‘iewconﬁgurazion mapper

‘Equa
Symbol .—I l

Label

If the table is used within the Knowledge Builder, a context menu is provided additionally for
selecting or removing effective operators:

00O
000
o I J

Subtypes Instances of KG Element E {} D
OEEaA o -
l e ¢
Name Copy : Synonym

Paste
Reset

Knowledge Graph Knowledge Network
Graph

Viewconfiguration mapper

Net-Navigator

Y f®F e

Operator > contains phrase

e
View configuration mappe! =
e configurstic pper & Contains string
-

Equal

Creating new column operators
New column operators can be created as follows:
Precondition: the respective column element needs to have defined its property to be shown.

Note: Since the application of operators depends on the value type of the property to be
filtered for and on the indices, the preset operators are only available if the property of the
column element has been defined. If string operators are needed, a correctly configured
index including index filter is required.

After having specified the property of the column element, select the column itself again.

Click onto the search button: a selection of operator templates will be shown, each
applicable on the value type of the property. Operator templates shown with the appendix
"Create new" indicate that they are not used until now (no instance has been created from
the template).

Select the needed kind of operator.

The "Operator" tab shows the newly created and assigned operator. Each operator listed
here will be available for the column filter. Operators can be reused for other table columns.

WOERXE$ \:

\iff Table - Instance
4\ Name

i Nome Add operators
Configuration Operators Menus Styles Context

WO -

Contains string (Strings to words filter)

Configuration

Please choose Contains string (Strings to words filter)
contains phrase (Strings to words filter) (Create new) = | contains.png a [_]
Contains string (regular expression) (Strings to words filter) (Create new)
Contains string (Strings to words filter) (Create new) = |words
Equal (Create new) 4 = | Contains string
Exactly equal (Create new)
Greater than (Create new) = |Contains string
Greater/Equal (Create new)
Less than (Create new) =
Less/Equal (Create new)

= | Enthalt Zeichenkett
not equal (Create new) Enthalt Zeichenkette

= |Strings to words filter
(De)select all

Cancel i

OO

O
O
) X
) X)

~
&
—~
&

For the default operator, switch to the "Configuration" tab and select one of the operators:

WOSXES N
¥ Table - Instance

4\ 1 Name jo)

A i Name

Name/Label Part of (name/label) apply to apply
Contains string (Strings b Contains string (Strings t._Column - Instance

Equal Equal Column - Instance

2 Blements Create new Cancel

Note: Within the Knowledge Builder, the standard operator will not be shown in the respec-
tive column filter, but it is active when no other operator has been selected in the context
menu.

Operators also can be defined by yourself. For the operator, following properties can be
specified:

Prop-| Description Value
erty type
Con- | The configuration name is used for identification and reuse of the configura- | String
fig- tion element.

ura-

tion

name

Icon | The icon which will be shown in the filter and its dropdown selection. Blab

Note: Without further plugins, vector images like *.svg cannot be used for
configuration elements within the Knowledge Builder.

key | The operator key for the operator. See table below. String
La- Text for the tooltip which will be shown at the symbol in case of mouse-over. String
bel

mod- | Name of the index filter. String

ifier

00O
000
o I J

Operator keys

Operator name Short term Description

containsPhrase Contains phrase

covers contains

distance Distance

equal == Equal

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to
equalMinCardinality Cardinality greater than or equal to
equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above
greaterPresentTime after now (future)

isCoveredBy is contained in

less < Less than

lessOrEqual <= Less/equal

lessOverlaps

Overlaps from below

lessPresentTime

before now (past)

notEqual I= Not equal

overlaps overlaps

range Between
regexEqual Regular expression

regexFulltext

Contains string (regular expression)

00O
000
o I J

unmodifiedEqual Exactly identical
words Contains string
Modifiers

For using operators like "Contains phrase", the respective operator key like "containsPhrase"
requires a modifier which depends on an index filter.

Index filters are used within an index. The index configuration is done in the global settings
of the Knowledge Builder: Settings > Index configuration.

Within the configuration of the index, the name of the assigned index filter can be specified
and copied for using as modifier:

= F

Personal System Index configuration

Index Filter Available indexes: [Jobclient is to load index inte main mem:
Indexes Mame filtes identifier Type Status Create new
fullText [string to words filter] Strings to words Pluggable indexer active
Metrics Metrics Metrics Must be synchraniz
Index for relations Syst.:m Systemn relation inde active
topic->value Pluggable indexer active .
Index for attribute values value->tepic Pluggable indexer active Assign
value->topic (unique) Pluggable indexer active
Synchrenize
Addable index modules
>
Assigned index modules
0K
Distributor by propery type "

Index value/target to element

fullText x
valueftarget to element by property type: Strings to wort Remove last index module
Filter Name
Strings to words filter - string to words filter (textFilter) Select filter filter identifier '_Stlings to words filter
Indexer Name ‘ Cancel

fullText Abort QK

New index filters are defined within the main settings of the Knowledge Builder:
Settings > Index configuration > Index Filter

OO

&

O

o] 1 J

&

o] 1 J

&

Personal System Index configuration

Index Filter textFilter A

Indexes Remove
Metrics Settings
Index for relations Rename

Index for attribute values

0K

1.7.4.8.3 Column element

A column element is used to assign the content that a table column is supposed to show,
and how that should take place. You can either specify properties, such as attributes and
relations, that are defined by the semantic objects, or you can use structured query modules

or script modules.

Setting options

Name

Value

Configuration

Configuration name

The configuration name is used for identification and reuse
of the configuration.

Do not show

Use this Boolean attribute to control whether the values of
the selected property should be displayed. By default all
properties are displayed.

Do not create

This attribute controls whether this property is supposed
to be created when a new object is created if the relevant
input field in the column contains a value. By default new
properties are created.

Do not search

Here you can specify that the configured property is not
transferred to the search. This means that this property
is not used to search for the entered search values.

Note: If all column elements in a column are set to “Do not
find”, this has the same effect as “Hide"!

Emphasis Here you can provide formatting specifications for the dis-
play of values; currently, the only available option is under-
line.

Property Link to the property type that is to be displayed.

(obligatory or script)

Script
(obligatory or property)

Executes the cellValues script to determine the values to be
displayed.

OO

&

O

o] 1 J

&

o] 1 J

&

Quality

For the web frontend, this option displays a bar showing
the hit quality incl. percentage value.

Note: This option is used instead specifying the property
and can only indicates a value when the option "Use hits" is
activated because only hits carry a quality value.

Structured query element

A structured query can be used to determine the property.

Script A script can be used which returns a property of an element
or a hit instead of specifying the property.
Use hits Objects are created by default. However, if you want to fur-

ther process the hits in the cellValues script, you must switch
on Use hits.

Relation target view

Currently only the Drop down alternative is available. If you
select it, the possible values that can be entered for this col-
umn for filtering in this table are compiled from the possi-
ble relation targets as per the schema into a drop-down list,
so that a possible value can be specified quickly. This is rec-
ommended for manageable amounts of potential relation
targets.

Note: This parameter is only available if a Relation type
property was selected.

It is possible to define multiple column elements for a column configuration. This makes
sense, for example, if multiple attributes are to be considered in the search, for example the
Name and Synonym attributes, but only one of them is to be displayed.

Example

The Name attribute is configured in the first column element of the Name column configura-

tion.

E# Instances of Topic
4 N f Name

\ f Name

Configuration Menus Styles Context

Name for objects
O
O
O

Name

The Topic belongs to relation is configured in the column element of the second column.

00O

o] 1 J

&

ol 1}

QLTS \:

¥ Instances of Topic

4\ i Name Configuration Menus Styles Context
\ i Name

4\ { topic belongs to

\ } topic belongs to

Ooooao

Drop down v

topic belongs to

O

The transitiveRelationalChainUpwards structured query module is configured in the column
element of the third column.

QL X2

. [
5
H
K Instances of Topic
4\ i Name Configuration Menus Styles Context
Vi Name
4\ i topic belongs to
\ { topic belongs to Do not sho 0
4\ iispart of ey e O
\ } transitiveRelationalChainUpwards O
transitiveRelationalChainUpwards
O
Related structured query:
'y Topic = % name (Parameter is not set)
& + is part of | ©) % @ Subtype A-C Xl:l
+ Name [$F - A=a [y

To make it possible to adopt values from the input field of the column, the structured query
must have configured parameters. Multiple parameters can be applied, all of which are as-
signed the same value when the structured query is evaluated.

Note: This is different from other cases in which the structured query is used. Normally the
results are determined by the initial object (in this case “Topic”). In this case, the results are

determined by the objects or properties to which the parameter is attached (in this case the
name attribute).

Unless further changes are made, the value displayed in the column is the value of the at-
tribute used for filtering. If the displayed value does not result from the attribute used for

Q00O

000

filtering, there are two options:

e The “renderTarget" identifier can be attached to relation targets. Objects marked in this
way are displayed in the table as the column value.
“renderTarget” also has the effect that, during output via the JavaScript API, the proper-
ties relating to display are included in the output as a link.

e The identifier “renderProperty” can be attached to attributes. Properties marked in this
way are displayed in the table column as the column value.

If the search module is not used for filtering, the element to be displayed must be deter-
mined by means of a manually defined parameter or by means of predefined parameters
like renderTarget/renderProperty!

The structured queries that can be included in the module of the column element can be
selected from a list of structured queries that have already been registered, but it is also
possible to create new structured queries for exactly this module, which includes the alloca-
tion of a registration key. The Do not create property does not affect columns that have been
assigned a structured query module.

A script module is mapped to the fourth column

\¢
a
K Instances of Topic
4\ i Name Configuration Menus Styles Context
\ i Name
4\ { topic belongs to
\ { topic belongs to Lo not sho 0
4\ iis part of Do not create O
\ { transitiveRelationalChainUpwards O
4\ { has responsible person
\ ¢ JavaScript
JavaScript
O

The aim is to display the persons responsible for the objects to which the topic listed in the
table is linked by means of Topic belongs to. As with the structured query, it is possible to
select the assigned script from a list of registered scripts or to create (and register) a new one
in the dialog. The script editor opens when you click the script module name.

/* * Returns matching elements for column search value "objectListArgument" * Note: "elements" n
return elements;

3

// Returns cell values for the given element function cellValues(element, queryParameters) {
var result = new Array(Q);
var firstTargets = element.relationTargets(‘‘isTopic0f’’) ;
if (firstTargets.length == 0) { return result ;
}
else {
for (var i = 0; i < firstTargets.length; i++) {
var secondTargets = firstTargets[i].relationTargets (‘hasResponsiblePerson’’) ;
for (var j = 0; j < secondTargets.length; j++) {
result.push(secondTargets[j] .name()) ; };

};
};

return result.join(’, ?);

In this case the language of the script module is JavaScript. Two parts have to be maintained
here: the upper part is used to filter all elements in the table on the basis of the objectLis-
tArgument value entered in the column, while the second part specifies how the value to be
output for an element is calculated. This first part has not been described as yet. A code
pattern is added to both parts during creation, and it can be built upon during creation.

If KScript was selected as the language in the script module for controlling the output of a
column, the selected (registered) script must provide a return value for the column for every
object that forms a row.

As KScript is in principle designed for only one output, the following convention has been
reached for filtering:

If the selected script contains a function named objectListScriptResults and a declared param-
eter, this function is called with the argument of the corresponding search input in order to
return the set of matching objects. The function is called as the initial object on the root term
or the former hit list - depending on the best way to resolve the search. To make this version
truly efficient, it is recommended to evaluate the search inputs accordingly and use the result
to call a registered structured query in order to forward its result to the object list.

1.7.4.9 Search

The user can use the view configuration element “Search” to configure search options for the
semantic network. The search can either be a predefined search with parameters, or be a
search field input screen for the user.

The “search” can be selected as a sub-configuration of an alternative or a group. Any type
of query is obligatory here, the results of which are displayed. Searches for user inputs can
also be configured; instead of the configuration element “Search” (object configuration), the
configuration element “Search field element” is used for the view configuration. Examples of
the panel configuration for the web front-end can be found in chapter 3 “ViewConfiguration
Mapper”.

When a search is to be configured with facets, then the functional chain should be observed
in the case of panel influencing.
Search field element -> Facet -> Search result.

Setting options

Name Value

Query A search can be selected here that is executed as soon as
the configuration element is displayed. The semantic ob-
ject, for which the view configuration is displayed, can be
used as an accessed element in the query.

Label A label is only used if this configuration is embedded in
another configuration, e.g. Alternative.

AN

&

OO0

o] 1 J

&

o] 1 J

&

C=4
Table A table configuration is specified here which is used to
display the search results.
Script for label The label can, alternatively, be determined using a script.
Script for visibility A script can be used to control whether the configuration
element should be displayed.
Script for table configuration | The table can also be determined using a script.
Setting options for a query
The following parameters are maintained as meta properties for a query.
Name Value
Parameter name Specifies a parameter name that is to be used in the query.
Setting options for a parameter name
The following parameters are maintained as meta properties for a parameter name:
Name Value
Script The script parameterValue is used for determining the

search value for the specified parameter name.

Value determination Specifies the value determination path

Script: The value is determined from the script and must
not be overwritten by the user.

Script, can be overwritten: The script determines the value.
The user may overwrite it.

User input: No script evaluation. User input only.

Type xsd-type

Label During output to JSON this value ends up in /label.

Display in an application

Search results are output in a table by default.

00O
000
o I J

Ahnliche Sehenswiirdigkeiten

Senckenberg Naturmuseum Frankfurt
Frankfurt a.M.

Uluru
Red Centre

Red Centre

Karlu Karlu
Red Centre

Lﬂ Uluru-Kata-Tjuta-Nationalpark

Lﬂ Watarrka-Nationalpark
Red Centre

In this example, search results are output as a table view “medialist” render mode style. The
“medialList” render mode converts the typical table view into a sizable list with an icon and link to
the objects. Additional properties of the object can be specified (in this case, the location of the
point of interest).

Display in Knowledge Builder

The results of any query are always shown in an object list in the Knowledge Builder.

Example:

| JOFNS & X 4 @

* Person
»
¥ [Eigenschaften Konfiguration

[* Bekannte
Konfiguration

Abfrage £ Person kennt Person 1]

4 Beschriftung Bekannte

German Bekannte

English

French

Konfigurationsname

1]
G

Style

The “Properties” and “Friends” tabs are defined in the view configuration. “Friend” is a configura-
tion element of the type “Search”. A search can be selected, or a new one be created directly, under
“Query”.

00O
000
o I J

+ Person

P + kennt | + @ Person

Definition of the search

Eigenschaften | Bekannte

1o B

Name Elementtyp
Hermannn Person
MNeumayer Person
Wasser Person

3.
-

Ursache Suchtext Qualitst

100
100
100

The result of the query is displayed in the “Friends” tab in the Knowledge Builder for objects of the

type “Person”.

Instead of the individual configuration element, searches can be split into several separate

configurations.

1.7.4.10 Graph

The contents of the semantic database are plotted in a graph with their objects and connec-
tions (see Knowledge Builder > Basics > Graph editor).

Setting options

Name

Value

Label

A label is only output if this configuration is embedded in
another configuration, e.g. Alternative.

Script for label

A script that returns the label.

Graph configuration

A graph configuration object is defined here.

Hide key This defines whether the key for the node types is to be
displayed.
Width/height This defines the width and height of the configuration ele-

ment, either as a percentage or exact to the pixel.

Script for visibility

The visibility of the configuration element can be defined
in a script referenced here.

Structured query for start el-
ements

A query that determines the objects to be displayed.

OO

&

O

o] 1 J

&

o] 1 J

&

1.7.4.10.1 Graph configuration

The graph configuration only allows specific types and relations to be displayed in the
graph. This prevents unwanted types and relations from appearing in the graph. The graph
configuration can also be queried using JavaScript functions. It is, for example, used in the

Net-Navigator.

Node category elements are subordinate to a graph configuration.

Setting options

Name

Value

Label

A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Maximum path length

Steps until node is hidden

1.7.4.10.2 Node categroy

Node categories are subordinated to graph configurations.

They are assigned subordinate link elements.

Setting options

Name

Value

Label

A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Display extensions initially

Color Color assigned to the nodes of this category
Show in key Always, If necessary or Never
Node size

Draw icon only

1.7.4.10.3 Links
What exactly are links?

They are subordinate to a node category.

Setting options

Name

Value

00O
o] 1 J

&

o] 1 J

&

C=4
Query for link
Label A label is only used if this configuration is embedded in an-
other configuration, e.g. an additional alternative.
Expand as preference
Color
Initially expanded
Relation
Script for label Here it is possible to reference a script that determines the
label.
Script for link A script referenced here can be used to define the link.
1.7.4.11 Text

This configuration element outputs a simple text. This is either configured fixed or deter-
mined via a script.

Setting options

Name Value

Label A label is only output if this configuration is embedded in
another configuration, e.g. Alternative.

Script for label A script that returns the label.

Text Text that is to be output.

Script for text A script that returns the text to be displayed.

1.7.4.12 Image

Static graphics can be integrated with the aid of this configuration element.

Name Value

Label A label is only output if this configuration is embedded in
another configuration, e.g. Alternative.

Script for label Alternatively, this can be used to determine the label using
a script.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Image

The image file that is to be output.

Script for image

Alternatively, the graphics can be returned using a script.

Width/height

Scales the image file to the dimensions specified.

Script for visibility

A script is used to determine whether the graphics are to
be displayed.

1.7.4.13 Script generated view/HTML

Script-generated view

A view created using a script saved in the semantic network. This is written in JavaScript and
can use a custom template (a Ractive.js “partial”). This allows complex views to be created,
which extend beyond the functionalities of the standard view configuration.

Setting options

Name Value

Label A label is only used if this configuration is embedded in
another configuration, e.g. Alternative.

Script Script for generation of the view.

Script for visibility

Script for determining the visibility.

Script for label

Script for determining the label.

viewType

Name of the partial.

Script-generated HTML

This view configuration shows an HTML fragment that is generated using a script stored in
the semantic network. In it, the JavaScript API of i-views is used to access semantic elements
and their properties and an XML writer object generates an HTML structure and fills it with

data.
Setting options

Name Value

Label A label is only used if this configuration is embedded in
another configuration, e.g. Alternative.

Script Script for generating HTML output.

Script for visibility

Script for determining the visibility.

Script for label

Script for determining the label.

OO

&

O

o] 1 J

&

o] 1 J

&

Example of a script that generates simple HTML output:

function render(element, document) {
var writer = document.xmlWriter();
writer.startElement ("div");
writer.startElement ("h2");
writer.cdata(element.name());
writer.endElement();
writer.endElement();

¥
Output:

<div>
<h2>Hermann</h2>
</div>

1.7.4.14 Label

The label configuration allows, for example, the labeling of a website or the labeling of a table
to be configured. The label configurations are managed in the category “Subordinate config-

uration” in the Knowledge Builder.

Labels are used in the window title panel; this requires creation of a new object under “Label

configuration:”

W Viewkonfiguration-Mapper

4\ Hauptfensterpanel - Objekt
W Fenstertitel
W Logo Konfiguration Kontext
W Graph Ak
W suche
N Ergebnis

Auswéhlen
Fenstertitel
Beschriftung
Festgelegte Ansicht

Auswéhlen

The entries can then be made under “Label” and “Image”, which later appear on the browser

tab of the website:

00O
000
o I J

w

Konfiguration Menls Styles Kontext

» Beschriftung = | YourApplication| |
Bild = | user.png G D
Konfigurationsname = | Beschriftung
Skript fiir Bild = | Auswihlen 1)

Note: The view configuration element (“Label”) is titled “Label - Object” by default in the
Knowledge Builder. If a string is entered under “Label”, then this appears as the element
name of the view configuration element. When a configuration name (“Label”) is assigned,
this appears as the element name. As a rule, configuration names should be assigned so that
configuration elements can be found again and are easier to distinguish from each other.

In regard to the web front-end that is generated by the ViewConfiguration Mapper, this is
equivalent to the <title> element in the <head> section:

2 ="utf-8">
4 ="¥-U4-Compatible’ ="TE=edga">
4 ="yiewport" ="width=device-width, initial-scale=1">

% »ourdpplications *

A comparison shows the different states of the website without a label (title = website path)
or with a label (title = label):

- localhost:381 5/ viewconfig/viewcor X + L"r’uurﬂnpplicatinn X

(i) localhost:8815 /viewconfig/view (@ localhost:8815/viewconfig/viewconfigmapper/in

1.7.5 Panels

Panels are configuration elements that separate the application interface into sections. They
are used to build the basic layout of an application.

Panels contain further panels or view configurations and can be nested in each other. They

Q00O

I
)

can mutually affect each other.

Panels usually contain exactly one start element (an object or a type) during activation, which
they pass on to their sub-configurations. Panels that contain view configurations that display
a set of objects (table, facet selection, graph) can also process a set of start elements.

Panels themselves have no other functions. These can only be defined with the help of
actions and view configurations.

There are different types of panels:

e Main window panels
e Dialog panels
e Window title panel
e Footer panels
e Normal panels
For each application there must be precisely one so-called main window panel, which can be

divided by means of subordinate panels. In addition, it can be allocated a window title panel
specifying the title and logo (Favicon) of the application.

It is also possible to assign additional dialog panels to the application; these panels can be
displayed as a pop-up on top of the main window. Next to additional panels, they can also
contain window title and footer panels.

A specific panel type must be selected for each panel .

e Layout panels (contain additional panels):
- Linear layout (all subordinate panels are displayed in horizontal or vertical order)
- Changing layout (only one of the subordinate panels is displayed at the same time)
e View panels (contain view configuration(s)):
- Defined view (contains only one single defined configuration element)
- Flexible view (multiple views possible, depending on the type of start element)

Setting options

Name Value

Show action results in | All actions that are shown in the source panel cause the target
panel panel to be displayed with the respective transferred object
(example: every click in the panel object list causes the result
to be shown in the details view panel).

The action setting "show result in panel" overrides this setting.
Moreover, the setting has no effect on "save" actions.

influences Here you can specify a panel that is influenced by the current
panel (example: the objects displayed in the search results af-
fect which facets are displayed correspondingly).

Script for target object With the help of scripts you can specify not only panels but
also conditions under which specific panels are affected by the
current panel.

000
o] 1 J

&

o] 1 J

&

C=4
Setting options for layout

Name Value

class CSS classes for the panel (considered only for web appli-
cations or in the ViewConfig mapper)

Width/height The precise dimensions of the panel can be set here in
percent or down to the pixel.

Maximum width/height Alternatively, you can enter the maximum dimensions of

the panel here. The panel takes up as much space as pos-
sible without exceeding these values.

Flex-grow/shrink Here you can specify the values for the relevant CSS prop-
erty for the growth or shrink factor of the panel. An ele-
ment with a value of 2 for flex-grow, for example, receives
twice as much value as an element with a value of 1.

overflow-x/y (scrollbar) This can be used to define how scrollbars are displayed if
the content of the panel does not fit into its horizontal (x)
and vertical (y) dimensions. The available options are auto,
scroll and hidden.

Style CSS styling rules for the panel (considered only in web ap-
plications or in the ViewConfig mapper)

1.7.5.1 Activation of panels

Panels exhibit two basic conditions: “active” and “inactive”. A panel is visible when it is active.
The activation of panels functions using the following mechanisms:

A. The main window panel of the application is always active when an application starts

B. The execution location determines which panel become active when an action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Panels influenced are activated

2. Panels with a specialized function (e.g. window title) are activated, and this from all
panels in the corresponding hierarchy

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are
deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test pre-
vents endless loops)
Subsequent activations transport the model displayed respectively. If, for example, panel A
shows the object “Mr. Meier”, then the activated subpanel B also shows “Mr. Meier”.

Last of all, this ensures that all panels above the activated panel are also active. However,

their content is not calculated again.
Advanced activation mechanisms (version 5.2 or higher):

So-called “Activation mode” can be used to optimize the calculation of the panel contents in
step A (action activation) and in step 1 (influencing).

This avoids the recalculation of panel contents that are currently not displayed because de-
spite activation, they are not within the visibility area (e.g. a shopping basket). The option
“Lazy” is provided for this case.

In the same way, the option “Update” can be used to avoid triggering the activation chain. In
this case, only the content of the panel is calculated again.

The option “Display” is the default setting when neither of the two options described above
were selected.

1.7.5.2 Layout panels

The application is divided into different areas using layout panels. Linear layouts arrange
subordinate panels either next to each other or one above the other. Changing layouts per-
mit alternative displays on the same visualization panel, with only one of the subordinate
panels being displayed at the same time.

Setting options for configuration

Name Value

Activate the first by default | If a checkmark is set, this means that the first subordinate
(for changing layout only) panel is activated by default (the example below shows the
start screen)

1.7.5.3 View panels

View panels serve as containers for individual views. They can however contain no further
panels.

Setting options

Name Value

Context element Here it is possible to specify a concrete object or concrete
type that serves as the source element from which further
paths can be pursued through the network.

Cannot be overwritten by ex- | If this option is activated, the configured context element
ternal context element is always used. Influence from other panels has no effect
in this case.

If no context element has been configured, the context el-
ement remains empty.

00O
000
o I J

Script for context element The script determines the start element. The external con-
text element is transferred as the argument.

The “Cannot be overwritten by external context element”
option has no influence, and the script is always executed.

Sub-configuration (only for | Here it is possible to specify the one view configuration
defined view) that is used for the defined view.

1.7.5.4 Dialog panels

Dialog panels are special display areas whose contents are displayed in a dialog box. Dialog
boxes appear automatically when the corresponding dialog panel is activated. Just like with
other panels, activation is also possible via certain actions (see relation “Show result in panel”
in Action configurations) or generally on activation or updates of other panels (see relations
“Show actions in panel” and “influences” in other panel configurations).

Actions also have to be used to hide (“close”) dialog boxes. If the “Close panel” attribute is
selected in an action configuration, executing this action in a dialog box has the effect that
the window is closed. Hence, the action must be linked to a menu that is displayed in the
dialog panel or one of its subordinate panels.

Content-wise, dialog boxes are divided into the following three areas:

e Window title

e Content area

e Footer
The contents and the layout within the three areas can be specified using a panel configura-
tion for each. The dialog panel itself represents the content area. To configure the window

title and footer, a sub-configuration of the type window title or footer panel must be created
on the dialog panel (see the example below).

Dialog: Dialog (Panel) Fenstertitel

Cialoge kdnnen lber die Option "Panel schliessen” an der Aktion wieder geschlossen
werden

Dabei spielt es keine Rolle ob die Aktion im Header, Footer oder im Dialog selbst
konfiguriert ist

: : Inhaltsbereich
Dialog schliessen

FuBzeile

00O
000
o I J

You can use the “Panel type” attribute on the actual dialog panel and on its window title and
footer panels to determine whether the respective panel provides layout or view functions.
Detailed descriptions of the different panel types are available in the preceding chapters.

Dialog panels can be created as follows in Knowledge Builder:

1. Use a user account that has administrator rights to log on to Knowledge Builder

2. In the navigation area, on the left, open the “Technical” category and select the sub-item
“View configuration.”

ORDMER
WISSENSMETZ

TECHNIK

P & Rechte (deaktiviert)
» & Registrierte Objekte
b 4% REST
4 W View-Konfiguration
») Ermittlung der View-K

3. Select the “Application” tab on the right window.

D Anwendung | Graph-Konfigurat

Konfigurationsname
Graph-Editor

Knowledge-Builder

ORDNER

WISSENSMETZ

TECHMIK

» &3 Rechte (deaktiviert)
» & Registrierte Objekte

o
P 4% REST Knowledge-Portal

4 . View-Konfiguration Net-Mavigator

b T Crnnitthiomm Ane Vinee ¥

4. In the list underneath, select the application to which you would like to add the dialog
panel (usually “View configuration mapper”).

00O
000
o I J

i-views 5.3

289534

Anwendung Graph-Konfiguration

Konfigurationsname

Graph-Editor
Krnowledge-Builder
Krnowledge-Portal
Met-Mavigator
Topic-Chooser
Viewkonfiguration-Mapper

5. Select the top element in the panel tree below and click on the Create icon

Wi xes

- Viewkonfiguration-Mappe
g Hauptfensterpanel - Ok
» W P_Dialog

'\ P_Dialog_Layoutpanel
g P_Dialog_Wechselndes_
'\ P_Dialog_Festgelegte_A
» W P_Dialog_Flexible_Ansicl

< >

6. The newly created dialog panel is automatically selected in the panel tree and the details
view is displayed to the right of the panel tree

OO

&

O

o] 1 J

&

o] 1 J

&

C=4
W Viewkonfiguration-Mapper '
» W Hauptfensterpanel - Objekt
» W P_Dialog
» ¥ P_Dialog_Layoutpanel Konfiguration Layout Kontext
v P_Dialog_Wechselndes_Layout Aktionen aktivieren in P "

» W P_Dialog_Festgelegte_Ansicht
r P_Dialog_Flexible_Ansicht
W Dialog-Panel - Objekt s T s

nilusst

To create a window title or footer panel, you have to select the dialog panel in the panel
tree, and click on the icon for creating sub-configurations . Following this, a selection

window appears in which the entry “Window title” or “Footer” can be selected. Depending on
the panel type of the dialog panel, additional subelements can also be created in this way.
These, however, then refer to the content area of the dialog box.

1.7.6 Sessions

A session in the sense of the view configuration is used as temporary storage for variable
values, which can be read and written to within scripts of the view configuration. This makes
it possible to map the current status of an application.

Sessions form a stack. The first session also lasts the entire duration of the web session; that
is from the time the application is called until the respective browser window is closed. You
can always call up the first session by using function “$k.Session.main().”

Opening a dialog generates a new session on the stack. The closing of the dialog removes
the corresponding session from the stack.

The activation of panels marked “Session boundary” also generates a new session on the
stack which lasts until the panel is deactivated. The element of the new session is set to the
current element of the panel and can be used in the future using the "element()" function on
this session.

Use function "$k.Session.current()” to reach the top session of the stack.

1.7.7 Knowledge Builder configuration

The view configurations described here exclusively relate to Knowledge Builder. Additional
view configurations that affect Knowledge Builder are also described at other points in chap-
ter 7 but can then also relate to the output in JSON.

1.7.7.1 Folder structure

The left part of the main window in Knowledge Builder is used for navigating through the
semantic model. To do so, a hierarchical folder structure is displayed there. This can be split
into several main areas that are then displayed as bars. If you click on such a bar, the folder
structure underneath it is expanded. This then enables you to access the contents (elements,
queries, import/export mappings etc.). The contents are listed on the right side where they
can be edited.

00O
000
o I J

1.7.7.1.1 Default folder structure

The configuration of the standard folder structure provides folders, making it possible to
navigate the semantic model and store contents there. Three main areas are available to
administrators.

The upper main area is “Folder” and provides folders for creating further folders and for
managing content. These are the working folder, the private folder, the “Most recently used
objects” folder and the “Query result” folder.

The second main area “Semantic network” makes it possible to navigate to the elements
via the hierarchy of the types. The elements to be reached here are types, objects, attributes
and relations. The area contains three folders:

e Object types for the hierarchy of object types and their concrete objects

e Relation types for the hierarchy of the relations

e Attribute types for the hierarchy of the attributes
The third main area is “Technical”; it enables administrators to make changes, settings and

configurations of all kinds in the semantic network. These include, among others, registered
objects, the rights system and triggers.

p Ordnerstruktur | Relationszielsuche | Suchfeld E a’ D
= o[-] FERRIET
W Arbeitsordner (workingFolder)
W) Privatordner 9
@ Zuletzt verwendete Objekte Konfigurationsname Bestandteil von (Name/Beschriftung) anwenden in
£ Suchergebnisse Organizer Knowledge-Builder

WISSENSNETZ
O Objekttypen
v " Relationstypen

£\ Attributtypen < >
TECHNIK WwFerSs & X 2 Ordnerstruktur
» & Registrierte Objekte Organizer @
v 5 Rechte (deaktiviert) * Organizer
» L¥ View-Konfiguration 4 (% Ordner Konfiguration | Verwendung | Alles
» LF Kerneigenschaften (% Arbeitsordner
b L+ Gesamtwissensnetz [Privatordner Konﬂguration

» . ! = :
[Zuletzt verwendete Objekte Konfigurationsname = | Organizer

Attribut hinzufiigen

(™ Suchergebnisse

The configuration of this standard folder structure can be viewed, modified and adapted to
the users needs in the Technical area >> View configuration.

Note: Administrators always see the standard folder structure. If you configure a view con-
figuration for folders, these are displayed only to non-administrators. If an administrator
wishes to see the configured view of the folder structure, this can be set in the personal set-
tings for the Knowledge Builder: Under “Settings” > “Personal” > “View configuration”, select
the “Configured” option.

Q00O

000

1.7.7.1.2 Configuration of the folder structure

The folder structure is configured in the technical area under View configuration >> Object
types >> Knowledge Builder configuration >> Folder structure. The admin is granted quick
access to the configurations by selecting the View configuration node in the technical branch,
and then selecting the Organizer object in the Folder structure tab in the pane to the right.

Folder structure elements are linked to each other as a hierarchy in the configuration. The
root node of this hierarchy is an object of the folder structure type. It initially contains a folder
structure called Organizer. All sub-nodes and their sub-nodes are of the folder structure ele-
ments type. The hierarchy in the configuration shows the hierarchy shown in the main win-
dow directly. The direct sub-nodes of the root node are shown as bars in the main window,
resulting in a visual distinction between the various folder hierarchies.

Label is a parameter that all configuration types have in common. A node that is described
by a configuration is labeled with this value. The content displayed in the right part of the
main window when a node is selected depends on the parameters of the folder structure
element. To do so, a type must be assigned to the parameter Folder type, for which a range
of types is available. These folder types and their additional parameters are listed in the
following table.

Folder type (obligatory) Parame- Description
ter

Attribute types Type The attribute type specified, and all it sub-
types, are displayed in a hierarchy-based
tree.

Private folder - Display of the folder that only the actual
user may view, and which is different to
each user.

Relation types Type The attribute type specified, and all it sub-
types, are displayed in a hierarchy-based
tree.

Organizing folder Organizing | Any organizing folder can be added here.

folder

Query result folder - Each user has a query result folder of their
own in which the user s most recent query
results are saved.

Type-based folder structure “Without The specified type and its subtypes are
inheri- listed in a table. If the parameter “Without
tance” inheritance” view is set, then only the speci-
view, type | fied type is displayed.

Note: In order to manage which table con-
figurations are used on the right-hand side,
the apply in relation found there must be
linked to this folder structure element.

Virtual folder - Afolder that is used for structuring the fold-
ers.

00O
000
o I J

Each user has a folder of their own in which
the last objects used are saved for quicker
access.

Last objects used -

Only the configuration type Virtual folder can contain additional sub-configurations, and it is
the only one for which sub-configurations make sense.

Note: In the case of the folder type “Attribute types,” “Relation types” and “Type-based folder
structure,” the parameter “Type" is used for specifying the attribute type, relation type or
object type, and its subtypes, should be displayed in the folder.

1.7.7.2 Relations destination search

The configuration of relation targets makes it possible to influence the strategy used to
search for possible relation targets. If a semantic model does not include a search for re-
lation targets, entering “Egon” always results in a search for objects named “Egon” (i.e. the
respective defined name attribute is used). This response can be modified by specifying a
previously defined query. Ordinary queries rather than structured queries are usually used
for this purpose.

For example, to search for persons, you could define a query that searches both the first
name and the last name. If you then search for a target of a relation whose target domain
is person, the first names and last names of persons are searched for the entry “Egon.” A
modified search for relation targets also makes sense if you want to search for objects and
object synonyms at the same time, so that e.g. the “Architecture” object is also found if a user
enters “the art of construction.”

—
o Relationscilsuche | Suchfeld =40

ORDNER -y

TECHNIK Name/Beschriftung | Relation Ziel anwenden in

¥ 7 Trigger Suche nach Name und Vorname . Person Knowledge-Builder

¥ & Registrierte Objekte

4 ﬁ Rechte

» £+ Druckkomponente < 5
b LF REST

Relationszielsuche

¥ L View-Konfiguration
Suche nach Name und Vorname

» L Kerneigenschaften
b 1F Gesamtwissensnetz

Konfiguration | Werwendung

Konfiguration

LD Suche nach Name und Vomame see

Abfrage

Community Konfigurationsname

Attribut hinzufiigen

Relation target search configured to search for persons

As with all configurations, the context must be specified in which the relation target search is
to be used. To do this, the relation to which the relation target search is to be applied must

AN

&

OO0

o] 1 J

&

o] 1 J

&

be entered for “apply to relation.” The properties “apply to target” and “apply in” are no longer
taken into account as of version 5.2.

1.7.7.3 Home view

You can use the configuration Start view (KB) (available as a tab in the view configuration area)
to define which background image and which actions are supposed to be displayed on the
start screen in Knowledge Builder on the right side. The display can be highlighted by means
of de-selection (clicking on the selecting in the left navigation tree).

Setting options

Name Value

Background An image

Color value for font of an ac- | Depending on the image selected, a different color must be

tion selected for labeling the actions in order to make the text
readable.

In addition to this, actions can be defined. Refer to the Action chapter. An action type can
also be specified. The following entries are available in this case:

Action type Action

Manual (specialized web link) | Web manual is opened in the browser

Home page (specialized web | The home page is opened in the browser.
link)

Support email (specialized | A window opens for a new email to the email address of

web link) the Support department.
Web link Freely definable web link
<no action type> Execute configured action (using a script)

A web link must be configured completely; otherwise it will not be displayed.

However, this is not necessary for the three action types (specialized web links) displayed
above. They use default values if a property is missing. It is possible to override the default
values.

Possible configuration for a web link

Name Value

Label Display name after the icon

Symbol Icon that is displayed in front of the label

) (

oI I J
oI I J

URL URL that is to be opened

1.7.7.4 Search field

The quick search field can be found in the upper left corner of the main window. This field
provides quick access to queries. These are provided by the administrator or can also be
added by the user. All queries that are used here may only expect a search string or no
search input.

No search input makes sense for queries like this, the result of which changes from time
to time. Executing a search like this in the quick search field then shows the current result
without the need to look up the corresponding query in a folder, for example, every time.
For example, there could also be a search query that displays all songs that the active user
has already listened to.

1.7.7.4.1 Search field configuration for administrators

The “Search field” configuration defines which queries are made available by the administra-
tor in the quick search field of the Knowledge Builder.

Newly created networks feature a search field configuration that is the same for all users. The
administrator can expand this search field configuration to make other queries accessible to
all users. Moreover, each user can add further queries to their quick search field, which are
then only visible to this particular user.

A search field configuration is comprised of “Quick search elements” that must contain a
reference to a query and can optionally be given a label. The order of the quick search
elements is determined by the order of the menu entries at the quick search field.

1.7.7.4.2 Search field configuration for users
The user can add queries by dragging an existing query to the quick search field.

Adding can also take place via the Settings. The Search field item is available on the Personal
tab. On the right, in the User-defined section, the Add and Remove operations are available as
well as an option for changing the order.

AN

&

OO0

o] 1 J

&

o] 1 J

&

C=4
@ Einstellungen __-‘:l B X
System | Indexkonfiguration
Ordner Vom Administrator konfiguriert Benutzerdefiniert
Fenster Name Typ ~ Name Typ Ordner
Editoren - atomar component - st Volltext-Suche
I Strukturabfrage - component - attribute s Abfrage
Graph - component - semantic ¢ Semantische Abfrage
ESuchfeld - component - string sear . Kombinierte Suche
Tastaturkiirzel - component - trigram Se | Trigramm-Suche
- component: fulltextSean Volltext-Suche
- expand-component: Col = Such-Pipeline
- expand-component: Jou Such-Pipeline
- expand-component: Lo Such-Pipeline
- expand-component: Top Such-Pipeline < >
| < > i Nach oben || Nach unten Entfernen
OK

1.7.8 Style

The view configuration is responsible for the structural formatting of elements of the seman-
tic model for the display. If purely visual properties or information without context is also be
specified, a “Style” element is used.

There are a number of Style elements that are already defined in i-views. The following sec-
tion explains what these elements are and how these style elements are created in Knowl-
edge Builder so that they can then be linked to individual elements of the view configuration
of an application or Knowledge Builder.

In the view configuration, you first have to select the element with which one or more style
elements are to be linked. Almost every view configuration type has a “Styles” tab. There, you
can either define a new style element u or link an existing style element . If a new style
element is defined, this must first be given a configuration name. You can then configure it
on the right side of the editor.

A style element can be filled with any number of style properties. The style properties are
always distributed across several tabs, which are described in the sections below.

Note

Not all properties of a style make sense for all configurations. The tables of the following
sections then also have a column called “Configuration type” which shows which view con-
figuration type is supported by the respective property. The effect is described in the last
column.

1.7.8.1 Style properties in applications and in the knowledge kuilder

This chapter describes the “Configuration” tab of a style element, which contains the style
properties used in both the Knowledge Builder and the view configuration mapper.

000

/—
)
—
&

®)
N
0

ol I J

| Gruppe: Beispiel - o I IEE
N O & [
. JOrs® & X 4 Gl
U Objekte von TermSet ‘j
4) Alternative - Objekt
4 U Reiter 1
4\ Eigenschaften - Objekt Konfiguration Mends | Styles } KB Kontext
¥ Name O O & B
Lot X I 4
W Eigenschaft - Objekt L < U
U Reiter 2 Beispiel-Style
Konfiguration ~Yiewkonfiguration-Mapper KB Kontext
= | Beispiel-Style
=0
= | Auswahlen
=1LJ

Style property | Configuration | Effect
type

Tree view Group Show elements of the group as a tree. The default is
no, which means the group elements are displayed
next to each other or underneath each other.

Height Property Height in lines for string attributes

Height Group Height in pixels of a group element if group elements
are shown next to each other.

Script for acti- | All The style can be activated in dependence on the ac-

vation tive element by means of a script.

Vertical layout Group Show elements of the group next to each other. By
default they are shown underneath each other.

1.7.8.2 Style properties in applications

The “ViewConfiguration Mapper” tab is only displayed when the component “ViewConfigu-
ration Mapper” has been installed. The style properties available for this component are
included in the chapter Style of the ViewConfiguration Mapper (chapter 3).

1.7.8.3 Style properties in the knowledge kuilder

This chapter describes the “KB” tab of a style element, which contains the style properties
used only in the Knowledge Builder.

O
o] I)
cee® =4
)0
U Gruppe: Beispiel = (=)
WORXE$ @
U Objekte von TermSet U
4 [0 Alternative - Objekt
4 U Reiter 1
4 W@ Eigenschaften - Objekt Konfiguration Menis Styles KB Kontext
¥ Name o
¥ Eigenschat - Objekt WORXE$ “
0 Reiter 2 Beispiel-Style

Konfiguration ~ Viewkonfiguration-Mapper| KB Hontext

]

m owomomom

[m]
O
[m]
Style property | Configuration | Effect
type
Display banner | Object configu- | Display banner with name of objects and buttons for
ration editing. The default is no.
Band o
Editor width | Property Width in pixels of a property
(pixel)
Show meta | (Meta-) prop- | Meta properties are shown in the context menu of
properties in | erty (proper- | the property. You can thus show either individual
context menu ties) meta properties or all meta properties in a meta
properties configuration. (Note: the Add meta prop-
erties menu option remains unchanged).
Buttons used Property (rela-
tions only!)
Show preview Table Controls whether an editor is shown underneath the
table.

1.7.9 Detector system for determining the view configuration

View configurations can be linked to conditions using the detector system. The detector
system determines when which configuration should be displayed. The way the detector
system functions and the interplay with view configurations are explained in the following
using an example.

Several displays can be created for objects of an object type using the settings in the view
configuration. They can be linked to conditions using the detector system - for example, to a
specific user. For the example described here, two views were configured for the objects of
any type using the view configuration.

00O
000
o I J

Ubersicht | Details

A
Ob Typ jew- ration : Objekt : Details : Band
*C Definition
'@ s
2 4 Schemadefinition Name Typ Kontext Typ
Objekt
Yo e Band-Ansicht Eigenschaften Knowledge-Builder Band
T
r O . vP . Band-Ansicht fir Mitglieder Eigenschaften Knowledge-Builder Band
4 View-Konfiguration
® 4 Objekt
»C Details
»C Objektliste
YO iy
® Details
G Obijektliste
~

Users who are members of the band which they wish to access should see the “Band view
for members". All users who are not members of the band which they wish to access should

see the “Band view". The conditions that determine show the views are used are defined in
the detector system.

Creation of a view configuration determination
The detector system is located in the folder hierarchy on the left in the “Technology” section,
and has been designated as “View configuration determination” under “View configuration”.

TECHNIK

» L} Auftrage

b E Rechte

P 37 Trigger

» & Registrierte Objekte
4 L¥ View-Konfiguration

C:E" Ermittlung der View-Konfiguration 2
» [* Objekttypen
b .~ Relatinnsfunen

By creating a new query filter [(see the “Query filter” chapter) in the first step, the starting
point must be defined. This means that you have to define to what other things the following
settings are supposed to apply. In this example, our starting point is therefore a view config-
uration (in this case: “Band view for members”), for which a condition is created at the same
time. “View configuration” must be selected from the list and be entered as the operation
parameter. The query filter then looks as follows:

OO

&

O

o] 1 J

&

o] 1 J

&

Operationsparameter:

iew-Konfiguration

®) Alle Parameter missen zutrei_lrEin Parameter muss zutreffen

® Suchbedingung muss erfillt sein
) Suchbedingung darf nicht erfillt sein

+ r.jView—Konﬁguration
o + anwenden auf | © + Band

A new query filter must now be created under the query filter that is searching for the view
configuration “Band view for members” and which describes the condition for this view con-
figuration: the view configuration “Band view for members” should only be visible to users
who are members of the band that they are currently viewing. The second query filter there-
fore checks whether the active user is a member of the band. By clicking on 4, the set of
search results is then permitted to view the configuration “Band view for members”. The fol-
lowing diagram shows the query filter for users who are members of the band that they are
currently viewing and the folder hierarchy that was created so far on the left-hand side.

4 Band-Ansicht fiir Mitglieder Operationsparameter: Mégliche Operationsparameter:
Detektortest Benutzer Benutzer
Annehmen > |Objekte von
Zurtickweisen ® Alle Parameter missen zutre{_irfin Parameter muss zutreffen
®) Suchbedingung muss erfiillt sein
) Suchbedingung darf nicht erfillt sein
+ |44 Person
o + ist Mitglied von Band | © + |@Band |

The view configuration “Band view” is automatically used for those users who are not mem-
bers of the band that they are currently viewing.

Weighting of the configurations in the detector system

The configurations in the detector system “View configuration determination” are weighted
from top to bottom in the application. This means that access settings made closer to the
top have a higher weighting that those further down. In order to bypass this default setting,
the authorizations or denials can be given priorities.

4 - Band-Ansicht fiir Mitglieder

4 M/ Detektortest

Annehmen Prioritat 20
Zuriickweisen

ok

Priority 1 is the highest priority. If the condition instructions overlap, then the authoriza-
tion or denial conditions with the highest priority is implemented. If no specifications have
been made for priorities, or if all priority numbers have the same value, then the previous
conditions are implemented in the detector tree.

1.8 JavaScript API

1.8.1 Introduction

The JavaScript-APl is a server-side API for accessing a semantic net. The APl is used in triggers,
REST services, reports etc.

1.8.1.1 API Reference
The API reference is available here:

http://documentation.i-views.com/

1.8.1.2 The namespace $k

Most objects are defined in the namespace $k. The namespace object itself has a few useful
functions, e.g.

$k.rootType())

which returns the root type of the semantic network, or

$k.user())

which returns the current user.

1.8.1.3 Registry

Another important object is the Registry object $k.Registry. It allows to access objects by their
registered key (folder elements) / internal name (types).

Examples:

$k.Registry.type("Article")

returns the type with the internal name "Article".

$k.Registry.query("rest.articles")
returns the query with the registered key "rest.articles".

The Registry object is a singleton, similar to JavaScript's Math object.

1.8.1.4 Working with semantic elements

Semantic elements are usually retrieved from the registry or by a query.

// Get the person type by its internal name
var personType = $k.Registry.type("Person");

// Perform the query named "articles",
// with the query parameter "tag" set to "Sailing"

Q00O

—

o I

var sailingArticles = $k.Registry.query("articles").findElements({tag: "Sailing"});

The properties of an element can be accessed by specifying the internal name of the property
type.

// Get the value of the attribute "familyName"

var familyName = person.attributeValue("familyName") ;
// Get the target of the relation "bornIn"

var birthplace = person.relationTarget ("bornIn");

A shortcut to access the value of the name attribute is the function name()
var name = birthplace.name();

If an attribute is translated, the desired language can be specified, either as 2-letter or 3-letter
ISO 639 language code. The current language of the environment is used if no language is
specified.

book.attributeValue("title", "en");
book.attributeValue("title", "swe");
book.attributeValue("title");

var englishTitle
var swedishTitle
var currentTitle

1.8.1.5 Transactions

Transactions are required to create, modify or delete elements. If transactions are controlled
by the script, a block can be wrapped in a transaction:

$k.transaction(function() {
return $k.Registry.type("Article").createlnstance();
I

It is possible to configure if the script controls transactions or if the entire script should be
run in a transaction. The only exception are trigger scripts, which are always run as part of a
writing transaction.

A transaction may be rejected due to concurrency conflicts. An optional function can be
passed to $k.transaction() that is evaluated in such cases:

$k.transaction(
function() { return $k.Registry.type("Article").createlnstance() 1},
function() { throw "The transaction was rejected" }

)

Transactions, like the ones described above, may not be nested. There are, however, cases
in which nesting is unavoidable; for example, because a script function is called both by
functions that are already encapsulated in a transaction and functions for which this does
not apply. A so-called “Optimistic transaction” can be used in this case. This construction

Q00O

000

uses the external transaction - if there is one, or it starts a new transaction.

$k.optimisticTransaction(function() {
return $k.Registry.type("Article").createlnstance();
s

Constructions like this should be avoided, because a transaction represents a practical oper-
ational unit which is executed in whole or not at all. Either what is embedded makes sense
and is complete in itself, or is not.

Please note: A troubleshooting function in the event of failure of the optimistic transaction is
not available. If an external transaction exists, its troubleshooting function is executed in the
event of failure.

1.8.1.6 Modify elements

1.8.1.6.1 Create elements

// Create a new instance
var person = $k.Registry.type("Person").createlnstance();

// Create a new type
var blogType = $k.Registry.type("CommunicationChannel") .createSubtype();
blogType.setName("Blog") ;

1.8.1.6.2 Add and change attributes

Attribute values can be set with setAttributeValue(), which implies that a single attribute is
either already present or created. Existing attribute values are overwritten. An exception is
thrown when more than one attribute of a type is present.

person.setAttributeValue("familyName", "Sinatra");
person.setAttributeValue("firstName", "Frank");
// Overwrite the value "Frank" with "Francis""
person.setAttributeValue("firstName", "Francis");

createAttribute() allows to create more than one attribute of a type.

// Create two attributes
person.createAttribute("nickName", "01’ Blue Eyes");
person.createAttribute("nickName", "The Voice");

1.8.1.6.3 Add relations

A relation between two elements can be created with createRelation():

Q00O

000

var places = $k.Registry.query("places").findElements({name: "Hoboken"});
if (places.length == 1)
person.createRelation("bornIn", places[0]);

1.8.1.6.4 Delete elements

Any element can be deleted with the remove() function:

person.remove() ;

This also deletes all properties of the element.

1.8.2 Examples

1.8.2.1 Queries

Search for elements:

// Perform the query "articles" with parameter tag = "Soccer"
var topics = $k.Registry.query("articles").findElements({tag: "Soccer"});
for (var t in topics)

$k.out.print (topics[t].name() + "\n");

Return hits. A hit wraps an element and adds a quality value (between 0 and 1) and additional
metadata.

// Perform the query "mainSearch" with the search string "Baseball"
var hits = $k.Registry.query("mainSearch") .findHits("Baseball");
hits.forEach(function(hit) {

$k.out.print(hit.element() .name() + " (" + (Math.round(hit.quality() * 100))+ "¥D\n");
s

Convert query results to JSON:

var topics = $k.Registry.query("articles").findElements({tag: "Snooker"});
var jsonTopics = topics.map(function(topic) {
return {
name: topic.name(),
id: topic.idNumber (),
type: topic.type() .name()
}
s
$k.out.print (JSON.stringify(jsonTopics, undefined, "\t"));

OO

O

o~

o 1

&

ol I _

&

1.8.2.2 Runtime generated queries

The JavaScript APl also makes it possible to generate queries dynamically. Here are several
examples from a film network:

Search for films by year + name

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
query.addAttributeValue("name", "name");
query.findElements({year: "1958", name: "Vert*"});

The domain is transferred to the constructor. In case of internal names, the search automat-
ically looks for objects of this type. The setDomains() function offers more options

Year + number of directors >=3

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
query.addCardinality(‘‘imdb_film_director", 3, ">=");
query.findElements({year: "1958"});

Year + name of director

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year", ">=");

var directorQuery = query.addRelationTarget (‘‘imdb_film_director") .targetQuery();
directorQuery.addAttributeValue("name", "director");

query.findElements({year: "1950", director: "Hitchcock, Alfred"});

Alternatives (Or conditions)

var query = new $k.StructuredQuery("imdb_£film");
query.addAttributeValue("imdb_film_year", "year");

var alternatives = query.addAlternativeGroup();

alternatives.addAlternative() .addAttributeValue("name", "name");
alternatives.addAlternative() .addAttributeValue("imdb_film_alternativeTitel", "name");
query.findElements({year: "1958", name: "Vertx"});

Possible operators:

Operator name Short term | Description
containsPhrase Contains phrase
covers contains
distance Distance

equal == Equal

00O
000
o I J

equalBy

Corresponds to

equalCardinality

Equal cardinality

equalGeo

Equal (geo)

equalMaxCardinality

Cardinality smaller than or equal to

equalMinCardinality

Cardinality greater than or equal to

equalPresentTime

now (present)

equalsTopicOneWay

filter with

fulltext Contains string
greater > Greater than
greaterOrEqual >= Greater/equal
greaterOverlaps Overlaps from above
greaterPresentTime after now (future)
isCoveredBy is contained in

less < Less than
lessOrEqual <= Less/equal

lessOverlaps

Overlaps from below

lessPresentTime

before now (past)

notEqual I= Not equal

overlaps overlaps

range Between
regexEqual Regular expression

regexFulltext

Contains string (regular expression)

unmodifiedEqual

Exactly identical

words

Contains string

1.8.2.3 Create and change elements

Create a person

// Get the person type by its internal name
var personType = $k.Registry.type("Person");

// Create a new instance

var person = personType.createlnstance();

Q00O

ol I _

&

o 1

&

// Set attribute values
person.setAttributeValue("familyName", "Norris");
person.setAttributeValue("firstName", "Chuck");

Set the full name of a person

var familyName = person.attributeValue("familyName") ;
var firstName = person.attributeValue("firstName");
if (familyName && firstName)
{
var fullName = familyName + ", " + firstName;
person.setAttributeValue("fullName", fullName);

Set the value of an attribute

// Boolean attribute
topic.setAttributeValue("hasKeycard", true);

// Choice attribute

// - internal name

topic.setAttributeValue("status", "confirmed");

// - choice object

var choiceRange = $k.Registry.attributeType("status").valueRange();
var choice = choiceRange.choiceInternalNamed("confirmed");
topic.setAttributeValue("status", choice);

// Color attribute
topic.setAttributeValue("hairColor", "723F10");

// Date / Time / DateAndTime attribute
topic.setAttributeValue("date0fBirth", new Date(1984, 5, 4));
topic.setAttributeValue("lastModification", new Date());
topic.setAttributeValue("teatime", new Date(O, O, O, 15, 30, 0));

// FlexTime attribute

// - $k.FlexTime (allows imprecise values)
topic.setAttributeValue("start", new $k.FlexTime (1984, 6));
// - Date (missing values are set to default values)
topic.setAttributeValue("start", new Date(1984, 5, 3));

// Number (integer / float) attribute
topic.setAttributeValue("weight", 73);

// Interval
topic.setAttributeValue("interval", new $k.Interval(2, 4));

// String attribute

// - untranslated

topic.setAttributeValue("familyName", "Norris");

// - translated (language is an ISO 639-1 or 639-2b code)
topic.setAttributeValue("welcomeMessage", "Welcome", "en");

Q00O

ol I _

&

o 1

&

topic.setAttributeValue("welcomeMessage", "Bienvenue", "fre");
Create a new attribute

person.createAttribute("nickName", "Ground Chuck");

Create a new relation

var places = $k.Registry.query("places").findElements({name: "Oklahoma"});
if (places.length == 1)
person.createRelation("bornIn", places[0]);

Delete an element, including its properties
person.remove ()

Convert a string to an attribute valu. The ValueRange of an attribute type knows the valid
values of the attribute and can parse a string. It throws an exception if the string is not valid.

var statusRange = $k.Registry.type("status").valueRange();
var statusConfirmed = statusRange.parse("Confirmed", "eng");

Set change metadata

topic.setAttributeValue("lastChangeDate", new Date());
var userInstance = $k.user().instance();
// Ensure that a single relation to the user instance exists
if (topic.relationTarget("lastChangedBy") !== userInstance)
{

var relations = topic.relations("lastChangedBy");

for (var r in relations)

relations[r].remove();
topic.createRelation("lastChangedBy", userInstance);

1.8.2.4 REST

A REST script must define a respond() function that receives the HTTP request, the parsed
request parameters and an empty HTTP response. The script then fills header fields and the
contents of the response.

function respond(request, parameters, response)

{
response.setText ("REST example");

}
Restlet that returns a blob

function respond(request, parameters, response)

000
o 1

&

ol I _

&

{
var name = parameters["name"];
if (name)
{
var images = $k.Registry.query("rest.image").findElements({"name": name});
if (images.length == 1)
{
// Set the contents and content type (if known) from the image blob.
response.setContents (images[0] .value());
// Show the image instead of asking to download the file
response.setContentDisposition("inline");
}
else
{
response.setCode ($k.HttpResponse.BAD_REQUEST) ;
response.setText (images.length + " images found");
}
}
else
{
response.setCode ($k.HttpResponse.BAD_REQUEST) ;
response.setText ("Name not specified");
3
}

Restlet that creates an instance with an uploaded blob

function respond(request, parameters, response)

{
var formData = request.formData();
var name = formData.name;
var picture = formData.picture;
if (name && picture)
{
var city = $k.Registry.type("City").createlnstance();
city.setAttributeValue("image", picture);
city.setName (name) ;
response.setText ("Created city " + name);
}
else
{
response.setCode ($k.HttpResponse .BAD_REQUEST) ;
response.setText ("Parameters missing");
}
}
1.8.25 XML

Transforms query results into XML elements

function respond(request, parameters, response)

{

Q00O

ol I _

&

o 1

&

var name = parameters["name"];
if (name)
{

// Find points of interest

var topics = $k.Registry.query("rest.poi").findElements ({name:

// Write XML

var document = new $k.TextDocument();
var writer = document.xmlWriter();
writer.startElement ("result");

for (var t in topics)

{
writer.startElement ("poi");
writer.attribute("name", topics[t].name());
writer.endElement () ;

}

writer.endElement () ;
response.setContents (document) ;
response.setContentType ("application/xml") ;

}
else
{
response.setCode ($k.HttpResponse.BAD_REQUEST) ;
response.setContents("Name not specified");
}
}
XML output
<result>
<poi name="Plaza Mayor"/>
<poi name="Plaza de la Villa"/>
<poi name="Puerta de Europa"/>
</result>

Use qualified names

var document = new $k.TextDocument () ;

var writer = $k.out.xmlWriter();

writer.setPrefix("k", "http://www.i-views.de/kinfinity");
writer.startElement ("root", "k");
writer.attribute("hidden", "true", "k");
writer.startElement ("child","k").endElement () ;
writer.endElement () ;

XML output

<k:root xmlns:k="http://www.i-views.de/kinfinity" k:hidden="true">
<k:child/>
</k:root>

Define a default namespace

namel}) ;

Q00O

ol I _

&

o 1

&

var document = new $k.TextDocument();

var writer = $k.out.xmlWriter();

writer.startElement ("root");
writer.defaultNamespace("http://www.i-views.de/kinfinity");
writer.startElement("child") .endElement();
writer.endElement () ;

XML

<root xmlns="http://www.i-views.de/kinfinity">
<child/>
</root>

1.8.2.6 HTTP client

Load a picture via HTTP and store it as a blob

var http = new $k.HttpConnection();

var imageUrl = "http://upload.wikimedia.org/wikipedia/commons/e/e7/2007-07-06_GreatBriain_Portree.

var imageResponse = http.getResponse(new $k.HttpRequest(imageUrl));

if (imageResponse && imageResponse.code() == $K.HttpResponse.OK)

{
var portree = $k.Registry.type("City").createInstance();
portree.setAttributeValue("image", imageResponse);
portree.setName ("Portree");

Update the weather report of all cities

var instances = $k.Registry.type("City").instances();
var http = new $k.HttpConnection() ;
for (var i in instances)
{
var city = instances[i];
var weatherUrl = "http://api.openweathermap.org/data/2.5/weather";
var weatherRequest = new $k.HttpRequest(weatherUrl);
weatherRequest.setQueryData({q: city.name()});
try {
var weatherResponse = http.getResponse(weatherRequest);
if (weatherResponse.code() == $k.HttpResponse.0K)

{
var json = JSON.parse(weatherResponse.text());
var weather = json.weather[0].description;
city.setAttributeValue ("weather", weather);
}
} catch (e) {

3

Q00O

—

o I

1.8.2.7 Send e-mails

E-mails can be sent with the MailMessage object. To do so, an SMTP server must be config-
ured in the network (Settings -> System -> SMTP).

var mail = new $k.MailMessage();
mail.setSubject("Hello from " + $k.volume());
mail.setText("This is a test mail");
mail.setSender ("kinfinity@example.org");
mail.setReceiver("developers@example.org");
mail.setUserName ("kinf");

mail.send();

The user account “kinf” is used for authentication. The password is saved in the SMTP set-
tings.

1.8.2.8 Views

JSON structures can also be generated using the view configuration; this is possible for indi-
vidual objects as well as for lists of objects.

In the most straightforward case, an object is converted to JSON using the standard configu-
ration without additional context:

var data = element.renderJSON();

All structures defined by the configuration are then converted to JSON:

{
"viewType" : "fieldSet",
"label" : “Bern",
"elementType" : "instance",
"modNum" : 26,
"elementId" : "ID17361_141538476",
"type" : {
"elementType" : "instance",
"typeId" : "ID10336_319205877",
"internalName" : "City",
"typeName" : ‘““City"
3,
"properties" : [{
"values" : [{
"value" : "Bern",
"propertyId" : "ID17361_137824032"
}
1,
"schema" : {
"label" : "Name",
"elementType" : "attribute",
"internalName" : "name",
"maxOccurrences" : 1,
"attributeType" : "string",

"viewId" : "ID20838_426818557",

Q00O

o ¥
00®

"typeld" : "ID4900_317193164",
"minOccurrences" : 0
}
oA
"values" : [{
"typeIld" : "ID4900_79689320"

1,
"schema" : {
"label" : ‘‘AlternativeName/Synonym",
"elementType" : "attribute",
"internalName" : "alternativeName",
"attributeType" : "string",
"rdf-id" : "alternativeName",
"viewId" : "ID20839_64952366",
"typeld" : "ID4900_79689320",
"minOccurrences" : 0O
}
}, AL
"values" : [{
"target" : {
"typeId" : "ID10336_493550611",
"label" : ‘Museum of Fine Arts Bern",
"elementId" : "ID17362_205182965"
1,
"propertyId" : "ID17361_395925739"
oA
"target" : {
"typeld" : "ID10336_493550611",
"label" : ‘‘Swiss National Library",
"elementId" : "ID20401_126870015"
1,
"propertyId" : "ID17361_9264966"

1,
"schema" : {
"targetDomains" : [{
"elementType" : "instance",
"typeId" : "ID10336_493550611",
"internalName" : "point_of_interest",
"typeName" : ‘‘Point of interest"

1,

"label" : ‘‘contains point of interest",
"elementType" : "relation",
"internalName" : "contains_poi",
"viewId" : "ID20840_182208894",
"typeld" : "ID2052_332207092",
"minOccurrences" : 0

Q00O

o ¥
00®

You can also define a context in the form of an application or configuration object. A suitable
configuration for this context is then selected. The application “Android” is specified in the
following example:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application);

However, it is also possible to specify a configuration and let this configuration convert the
element. To do so, you generate a $k.ViewConfiguration from the configuration object.

var configurationElement = $k.Registry.elementAtValue("viewconfig.configurationName", ‘‘Android Art
var data = $k.ViewConfiguration.from(configurationElement) .renderJSON(element) ;

Since the JSON structure is rather extensive, you can also leave out certain properties in the
conversion by specifying the keys as additional parameters:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application, ["rdf-id", "viewId", "typeId", "propertyId", "modNum",

"viewType": "fieldSet",
"label": "Bern",

"elementType": "instance",
"elementId": "ID17361_141538476",
"type": {
"elementType": "instance",
"internalName": "City",
"typeName" : “‘City"
3,
"properties": [
{
"values": [
{
"value": "Bern"
}
1,
"schema": {
"elementType": "attribute",
"label": "Name",
"internalName": "name",
"attributeType": "string",
"maxOccurrences": 1
b
s
{

"schema": {
"elementType": "attribute",
"label": ¢‘AlternativeName/Synonym",

Q00O

—

"internalName": "alternativeName",
"attributeType": "string"

(-

"values": [
{
"target": {
"label": ‘“Museum of Fine Arts Bern",
"elementId": "ID17362_205182965"

"target": {
"label": ‘“‘Swiss national library",
"elementId": "ID20401_126870015"

3
1,
"schema": {
"elementType": "relation",
"targetDomains": [
{
"elementType": "instance",
"internalName": "point_of_interest",
"typeName" : ‘‘Point of interest"

1,
"label": ‘‘contains point of interest",
"internalName": "contains_poi"

1.8.2.9 Mustache templates
The following restlet function renders a document using the Mustache template library. It
expects the following schema of a template document:

e a string attribute (internal name "template.id") to identify a template

e a document blob (internal name "template.file") containing the template, e.g. an HTML
document

e a relation to a media type(internal name "template.contentType")

A query ("rest.articles") returns the elements that should be rendered. The Mustache library
is registered as "mustache.js".

function respond(request, parameters, response)

{

Q00O

—

o I

// Include Mustache library
$k.module ("mustache. js");

// Get template

var templateld = parameters["templateId"];

var templateTopic = $k.Registry.elementAtValue("template.id", templateld);

var templateText = templateTopic.attributeValue("template.file").text("utf-8");

// Find elements
var topics = $k.Registry.query("rest.articles").findElements(parameters);

// Prepare template parameters
var topicsData = topics.map(function(topic) {
return {
name: topic.name(),
id: topic.idNumber(),
type: topic.type() .name()
}
b
var templateParameters = {
topics: topicsData

};

// Render with Mustache
var output = Mustache.render(templateText, templateParameters);

// Return the rendered document
response.setText (output) ;
response.setContentType (templateTopic.relationTarget ("template.contentType") .name()) ;

1.8.2.10 Java native interface
Java can be accessed via JNI (Java Native Interface).

Caution: JNI is an experimental feature and has several restrictions:

e JNI cannot be used in triggers
e Itis not possible to define classes (e.g. for callbacks)
e Generics are not supported

e NI allows accessing system resources (files etc.), so take care when using JNI in REST
services

e JNI has to be enabled and configured in the configuration file of each application. The
classpath cannot be changed during runtime.

[JNI]
classPath=tika\tika-app-1.5.jar
libraryPath=C:\Program Files\Java\jre7\bin\server\jvm.dll

Q00O

ol I _

&

o 1

&

Basic example

// Import the StringBuilder class, without namespace
$jni.use(["java.lang.StringBuilder"], false);

// Create a new instance

var builder = new StringBuilder();

// Javascript primitives and Strings are automatically converted
builder.append("Welcome to ");

builder.append($k.volume());

// toJS() converts Java objects to Javascript objects
$k.out.print(builder.toString().toJS());

Text/metadata extraction with Apache Tika

$jni.use([

"java.io.ByteArrayInputStream",
"java.io.BufferedInputStream",
"java.io.StringWriter",
"org.apache.tika.parser.AutoDetectParser",
"org.apache.tika.metadata.Metadata",
"org.apache.tika.parser.ParseContext",
"org.apache.tika.sax.BodyContentHandler"
], false);

// Get a blob

var blob = $k.Registry.elementAtValue("uuid", "£36db9ef-35b1-48c1-9£f23-1e10288fddf6") .attributeVal
// Blobs have to be explicitely converted to Java byte arrays

var bufferedInputStream = new BufferedInputStream(new ByteArrayInputStream($jni.toJava(blob)));

// Parse the blob

try {

}

|

var parser = new AutoDetectParser();
var writer = new StringWriter();
var metaData = new Metadata();
parser.parse(bufferedInputStream, new BodyContentHandler (writer), metaData, new ParseContext ()
var string = writer.toString().toJSQ;
// Print extracted metadata
var metaNames = metaData.names().toJS().sort(
function(a,b) { return a.localeCompare(b) 1});
for (n in metaNames)
$k.out.print (metaNames[n] + " = " + metaData.get(metaNames[n])).cr();
// Print extracted text (first 100 chars)
$k.out.cr().cr() .print(string.substring(l, 100) + " [...]J\n\n(" + string.length + " chars)");

catch (e) A

$k.out.print ("Extraction failed: " + e.toString());

} finally {

}

bufferedInputStream.close();

1.8.3 Modules

Q00O

000

1.8.3.1 Define modules

A module is defined with the define() function. The argument is either a module object or a
function that returns an module object. A module should contain only a single definition.

Example: Define a module with a function jsonify())

$k.define({
/*
* Create a JSON object array for the topics
*/
jsonify: function(topics) {
return topics.map(function(topic) {
return {
name: topic.name(),
id: topic.idString(),
type: topic.type() .name()
s
I9N
}
s

define() allows to specify dependencies from other modules. The following script defines a
module that uses another module.

$k.define(["rest.common"], function(common) {
return {
stringify: function(topics) {
return JSON.stringify(common.jsonify(topics), undefined, "\t")
}
139N

1.8.3.2 Use modules
A module can be used either with require() or module().

require() expects an array of module names and a callback function. The arguments of the
callback function are the module ojects. require() returns the return value of the callback
function

var topics = $k.Registry.query("rest.poi").findElements({name: "Madrid"});
var json = $k.require(["rest.common"], function(common) {
return common. jsonify(topics);
s
$k.out.print (JSON.stringify(json, undefined, "\t"));

module() expects the name of a module and returns the module object.

var json = $k.module("rest.common") .renderTopics(topics);
$k.out.print (JSON.stringify(json, undefined, "\t"));

module() can also be used to include scripts that doe not define a module at all. The scriptis
evaluated and all declared functions are instantiated.

Q00O

000

1.8.3.3 AMD

To integrate JavaScript libraries that support the AMD standard, you first have to globally
define require() and define().

this.define = $k.define;
this.define.amd = {};
this.require = $k.require;

If a library defines a module with a certain ID and you want to register this library under a
different name, you can map the module IDs to registry IDs.

$k .mapModule ("underscore", "lib.underscore");

You can now register underscore.js as "lib.underscore" and use the "underscore" module
defined there.

1.8.4 Debugger

1.8.4.1 Debugging in the knowledge kuilder

The following wrapper script is an example for testing a restlet in the Knowledge Builder. It
can be defined in the script editor on the "Execute Script" tab as "Additional test script".

// Prepare request and response

var testRequest = new $k.HttpRequest("http://localhost");

var testResponse = new $k.HttpResponse();

// Call the restlet function respond() with the testbench parameters,
// which are available as a property named $k.testbenchParameters
respond(testRequest, $k.testbenchParameters, testResponse);

// Print the response header and contents

$k.out.print (testResponse.debugString()) ;

Breakpoints can be set on the tab "Debug".

1.8.4.2 Remote Debugger

Restlet scripts can be also be debugged with a remote debugger.

1. Enable a debug port in the REST bridge .ini file
[KRemoteDebuggerBridge]
port=9000
2. Install Eclipse and JavaScript Development Tools
3. Create a JavaScript debug configuration in Eclipse with a Mozilla Rhino connector

00O
000
o I J

Create, manage, and run configurations

Launch tab group for Javascript debugging

DEX| B3~

Mame: Fire
|typeﬁltertext | L7 Connect E;_// Source\l -] En\rironment\l B Qommorﬂ
5 & Apache Tomcat Connector
& Eclipse Application - - -
£4 Eclipse Data Tools [Mcrzﬂia Rhino - Attaching Connector A
B Generic Server This connector is used to attach to a running Mozilla Rhino debug process,

E Generic Server(External Launch)

& HTTP Preview Connector Properties

B J2EE Preview

4] Java Applet Host: localhost
31 Java Application Port: 9000

Ju JUnit

J JUnit Plug-in Test
[» m2 Maven Build

4 O5Gi Framework

@ Remote Java Application
4 9 Remote JavaScript

[% Fire|
@ Rhino JavaScript
Juy Task Context Test

¢ XSL
. . Apply Revert
Filter matched 22 of 22 items =
@ Debug | ’ Close

4. Start debugging

5. Enable "Show all scripts" to see all Javascripts of the bridge

%5 Debug i3 4 Servers e e T % B8 |[t9= Variables 52 95 Breakpoints| 5= Outline =
9 P
a @ Fire [Remote JavaScript] Layout 3 £ % =
a |58 K-Infinity [version - (Unknown build)] | Show Debug Toobar
4 % Scripts
fire-demo/rest.defect.js JavaScript 3 Show All Scripts
$ j p | % p i
% fire-demo/rest.hello js

View Management...
% fire-demo/restjson.js

% fire-demo/rest.poijs Java 3
s Mozilla Rhino - Attaching Connector (02.12,2013 11:25:01)

Focus on Active Task (Experimental)

6. Select "Open source" to view the source of a script (double click does not seem to work)
7. Set breakpoints in the source code

1.8.5 API extensions

1.8.5.1 Additional functions

The API can be extended by adding functions to the prototypes. The following example ex-
tends schema prototype objects to print schema information.

// Print the schema of the instances and subtypes of a type

Q00O

ol I _

&

o 1

&

$k

//
$x

3

//
$x

//
$x

}

//
$k

.Type.prototype.printSchema = function() {
this.typesDomain() .printSchema("Type schema of \"" + this.name() + "\"");
this.instancesDomain() .printSchema("Instance schema of \"" + this.name() + "\"");
this.subtypes() .forEach(function(subtype) {
subtype.printSchema() ;
B

Print information about a property type
.PropertyType.prototype.logPropertySchema = function() {
$k.out.print("\t" + this.name() + "\n");

Attribute types print their type
.AttributeType.prototype.logPropertySchema = function() {
$k.out.print("\t" + this.name() + " (Attribute of type " + this.valueRange().type() + ")\n");

Relation types print their target domains
.RelationType.prototype.logPropertySchema = function() {
$k.out.print("\t" + this.name());
var inverse = this.inverseRelationType() ;
if (inverse)
{ var inverseDomains = inverse.domains();
if (inverseDomains.length > 0)
{
$k.out.print (" (Relation to ");
var separate = false;
inverseDomains.forEach(function(inverseDomain) {
if (separate)
$k.out.print (", ");
else
separate = true;
$k.out.print ("\"" + inverseDomain.type().name() + "\"");

b
$k.out.print(")");
}
}
$k.out.cr();

Print all properties defined for a domain

.Domain.prototype.printSchema = function(label) {
var definedProperties = this.definedProperties();
if (definedProperties.length > 0)

{
$k.out.print(label + "\n");
definedProperties.sort(function(pl, p2) { return pl.name().localeCompare(p2.name()) 1});
definedProperties.forEach(function(propertyType) {
propertyType.logPropertySchema() ;
19N
}

Q00O

—

o I

// Print the entire schema
$k.rootType() .printSchema() ;

1.8.5.2 Define your own prototypes

The prototype of a semantic element is usually one of the built-in prototypes (Instance, Re-
lation etc.). It is possible to assign custom prototypes to instances of specific types with the
function maplnstances(internalName, protoype).

Example: A basket prototype

// Define a Basket prototype with a function totalPrice()
function Basket() { }

Basket.prototype.totalPrice = function() {
return this.relationTargets("contains") .reduce(
function(sum, item) {
return sum + item.attributeValue("price");
},
0);
}

// Set the prototype of instances of the basket type
$k.mapInstances("Basket", Basket);

// Print the total price of all baskets
var baskets = $k.Registry.type("Basket").instances();
for (var b in baskets)

$k.out.print (baskets[b] .totalPrice() + "\n");

For using within other scripts, the module needs to be loaded first:

$k .module (’myBasketSkript’);
var basket = $k.Registry().elementWithID(’ID_1237);
$k.out.print (basket.totalPrice() + "\n");

1.9 REST services

The REST interface can be used for read and write access to the semantic network. To do so,
you define resources (which describe the interface behavior when accessing a resource) in
the semantic network and services (which summarize several resources).

The behavior of a resource is controlled using scripts. In addition, predefined resources may
also be used.

Access takes place via HTTP requests that are structured according to the pattern

https://<hostname>:<port>/<service-id>/<resource-path-and-parameter>

Q00O

—

ol I J

o 1

&

1.9.1 Configuration

The REST components must be added in the semantic network. These define the necessary
schema, which is found in the “Technical” area -> “REST” in the Knowledge Builder.

The REST interface is usually provided by the bridge service. This responds to HTTP prompts
using the REST configuration in the network. The interface is already included in the tryout
version of the Knowledge Builder, and no bridge service is required.

Changes to the configuration in the semantic network do not automatically affect interfaces
that are already running. This occurs when the menu item “Administrator -> Update REST
interface” is executed in the main menu of the Knowledge Builder.

The bridge service requires a suitable configuration file (bridge.ini). The name of the server
(host), the semantic network (volume) and the REST service ID is entered in this. The line with
“services” can be omitted entirely, and the resources of all existing service objects are then
automatically activated.

[Default]
host=localhost
loglevel=10

[KHTTPRestBridge]
volume=demo
port=8086
services=core,extra

1.9.2 Services

Services combine several resources. Resources may be featured by several services.

The service editor in the Knowledge Builder shows the resources in its structure view. A new
resource is created using “Link new” and is added to the service. A resource that has already
been defined is added to the service using “Link existing”.

1.9.3 Resources

Resources describe the response in the event of an HTTP prompt at the interface. There are
the following types of resources:

Resource Description

Script resource Resources that can be defined by scripts.

Built-in resource Predefined resource with a response that is defined by the sys-

tem. These resources are created by the component.

Static file resource Delivers files from the file system.

A resource has the following configurable properties:

AN

&

OO0

o 1

&

ol I _

&

Property Description

Path pattern Defines the URL of the resource relative to the address of the
service. The path can be parameterized by adding parameters
in curly brackets:

albums/{genre}

Several parameters can be specified. Each parameter must,
however, be a part completely separated by “/":

albums/{genre}-{year}

is not valid,

albums/{genre}/{year}

is valid
Part of service Services that use this resources
Description Description for documentation purposes

Requires authentication | Authentication is required for access to the resource

1.9.3.1 Methods

A resource is linked to one or more methods. This defines the response as well as the sup-
ported input and output types (content types). The methods and types of the HTTP request
are used to select a suitably configured method.

In the structure view, methods are displayed as subelements of resources and can be cre-
ated/deleted there.

Method Description

HTTP method Supported HTTP methods (GET, POST, PUT, DELETE). Multiple
entries are possible.

Input media type Only POST/PUT: expected content type of the content of the
enquiry.

Output media type Content type of the response. If the request specifies an ex-
pected content type via “Accept,” the output media type must
match this.

Script Registered script for the definition of the response (only rele-

vant for script resources)

OO

&

O

o 1

&

ol I _

&

Transaction Transaction control (only relevant for script resources)

Transaction control is relevant for write accesses to the semantic network because these are
only possible within a transaction.

Transaction control Description

Automatic For GET read access only; for POST/PUT/DELETE the script is
executed in a transaction.
This is the default setting.

Controlled by script No transaction; the script must control this itself.
Read Read access only; the script cannot start a transaction.
Write The script is executed in a transaction.

1.9.3.2 Script resource

A script is used to define the response to an HTTP query for a method of a script resource.
For this purpose, the respond function (request, parameters, response) that must be defined
in the script is called from the interface.

Argument Type Description

request $k.HttpRequest Request (URL, header etc.)
parameters Object Parameter extracted from the request
response $k.HttpResponse Response

The function then fills out the header and content of the response. There is no return value.

If a type has been defined for a parameter (e.g. xsd:integer), then the converted value is
transferred. If not, a string is transferred. Parameters that can occur more than once by
definition are always transferred as an array.

If an output content type was defined for the response in the method, this is set automati-
cally. Alternatively, it is also possible to define the content type in the script.

The following script searches for albums and converts them into JSON objects. The parame-
ters of the resource are transferred to the query as search parameters.

function respond(request, parameters, response)

{
var albums = $k.Registry.query("albums").findElements (parameters);
var albumData = albums.map(function(album) {

Q00O

ol I _

&

o 1

&

name: album.name(),
id: album.idString(),

response.setText (JSON.stringify(albumData, undefined, "\t"));
response.setContentType ("application/json");

You could use this script, for example, in the resource

return {

s
}
albums/{genre}/{year}

and use the search parameters “genre” and “year” as the search conditions in the “albums”

query.

1.9.3.3 Built-in resources

Built-in resources are predefined resources with a response specified by the system. Each
predefined response can be assigned using an assigned value of the string attribute Rest re-

source ID.

Rest resource ID

Method

Description

BlobResource

GET

Returns the binary content of an existing
blob attribute.

The blob attribute is identified using the
query parameter “blobLocator”.

Optionally, the parameter “allowRedirect”
can be used to define that blobs may not be
obtained directly by the blob service (fixed
value: false).

BlobResource POST, | Changes the binary content of a blob at-
PUT tribute.
The blob attribute is identified using the
query parameter “blobLocator”. Depend-
ing on the type of the blobLocator, a
new attribute is created or an existing one
changed.
EditorConfigResource GET, Output and import of an XML representa-
POST, | tion of a semantic element.
PUT
ObjectListResource GET Returns a table of instances or subtypes of

the specified type. The set of objects can
optionally be filtered, sorted or be defined
directly.

Q00O

—

ol I J

C=4
ObjectListPrintTemplateResource | GET Returns a table of instances or subtypes in
printed form. The print template must be

specified.
ObjectListPrintTemplate Re- | GET Returns a table of instances or subtypes in
sourceWithFilename printed form. The print template must be

specified. The parameter (filename) is not
evaluated, and is only used to improve its
use in the browser.

TopiclconResource GET Returns the icon or image of the specified
semantic element.

Version 4.1 or higher of i-views allows a JavaScript (rest.preprocessScript) to be attached to
the resource. The function it contains (preprocessParameters (parameters, request) can
supplement the parameters. Any blobLocator (or the associated blob attribute) still missing
can, for example, be determined from the parameters transferred, which would otherwise
require an additional script resource call.

BlobResource
This integrated resource allows contents of file attributes to be loaded and saved.
Download

The “GET” method can be used to download the binary content of an existing file at-
tribute. The file attribute is then identified by means of the query parameter “blobLocator.”

Upload

In the case of an upload, the parameter “blobLocator” either identifies an existing file at-
tribute or a potential file attribute (i.e. new one to be created). The syntax for a potential
attribute has the following form: “PP~ID1_115537458~1D36518_344319903,” whereby the
first ID represents the semantic element and the second ID the attribute prototype.

The binary data can optionally be transmitted as a multipart or single part. In the case of
multipart, several files can potentially be uploaded at the same time, which, of course, only
makes sense when each file is written to a newly created file attribute. In any case, the file
name must be set for every file transmitted.

The optional parameter “binaryKey” defines the form key used to transmit the binary data in
multipart.

If the optional Boolean parameter “uploadOnly” is set to “true,” then the binary data are
uploaded only, and are not written into the file attribute. This mode is used in interplay with
the ViewConfiguration Mapper. The JSON value is returned in this case (fileName, fileSize,
binaryContainerld), which can be written into the attributes using the mapper in a second
step. The content type of the returned JSON value is normally “application/json”, however
can be set to another value using the parameter “overrideContentType” should the browser
(e.g. IE) encounter problems doing so.

Topic icon

The following path can be used to load the image file to a given topic. If an individual does not
have an image file of their own, the image file of the type is used, which is, in turn, inheritable.
The optional parameter “size” can be used to select the image file with the size that is most
suitable, providing several image sizes are saved in the semantic network.

http://{server:port}/baseService/topiclcon/{topiciD}?size=10

Object list
The following path can be used to request an object list in the JSON format:
http://{server:port}/baseService/{conceptLocator}/objectList

The object list type is referenced via the “conceptLocator” parameter, which is followed by
the format for topic references in the remaining URL (see link).

Alternatively, the “conceptLocator” can also reference the single prototype (individual or type)
of the type to be used.

The optional “name” parameter determines the object list to be used for the output.
Filter
The optional and multi-value query parameter “filter” can be used to filter the object list. A
filter can take two different forms:

1. <column name/column no.> ~ <operator> ~ <value>

2. <column name/column no.> ~ <value>
The available operators are: equal, notEqual, greater, less, greaterOrEqual, lessOrEqual, equal-
Cardinality, containsPhrase, covers, isCoveredBy, distance, fulltext, equalGeo, equalPresent-

Time, greaterOverlaps, greaterPresentTime, lessOverlaps, lessPresentTime, equalMaxCardi-
nality, equalMinCardinality, overlaps, unmodifiedEqual.

Sorting
The optional and multi-value query parameter “sort” can be used to sort the object list. The
order of sorting parameters determines the sorting priority. Sorting can be specified in two
forms:

1. <column name>

2. {-}<column no.>
If you prefix a minus sign in variant 2, sorting is performed in descending order, otherwise it
is in ascending order.
Setting the starting set of the list

The optional “elements” query parameter can be used to transmit a comma-separated list
of topic references to be used as list elements.

As the list of elements can be very long, the request can also be sent as POST and the param-
eters can be transferred as form parameters.

Setting the starting set of the list via KPath

The optional query parameters “elementsPath” and “startTopic” can be used to calculate
the initial elements of the list. If these parameters are not set, the initial set consists of all
individuals or all subtypes (in case of a type object list) of the type specified via “conceptLo-
cator.”

Here “elementsPath” is a KPath expression and “startTopic” is a reference to the topic with
which the evaluation of the KPath is to be started. The form of the “startTopic” parameters
corresponds to that of the “conceptlLocator.”

Inheritance

Inheritance can be suppressed via the optional query parameter “disableInheritance.” The

00O
oy I
ol I

parameter only makes sense if no “elementsPath” is set.

JSON output format (example)

{
rows: [{
topicID: "ID123_987654321",
row: ["MM",
"Mustermann",
"Max",
"111,
"m.mustermann@email .net",
"10",
ll6ll s
"2000-01-01",
‘““project A, project B"]
1,
{
topicID: "ID987_123456789",
row: ["MF",
"Musterfrau",
"Maxine",
222",
"m.musterfrau@email .net",
"10",
"8",
"2000-01-01",
‘“project X, project Y, project
H,
columnDescriptions: [{
label: "Login",
type: "string",
columnId: "1"
1,
{
label: ‘‘Last name",
type: "string",
columnId: "2"
1,
{
label: ‘“First name",
type: "string",
columnId: "3"
1,
{
label: ‘‘“Telephone extension",
type: "string",
columnId: "4"
1,
{
label: ‘‘email",
type: "string",
columnId: "5"

+s

ZII]

{
label: ‘‘Availability",
type: "number",
columnId: "6"

1,

{
label: ‘‘Expenditure",
type: "string",
columnId: "7"

1,

{
label: ‘‘created on",
type: "dateTime",
columnId: "8"

1,

{
label: ‘“Project",
type: "string",
columnId: "9"

]

}

Object list print template

The following path can be used to fill an object list in a print template for list and download
the result:

http://{server:port}/baseService/{conceptLocator}/objectList/printTemplate/
{templateLocator}/{filename}

The service functions exactly the same way as retrieving an object list, however, as an addi-
tional parameter, features a reference to the individual of the type print template for list in
the semantic network.

“templateLocator” must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser
performance.

The header field “Accept” is used to control the output format into which conversion occurs.
If there is no header field, or the value is “*/*", no conversion occurs. Accept with multiple
values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-
cept” header field. This is necessary when the user would like to call the request from a
browser, and has no influence on the header fields.

Print topic

The following path can be used to fill out a topic in a print list template and download the
result:

http://{server:port}/baseService/{topicLocator}/printTemplate/
{templateLocator}/{filename}
“templateLocator” must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser
performance.

The header field “Accept” is used to control the output format into which conversion occurs.
If there is no header field, or the value is “*/*", no conversion occurs. Accept with multiple
values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-
cept” header field. This is necessary when the user would like to call the request from a
browser, and has no influence on the header fields.

Document format conversion
You can use the following path to convert a document to another format (e.g. odt in pdf):
http://{server:port}/baseService/jodconverter/service

The service maps the JOD converter (see http://sourceforge.net/projects/jodconverter/) and
is used for downward compatibility for installations that used to be operated with the JOD
converter.

For the service to work OpenOffice/LibreOffice (version 4.0 or above) must be installed and
the configuration file "bridge.ini" must have an entry that refers to the "soffice" file.

[file-format-conversion] sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

1.9.3.4 Static File Resource
Delivers files from the file system.

With this type of resource, you merely use Path pattern to specify the directory under which
the files are delivered. The directory is addressed relative to the content directory of the REST
bridge.

Example:

Enter an icons directory with the file bullet.ong. The path pattern of the resource is icons, the
corresponding service has the Service ID test. The file bullet.png is thus accessed via:

http://localhost:8815/test/icons/bullet.png

1.9.3.5 Resource parameters

The parameters for the resource can be defined below methods. This is not absolutely
essential, does, however, have a number of advantages:

e The parameters can be checked and converted by using type specifications (e.g. in num-
bers or objects)

e Documentation for customers

The following parameter properties can be configured:

Parameter name Name of the parameter

000
o 1

&

ol I _

&

C=4
Style Type of parameter
e path (part of the path of the URL)
e query (query parameter of the URL)
o header (HTTP header)
Type Data type of the parameter. Parameters have been validated

and converted when passed to the script.

Repeating Parameters may occur multiple times.
When this is activated, an array of values is always passed to
the script, even if there is only one parameter value in the re-

quest.
Required Parameter must be specified
Fixed value Default value when no parameter was specified.

1.9.4 CORS

In the case of OPTIONS requests, the REST interface responds by default with

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,Content-Type, Accept

These headers can be configured in the configuration file (bridge.ini):

[KHTTPRestBridge]
accessControlAllowOrigin=http://*.i-views.de
accessControlAllowHeaders=0rigin, X-Requested-With,Content-Type, Accept

1.9.5 OpenAPl documentation

i-views offers the possibility to generate OpenAPI| 2.0 documentation for configured services.
For this purpose, service configurations and resource configurations can be enriched with
documentation data.

1.9.5.1 Configuration

Service

Property | Description Mapping
to Ope-
nAPI 2.0

000
o 1

&

o] 1 J

&

C=4

Service Free text description of the service; supports GitHub Flavored
Descrip- Markdown
tion info.description
Service Version specification in forms of a free text. It is recommended
Version to follow the Semantic Versioning.

info.version
Service ID

info.title
Swagger | Script which generates reusable OpenAPI 2.0 definitions in
Defini- forms of a JSON object.
tions definitions

Resource

The Resource Description is not used for OpenAPI documentation, since descriptions in Ope-
nAPI are intended to be used on method level only.

Method
The mappings to OpenAPI elements are specified relatively to paths.{path}.{method}

Prop- Description Mapping to Ope-
erty nAPI 2.0

Method Free text description of the resource; supports GitHub Fla-

de- vored Markdown

scrip- .description
tion

Input The name of the media type configured here (e.g. applica-

me- tion/json) describes the format which is required as input for

dia the request. .consumes.0
type

Out- The name of the media type configured here (e.g. applica-

put tion/json) describes the format in which the request will re-

me- spond. .produces.0

dia

type

Re- See section Request Body special parame-
quest ter with property

Body in: "body"

OO0
of X _
O
O
O

C=4
Re- See section Response
sponse
.responses.{code}
Parameter

The mappings to OpenAPIl elements are specified relatively to paths.{path}.{method}.parameters.{index}

Property Description Mapping to Ope-
nAPI 2.0
Parameter Free text description of the parameter; supports
Description GitHub Flavored Marlkdown
.description
Parameter
name
.name
Repeating In case of path parameters, this option MUST NOT be
enabled.
.collectionFormat: "multi"
Required In case of path parameters, this option MUST be en-
abled.
.required
Style
.in
Type
.type

Request Body

In OpenAPI 2.0, the request body is represented in forms of a special parameter. The map-
pings relate to this parameter object:

Property

Name

Request
Body
scription

Request
Model

Response

De-

Description Mapping
to OpenAPI
2.0

Denomination of the special request body parameter for
OpenAPI 2.0

.name
Free text description of the body; supports GitHub Flavored
Markdown
.description
Script which generates a JSON schema object, which in turn
describes the format of the body.
.schema

For a valid OpenAPI documentation, at least one possible response needs to be documented
for each request. The specified mappings relate to the response object.

Property

Response
Code

Response
Descrip-
tion

Response
Model

Description Mapping to
OpenAPI 2.0
HTTP status code of the response Key

Free text description of the response; supports GitHub Fla-
vored Markdown

.description

Script which generates a JSON object, which in turn de-
scribes the format of the response.
.schema

JSON schema definitions

For generating JSON schema for a further description of input and output, scripts can be
used at different spots. The scripts allow usage of a subset of the JSON schema standard,
which can be looked up at the OpenAPI specification website.

Example script Swagger Definitions:

function swaggerDefinitions() {
return {

Q00O

000

"Example": {
"properties": {
nign: { "type": "integer" },
"name": { "type": "string" }

Example script Request Model with reference to the definition above:

function swaggerJSONSchema() {
return {
"$ref": "#/definitions/Example"
}

1.9.5.2 Generating the APl documentation
Manual generation within the KB

For generating a .json file manually using the OpenAPI documentation within the Knowledge
Builder, the button Export as OpenAPI 2.0 is available above the list of the services.

CLI

The same export is provided by means of the command line interface:

bridge-64.exe -exportBuiltInRequestAPI {filename} {serviceID}

As REST APl endpoint

By means of the script resource, a REST endpoint can be created which returns the APl doc-
umentation. The script resource requires a GET method with Output media type

application/json; charset=utf-8

and a script with the following content:

function respond(request, parameters, response) {
// Here, the internal ID of the service configuration object needs to be inserted, NOT the val
var service = $k.Registry.elementWithID(’<ID der Service-Konfiguration>’)
var openAPI = service.callBehaviour(’asSwaggerObject’)
delete openAPI.definitions.Context
delete openAPI.definitions.RenderContext
// Extract the service base path from the request
openAPI.basePath = /(httpls]?:\/\/)?([A\/\s1+) (\/.*)\/.+/gm.exec(request.url()) .pop()
response.setContents(JSON.stringify(openAPI, null, ’\t’))
response.setCode0k ()

00O
000
o I J

1.10 Reports and printing

You can use the printing component to use document templates (ODT/DOCX/XLSX/RTF files)
with KPath expressions on objects or object lists and then use them to generate an adapted
output file, which can be either printed or stored.

The adding of the printing component via the Admin tool creates configuration schemas for
objects (“print template”) and lists (“print template for lists”) in the semantic network. The ex-
istence of this component is prerequisite for the print function being available in Knowledge
Builder or via the REST interface.

1.10.1 Create print templates

In Knowledge Builder, print templates are created in the “Technical -> Printing component”
area. Each print template object contains a print template document (ODT, DOCX, RTF) and
a relation that specifies to which objects the print template is to be applied.

The following example shows an ODT print template for objects of the “Task” type.

—
| ,O Druckvorlage | Druckvorlage fiir Listen — 'ﬁ' D
ORDNER - -
KARTENVERWALTUNG Q
TECHNIK Name ~
» LF Auftrage Leistungsnachweis-mit-AP
» & Registrierte Objekte Leistungsnachweis2
» & Rechte i i
= Leistungsnachweise

¥ ¥ Trigger Druckvorlage fir Task
» £} Druckkomponente v
» L¥ REST
» £ View-Konfiguration Druckvorlage
» £ Gesamtwissensnetz Druckvorlage fir Task
» £} Kerneigenschaften

Attribute

Dokument (Druckvorlage) = | taskodt ‘?D

Mame = | Druckvorlage fiir Task

Attribut hinzufiigen

Relationen

Druckvorlage fir = Task

Community

The following chapters explain how print template documents are created.

1.10.1.1 Create RTF templates

The RTF template files can contain evaluable KPath expressions with the key words KPATH_EXPAND

and KPATH_ROWS as well as calls for registered KScripts with the key words KSCRIPT_EXPAND

) (

oI I J
oI I J

and KSCRIPT_ROWS. The path expressions or the name of the script to be called are always
placed between angle brackets and after the key word, separated by a space.

KPATH_EXPAND

The KPath expression after this key word should return a single semantic object or a simple
value (date, string etc.). In the evaluation the original expression is replaced by the result.
The formatting of the expression is retained, and breaks in the value are converted into line
breaks.

Example:
The template is:

Sender:
<KPATH_EXPAND @$address$/rawValue()>

After the evaluation the output file says:

Sender:

intelligent views gmbh
Julius-Reiber-Str. 17
64293 Darmstadt

KSCRIPT_EXPAND

As an alternative to the path expression, KSCRIPT_EXPAND can be used to call a registered
KScript. The output of this script (script elements with <output>) is transferred to the doc-
ument. Scripts are registered in the Knowledge Builder in the folder TECHNICAL/Registered
objects/Scripts

Example:
The template is:

<KSCRIPT_EXPAND aScriptWithOutputlto9>
After the evaluation the output file says:
123.456.789

KPATH_ROWS

This expression must be in a table. The KPath expression after this key word must return a
list of semantic objects. During evaluation the table row of the KPATH_ROWS expression is
evaluated once for each result of the KPath expression. This allows tables to be completed
dynamically. By the way, it does not matter which column contains the KPATH_ROWS expres-
sion.

Example:
The template is:

Parts (<KPATH_EXPAND topic()/~$hatParts$/size()> | Note
pieces)

OO

O

o~

o] 1 J

/—
&

ol 1}

&

<KPATH_EXPAND topic()><KPATH_ROWS <KPATH_EXPAND
topic()/~$hatPart$/target()/sort(@$names$, true)> topic()/@$note$>

After the evaluation the output file says:

Parts (3 pieces) Note

RTF print

ODT print Replaces RTF print
Conversion service Optional service

KSCRIPT_ROWS

In case of KSCRIPT_ROWS the objects for the table rows are determined via a registered
KScript. The name of the registered script is specified directly after KSCRIPT_ROWS. The script
must be of the KScript type and return the objects for output.

Example:
The template is:

Column1 Column2

<KSCRIPT_ROWS allPersons><KPATH_EXPAND | <KPATH_EXPAND @$firstname$>
@$lastname$>

After the evaluation the output file says:

Column1 Column2
Meier Peter
Schulze Helmut

1.10.1.2 Create ODT documents (OpenOffice)
Printing using the ODT format (Open Document Text, open standard) has many advantages
compared to the RTF format:
e The embedded script instructions are not part of the text, and are instead filed in special
script elements. This ensures that the formatting is not destroyed by lengthy scripts.

e The ODT format supports a large set of format instructions (comparable with MS Word)
that RTF cannot process.

00O
000
o I J

e As a format, RTF does not have a uniform standard (MS Word can, for example, “do
more” than the standard).

e Editing of the RTF templates is highly fragile. MS Word, above all, tends to supplement
the templates with control elements (for example, the cursor position current during
the most recent editing), preventing the scripts from being reliably identified.

ODT templates can be created using OpenOffice or LibreOffice. They are created the same
way as RTF templates are created, with the only difference being that the path/script instruc-
tions are saved in script elements, as the following diagram shows.

Script bearbeiten | &J

Inhalt
_ oK
Script-Typ [<Path
) URL Abbrechen
© Ied Hilfe
@5familiennames - « || *

m

b

The script field can no longer be integrated in LibreOffice 5. As an alternative to this, the
“Input field” can be used:

Insert > Field command > Other field commands (alternative keyboard shortcut Ctrl+F2)

The input field is found there on the “Functions” tab.

00O
000
o I J

Felder X 1 .) |

Dokument |Qu Ewemei5e| Funkticnen |Dokumentir1fo I‘u"a riablen IDaten bank |

Typ Format Mame
Bedingter Text
Eingabeliste

Hinweis

Makro ausfihren
Platzhalter

Zeichen kombinieren
WYersteckter Text
Versteckter Absatz Y

ScriptFunction

“Note” is equivalent to the previous “Script type”; after clicking on insert, another window
opens in which the script can be entered.

a8 -
Eingabefeld 2

Bearbeiten

ScriptFunction

einScript-» eineFunktion()

Hilfe | [QK l | Abbrechen

Available script types

There are the following script types:

e KPath : analogous to KPATH_EXPAND
e KScript : analogous to KSCRIPT_EXPAND
e KPathRows : analogous to KPATH_ROWS
e KPathimage : for embedding images

e ScriptFunction: Calls a function of a registered script. A string with the following format
is expected as text:

ScriptID->Functionname ()
The function call is automatically expanded by two arguments: the semantic element
and the variables determined by the environment

An example of a script that was called:

function headerLabel (element, variables)
{
return element.name().toLocaleUpperCase();

}

ScriptRowsFunction: Analogous to ScriptFunction. Table rows are generated for the
returned objects, analogous to KPathRows.

ScriptimageFunction: for adding bitmap images
ScriptSVGImageFunction: for adding SVG drawings

DataPath: The “script for generating JSON contents” must be set on the print template.
The corresponding key can now be used to access the values of the JSON object.

Example of generating the JSON object:

function templateData(element)

{
return {
name: element.name(),
idNumber: element.idNumber(),
someData: { idString: element.idString() }
}
}

To access the value idString, for example,
someData.idString

must be set as text.

DataRowsPath: In table rows or sections (Libre Office only), DataRowsPath can be used
to transform an array of objects in the templateData JSON to a table or sequence of
sections in the printed document. Each object in the array is transformed into a new
row with identical formatting as the row the DataRowsPath element is placed in. This
allows having lists of variable length in the printed document. DataPath and DataCon-
ditionPath elements in the same table row or section as a DataRowsPath element are
interpreted relative to the path of the DataRowsPath element.

function templateData(element) {
return {
rowData: [
{ name: "Element 1", someValue: 123 },
{ name: "Element 2" }

DataConditionPath: Like DataRowsPath elements, DataConditionPath can be placed
in table rows or sections. Unlike DataRowsPath elements, DataConditionPath can ref-
erence anything in the templateData JSON, not only arrays of objects. When the refer-
enced property in the templateData JSON is a JavaScript falsy value (false, undefined,

00O
o] 1 J

&

o] 1 J

&

null, 0 or an empty String) or an empty Array, the table row or section the DataCondi-
tionPath element is placed in is removed from the printed document.

File attributes or URLs can be used for embedding images. When URLs are used, an attempt
is made to load an image from the address specified.

Embedded images are always sourced in their original size (at 96d dpi). If another size should
appear in the printout, a frame with the required dimensions (absolute dimensions in cm
must be used!) must be built around the script element. The resulting embedded image is
then fitinto the frame so that the frame dimension is not exceeded while retaining the image
aspect ratios.

1.10.1.3 Create DOCX documents (Micrsoft Word)
DOCX templates can be created using Microsoft Word 2007 or higher.

They are created the same way as RTF templates are created, with the only difference being
that the path/script instructions are saved in text content control elements.

To insert the control elements, it is first necessary to activate the developer tools in Word. To
do so, go to the Office menu, open the Word options, go to the Popular commands category
and activate the option Show Developer tab in the ribbon. Now go to the Developer tools
tab and activate Design mode.

T et S e ————— - ———

at Vemnweise Sendungen Uberprifen Ansicht Entwicklertools

Aa|Aa|[S EB |1E Entwurfsmndus| g 5 Schema N
% Eigenschaften +] Transformation o
'—TI .j .:lg -ﬁ' [struktur ., Dokument

LE Gruppiere 4= Erweiterungspakete || <chitzen

Steuerelemente XML Schutzen

=]
W]

| ' | Text L T |

Ein Mur-Text-Inhaltssteuerelement

einfugen.

To add KScript/KPath expressions, insert a Text-only content control element. The text of
the control element is replaced by the calculated text. Go to the properties of the control
element (via the context menu on the closing bracket) and specify the KScript or KPath under
Title. If you leave the title empty, the text of the control element will be used instead. Enter
the script type under Tag. The available script types are all the types available in ODT, with
the exception of KPathimage.

00O
000
o I J

: name() |

Name: | KPath | | KPath

Eigenschaften von Inhaltssteuerelementen Iﬂﬁ

Allgemein
Titel: |name()
Tag: |KPath
|| Formatvorlage zum Formatieren von Inhalt verwenden

Formatvorlage: | Absatz-Standardschriftart
M

Sperren
|| Das Inhaltssteuerelement kann nicht geléscht werden.
| Der Inhalt kann nicht bearbeitet werden.

Mur-Text-Eigenschaften

[wagenriiddaufe zulassen {mehrere Absétze)
] Inhaltssteuerelement beim Bearbeiten des Inhalts entfernen

[K, J | Abbrechen

1.10.2 Create print templates for lists

Print templates for lists are saved in the “TECHNOLOGY/Print components” area in the Knowl-
edge Builder. Each “Print template for lists” object contains a print template document (XLSX)
and a relation that specifies to which objects the print template is to be applied. Optionally,
an object list can be specified that should be used for generating the output. This allows the
format of the list that the user sees on the screen, and the format of the list that was output,
to be different.

When the attribute “Document (print template)” was not created, then when a document
is generated, an Excel file is generated that contains one spreadsheet with the data in the
object list and the column headings from the object list configuration, i.e. an Excel file does

00O

:: i-views 5.3
00O 345634

not necessarily have to be specified as the print template.

The following example shows a print template for lists with objects of the “Task” type.

L
| p| Druckvo | Druckvorlage fir Listen — 'u‘ D
KARTENVERWALTUNG | 9
» () Objekte
» " Relation Name
» /N Attribut Task-Liste
TECHNIK
» IF Auftrage
< >
» o Registrierte Objekte
¥ & Rechte Druckvorlage fir Listen
b 37 Trigger Task-Liste
» £} Druckkomponente
» 3 REST Attribute
» L View-Konfiguration
b £% Gesamiwissensnetz Dokument (Druckvaorlage) = | vorlage.xsx |‘? D
» £} Kerneigenschaften MName = | Task-Liste |
Attribut hinzufiigen

Relationen

Druckvorlage fiir = Task

Objektliste = kompakte Liste zum Drucken

Ly Relation hinzufiigen

XLSX templates can be created using Microsoft Excel 2007 or higher. These templates only
function with object lists.

Creating the Excel file

A standard Excel file is used as a template, and must include an additional spreadsheet called
“Data". This spreadsheet is subsequently filled with the object list data, and this without
headings and beginning with cell A1.

00O
o] 1 J

Start Einfagen Seitenlayout Farmeln Daten Uberpriifen Ansicht PowerPivat & e = R RS

% Calibri =11~ =|=* standard - A i
2k
By~ F &£ U- A A = B 2 % o - 44
Einfiigen o oo Formatvorlagen Zellen
- 7 o G- A EE B L1 #,0 - - | @2
Zwischenablage Schriftart Fl Ausrichtung - Zahl Bearbeiten
Al - K | Bill

A B C
Bill

-

1

2 |Joe

3 John
4 Mary
5 Alfred
6

7
M 4 » M| Tabele [T4] I
Bereit | |[Eom 1w0% (=)

The other spreadsheets can reference data from the “Data” sheet in formulas. i-views ensures
that all formulas are calculated again as soon as the completed Excel file is next opened using
Excel.

1.10.3 Document format conversion with Open / LibreOffice

The output format of the print operation corresponds to the template used. If you would like
to receive a different output format, you have to set up a converter.

To do so, you need an installation of LibreOffice or OpenOffice Version 4.0 or above on the
computer that is to perform the conversion. This is usually located in the same place as the
bridge or Job-Client that also executes the print operation.

In the configuration file (bridge.ini, jobclient.ini, etc.) you also have to specify the path to
the "soffice” program which is part of the LibreOffice/OpenOffice installation and located in
the "program" subdirectory there. This must be specified as an absolute path; relative paths
(..\LibreOffice\etc.) are not possible here.

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

Conversion service

If you do not want to keep a LibreOffice/OpenOffice installation on all workstations or server
installations from which formats are to be converted, an appropriately converted REST bridge
can perform the conversion.

To do so, the .ini file of the REST bridge must have the following format:

[Default]
host=localhost

[KHTTPRestBridge]
port=3040
volume=cardAdmin

OO

&

O

o] 1 J

&

o] 1 J

&

services=jodService
[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

In the Admin tool, you enter the address at which the conversion service can be reached
under system configuration/components/conversion service.

Example:
http://localhost:3040/jodService/jodconverter/service

Document formats

To ensure output formats are available, appropriately configured objects of the “Converter
document format” type must be available in the network.

The important thing is that not all formats can be converted into all formats. The most
important ones are:

Name Exten- Mime type
sion
Portable Document Format | pdf application/pdf
OpenDocument Text odt application/vnd.oasis.opendocument.text
Microsoft Word doc application/msword

1.11 Tagging
The tagging component allows objects from the semantic network (persons, topics, etc.) to
be found or be created in documents.

Tagging requires:

e A configured tagging component in the semantic network
e Atagging software (Intrafind, OpenNLP) that finds potential objects in a text

Tagging is performed in three steps

1. The document text for tagging is defined (e.g. the value of a text attribute)

2. The text is passed on to the tagging software, which analyzes the text and delivers a
series of tags

3. The configuration is used to search for existing objects in the semantic network for each
tag, and to create any potentially new objects. The objects are linked with the document
by means of a relation.

00O
000
o I J

1.11.1 Configuration

To use tagging, you need to use the Tagging component which can be added in the Admin
tool. This component sets up the required schema.

Following that, you can configure it in Knowledge Builder under “Technical” > “Tagging.”

Every tagging configuration consists of:

e An interface configuration of the tagging software to be used (intrafind, OpenNLP)
e Configuration of the text extraction that determines the text to be tagged in a document

e Tag configurations that determine how objects are found, created and linked in the se-
mantic network

1.11.1.1 Tagging configuration
The tagging configuration bundles all the information required for tagging.
It is however mandatory to specify the tagger interface to be used.

Specification of the text extraction to be used is optional. Alternatively this can also be deter-
mined dynamically (see the corresponding sub-chapter).

@ intrafind tagger config . . . Tagging-Konfiguration
® Ferson intrafind tagger config

@ Location
® generic Konfiguration Alles

Auswihlen sne

Anpassungs-5Skript

intrafind tagger config

Konfigurationsname

Verwendet Tagger-Schnittstelle = intrafind tagger

i
Do

Verwendet Text-Extraktion

Furthermore, it is possible to specify an adjustment script that can be used to influence tag-
ging. Additional adjustments can also be made in the configurations for tags and for text
extraction.

Newly created adjustment scripts contain commented-out function bodies. In order to acti-
vate them you only need to remove the comment signs.

1.11.1.2 Interface configuration

The Intrafind interface has the following setting:

Configura- Freely selectable name
tion name

00O
000
o I J

i-views 5.3
349534

Parameter | (optional) This is transferred to Intrafind using the interface, and controls
tagging

URL URL of the Intrafind tagger

Update- (optional) URL of the Intrafind List Service, used for export of known tags,

URL seealso 1.11.1.5.

In the case of OpenNLP, only the URL of the REST service is required along with the optional
name.

The interface “Internal tagger” is only intended for test purposes / internal demos for which
connecting an external system is unwanted. This tagger makes no claim to returning results
that make sense.

Intrafind-Schnittstelle
intrafind documentation interface

Konfiguration Alles

Konfigurationsname = |intrafind documentation interface
Parameter = ‘["demo"] ‘
URL = ‘http:fﬂvtagging:BEUBﬂsonﬁagger ‘ D

1.11.1.3 Text extraction

If the text to be tagged is not determined dynamically, e.g. because only the text of a very
specific attribute type or the text of a document is to be extracted, text extraction must be
configured.

This configuration can be added on the “Text extraction” tab.

Configura- Freely selectable name
tion name
apply to Object type to which this configuration applies. Is used if no explicit text

extraction is specified during the tagging configuration.

Script for | Optional script for determining text
text extrac-
tion

To specify the attribute types to be tagged, one or more text part extractions (hierarchically
sorted on the left side) are added to the text extraction. In each text part extraction, the
attribute type to be tagged is stored under “extracts text from.”

00O
000
o I J

 news-extraktor Text-Extraktion
@ Uberschrift news-extraktor

@ Anriss
@ Dokumenttext Konfiguration = Alles

News

anwenden auf

| news-extraktor ‘

Attribut oder Relation hinzufiigen

Konfigurationsname

Skript zur Textextraktion

In addition to strings, blobs can also be used as text part extractions. Text is extracted from
these and forwarded to the tagging interface. To do this, text extraction must be configured
in the client (bridge or KB) (see chapter i-views services > Text extraction).

The optional script has three arguments

textDog- $k.TextDocun@umiputs the text to be tagged

u_

ment

ele- $k.SemanticEldreeement whose text is to be extracted

ment

at- $k.Attribute| Array of attributes of the element. The attributes are collected ac-
tributes [] cording to the configuration.

The following example writes the values of the attributes in sequence:

function extractText (textDocument, element, attributes)

{
attributes.forEach(function(attribute) {
textDocument.println(attribute.valueString());

B

1.11.1.4 Tag types

The tag type configuration determines how objects are found, created and linked in the se-
mantic network. To do this, you can specify a separate configuration for each tag type pro-
vided by the tagging interface. You can create a new configuration for the tagging configura-
tion in the hierarchy view on the left side.

By default, the interfaces provide the following tag types:

00O

:: i-views 5.3
oo 351
Intrafind PersonName, Location, TFIDF
OpenNLP NP
A tag configuration can apply to one or more tag types.
© intrafind tagger config Tagtyp-Konfiguration
® Person Person “
@ Location
® generic Alet

Konfiguration = Alles

Konfigurationsname Person

Anpassungs-Skript = [=] tagging.custom.person e
anwenden auf = Person

Suche nach vorhandenen Objekten= O personSearch e
Tag-Objekte automatisch anlegen =

Tag-Relationstyp = hastag

Tagtyp = |Per50nName |
Verwendet Export = | | (:

The configuration offers the following settings:

Adap- Script to affect tagging. The template contains a row of functions that are com-
ta- | mented out and can be activated.

tion
scrip

Ap- | Type in the semantic network that corresponds to the tag type. If objects are to be
ply | searched/created and no additional configuration information is specified, this type
to is used.

Con-| Freely selectable name
fig-
u-
ra-
tion
name

SearchSearch that contains the text of the tag as the searchString parameter and searches
for | for one suitable object in the semantic network.

ex- | Several searches can be specified, e.g. to keep the individual searches more com-
ist- | pact.

ing | If there are several hits, query search must return the suitable hit. If several hits
ob- | of different quality are found, the highest quality hit is used. If no best hit can be
jects| determined, no object is assigned.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Cre- | If no object was found and this option was activated, new objects are created.

ate | You have to ensure that the search for existing objects find these as new objects are
tag | created every time tagging takes place.

ob- | If no adaptation script applies here, an object of the specified type is created for
jects| “apply to” and the text of the tag is set as its name.

au-
to-
mat-

cally

Tag | This relation type is used to link documents to the objects found by the tagger.
re-
la-
tion
type

Tag | The tag types specified above. If no tag type is defined, the configuration applies to
type | all types of tags.

Uses| Here, an export configuration can be specified which can be used to export all tags
ex- | of the type or a subset thereof. Refer to the next section for details.
port

1.11.1.5 Export of known tags

There is an export function used to save information from the network in a tagging service,
e.g. Intrafind. This is currently only supported for Intrafind, where it performs the following:

One, or several, lists can be generated that are then saved to the tagging interface. Each list
export assigns naming attributes (e.g. name, synonym) to the semantic elements for export.
The tagger then searches for these names in texts, and can deliver the suitable semantic
element as well. For example, the list of known organizations can be exported this way, and
the tagger can identify them reliably.

00O

:: i-views 5.3
00 353534

Intrafind Listen-Export
Organisation Export

22l O

Konfiguration = Alles

Konfigurationsname Organisation Export

Benennendes Attribut Name

Benennendes Attribut Synonym

Benennendes Attribut

Objektfilter

Matching Optionen
GroB-/Kleinschreibung beachten = O
Digkritika (Umlaute etc) ignorierer= O
O
O

Phonetisch matchen

Sprachabhdngig matchen

The Intrafind list export is configured for every tag type and is also influenced by the tag type
configuration. Generation configuration options:

Con- | Freely selectable name
fig-
ura-
tion
name

Nam- | (Optional) attribute that identifies the object. Multiple specifications possible. If no
ing attribute has been specified, the name attribute is exported by default.

at-
tribute

Ob- | (Optional) A search can be specified here that specifies the set of objects. If no
ject | search has been specified, all types that are assigned in the tag type configuration
filter | by means of Apply to are exported.

Intrafind-specific matching options. These have a direct influence on the performance of the
tagging service:

Ob- Case-insensitive matching is activated by default. Case-sensitive matching can
serve be activated here.

up-

per/lower,

case

Q00O

000

Ignore [Presumably] This option is used to ignore characters with accents or umlauts,
dia- e.g. Gerate will match with Gerate.

critics

(um-

lauts,

etc.)

Pho- [Presumably] For example, match “photography” with “fotografie.”

netic

match-

ing

Language- This option activates the linguistic processing of the names transferred. In do-
dependenting so, it is important that the data is maintained correctly according to lan-
match- | guage in the semantic network, as every language must be processed using its
ing own linguistics.

Performing the export

There are three relevant buttons to performing the export:

e the zigzag arrow (found at the export config or the "top" tagging configuration) "re-
freshes" the configuration cache, such that the newly changed configuration will have
an effect

the floppy disk symbol found at the export config opens a dialog to save the exported
list to a directory. The same symbol found at the top tagging configuration will export
all lists at once. (hint: you have to select an existing directory, and the files will be written
into it)

the up-pointing arrow (found at the top tagging configuration if configured) is used to
upload all lists via the intrafind list service. This option is only possible, if the list service
was installed for the given environment, i.e. if the list service is configured. See also "In-
terface configuration" -> "Update-URL" above on how to configure that. After entering
the correct credentials, the upload will take place (this may take a while with spinning
cursor as feedback). On success, the response will indicate whether the service was
restarted and how many files were uploaded.

1.11.1.6 Overlapping filter group

The tagger may deliver several tags for one text passage. In some cases, the user explicitly
allows this overlap and have several tags displayed.

The overlap filter group does the following:

e All tags types that are summarized into a group like this must be free of overlaps.

e Within a group, a script can be used to specify a prioritization to influence the decision
about which tag is displayed in the end

e In order to allow overlaps, at least two groups like this must exist

e All tag types without a group are summarized in the “Default” overlap filter group.

Prioritization with script

Q00O

000

/%%

When there are conflicting tags (e.g. overlapping), this function can influence the conflict re
The sortOrder compares the array from left to right, lower numbers are sorted before higher once
e.g.: [-1, 3] < [0, 0] < [1, -3] < [1, -2]

@param {$k.Tag[]l} tags

@param {$k.TaggingContext} taggingContext

Q@returns {integer[]} an array of numbers that is used to sort the conflicting tags.
*%/

* X ¥ X X X %

function tagSortOrder(tag, taggingContext)

{
var smallestSpanReducer = function(minPos, span){return Math.min(minPos, span.start)};
var positionMinimum = tag.spans() .reduce(smallestSpanReducer, Number.MAX_VALUE);
return [-tag.tagTypePriority(), -tag.canonicalText().length, positionMinimum J];

}

A script must return a list of integers, whereby the first element in this list has the most
influence. In principle, it functions the same ways as sorting by several columns, meaning
that the second element is only used when the same value occurs in the first element.

Default prioritization
If no script has been specified, or the tag type is grouped in the implicit “Default” group, then
the following prioritization is used:
e Order of the tag types - higher priority first
e Longer tags given preference
e Position within the overlap (meaning in the case of “a red wall”, “a red” is given prefer-
ence over “red wall”, because it is closer to the front)

Also compare the script template.

1.11.2 View configuration
Two views are available for the display:

e Markup view
e Tag list

The markup view can be used in both the Knowledge Builder and in the ViewConfiguration
Mapper. The view can be used everywhere that other views such as properties or hierarchies
can be used.

The view has a permanently integrated tag button in the Knowledge Builder. There is an
integrated action type “Tag” in the ViewConfiguration Mapper, which can also be used in a
custom button.

The tag list is only available in the View-Configuration Mapper and is the content of a panel
(e.g. as a sub-configuration of a panel with a fixed view) there. If a markup view with tag
buttons was configured in another panel, its panel should be linked to the tag list panel
using the relation “Influenced” so that the tag list is updated after tagging.

OO

&

O

o 1

&

ol I _

&

Here you can see the continuous text which is going to be tagged. The text is shown in a
markup view inside a panel.

O continuous text m

Here you can find the tag list view which lists known and new (unknown) tags. By
selecting manually, you assign tags individually.

Both views have the obligatory configuration setting “Tagging configuration used”, which con-
nects the view to the tagging configuration.

1.11.2.1 Debug Log

The KB can output debug information during the tagging process. The information is writ-
ten to the #tagging channel (see manual for documentation regarding channels) and can be
output to a file, for example.

To do so, create a .txt file in the directory of the KB and rename it “kb.ini". Then add the
following content:

[Default] logTargets=tagging [tagging] type=file format=plain channels=tagging loglevel=DEBUG file

This creates a “tagging.log” file where you can view the tags found by Intrafind for the tag
types. This makes it possible to identify which strings are suggested by Intrafind as tags, and
also which tag types (e.g. signifterm/tfidf or organization) are used to find them.

1.11.3 Tagging by Script

Tagging can also be performed by script. To do so, create an object of the type $k.TaggingConfiguration.

The tag(context) function is used to perform the tagging. Tagging is controlled by an object
of the type $k.TaggingContext. Because it is stateful, a new one must be created every time
tag() is called. The TaggingConfiguration object is stateless and can be reused.

var document = $k.Registry.elementAtValue("RDF-ID", "opennlp-testdocument");

var configElement = $k.Registry.elementAtValue("tagging.name", "opennlp tagger config");
var tagger = $k.TaggingConfiguration.from(configElement) ;

var context = new $k.TaggingContext();

context.setSource (document) ;

tagger.tag(context) ;
$k.out.print("Found " + context.tags().length + " tags");

1.11.4 Required software

The Intrafind tagger must be purchased and installed separately. The corresponding In-
trafind List Service can be provided by i-views.

The OpenNLP connection is made using a REST interface to OpenNLP provided by i-views.

1.12 Development support
1.12.1 Dev tools

Different tools are available to facilitate development.

e K-Infinity plug-in: Offers support or JetBrains's products This includes the synchroniza-
tion of source files, KJavascript and KPath support.

1.12.2 Dev service

The Knowledge-Builder provides the option of allowing access from external applications.
This allows, for example, synchronization with development environments or specific ele-
ments of an application to be opened from the browser.

The Dev service must be started in the Knowledge-Builder for this. To do so, start by opening
the Settings and in the Personal tab, going to Dev tools. A port can now be specified here at
which the service should be able to be reached. The service can be started and stopped
manually using the buttons next to it. If the “Automatic start” checkbox is activated, then the
service is automatically started with the Knowledge-Builder.

If the Knowledge-Builder features an ini file (the default name is “kn.ini"), then it can save the
settings permanently. The settings can also be entered manually in the ini file:

[DevServicel]
autostart=true
port=3050

1.13 Rule engine
1.13.1 What are rules?

Allgemein ausgedriickt kdnnen mit Regeln ein Element des Wissensnetzes (=Referenzobjekt)
mit einer zweiten Menge von Elementen des Wissensnetzes (=Vergleichsmenge) Uber das
Ablaufen von Relationen, den Vergleich von Werten und das Erftillen von weiteren Bedingun-
gen miteinander verglichen werden, um schliel3lich eine Ergebnismenge zum Referenzobjekt
zu erhalten. Die Ergebnismenge ist dabei eine Teilmenge der Vergleichsmenge. Die Elemente
der Ergebnismenge kdénnen zusatzlich gewichtet werden.

OO

—
) X

O

‘r
C
ol 1}
O

Auf Produktwelten bezogen, sind verschiedene Use Cases vorstellbar. Mit Regeln kon-
nen Fachexperten zum Beispiel definieren, welche Produkte aufgrund von Eigenschaften
zueinander passen (z.B. Stecker zu Steckverbinder, Zubehor zu Produkten, etc.), aber auch
welche Teile von Produkten (Merkmale, Komponenten, Varianten, etc.) zueinander passen,
um ein vollstandiges valides Produkt zu ergeben (Konfigurator). Weitere Use Cases fur
Regeln sind, dass Produkte aufgrund von Eingaben eines Kunden empfohlen werden sollen,
dass ausgedrickt werden kann welche Produkte zu einer Serie gehdren oder auch aufgrund
welcher Eigenschaften und Bedingungen zueinander ahnliche Produkte gefunden werden
sollen.

In dieser Dokumentation werden die Regeln anhand des Beispiels potenzielle Freunde zu
einer Person zu finden erklart.

1.13.2 Where can rules be configured?

Regeln kénnen in i-views Uber die Regelkomponente konfiguriert werden. Nach Installa-
tion im Admin-Tool befindet sich die Regelkomponente unter dem Namen ,Regelwerk” im
Technik-Bereich. Ein Klick auf ,Regelwerk” 6ffnet im rechten Bereich des KB auf dem ersten
Tab die Regelsatze. Um Regeln zu erstellen bendétigt man zunachst einen Regelsatz, der die
darin enthaltenen Bedingungen zusammenfasst.

1.13.3 How can rules be configured?

1.13.3.1 Rule set

Bevor die einzelnen Regeln definiert werden, muss ein Regelsatz angelegt werden, der die
Regeln enthalt und die Verwendung der Regeln definiert. Wann ein Regelsatz angewendet
wird, wird Uber die Vergleichs- und Referenzmenge definiert (siehe nachstes Kapitel).

Ein Regelsatz kann aus filternden und/oder gewichteten Regeln, Ableitungen, Gruppen und
Abzlgen bestehen. Um einen neuen Regelsatz zu erstellen, klickt man im Reiter ,Regelsatz"
auf ,Neu erstellen” und muss hier dem Regelsatz einen Namen geben.

| Regelsatz filternde Gruppe ~ gewichtende Gruppe =~ Regel

ORDNER o
< o]0~ EEAE
WISSENSNETZ i

4 () Objekttypen 4
& Branche Name/Beschriftung " Bestandteil von (Name/Beschriftung)
& Firma
J Hobby
@ Land
& Person
% Stadt
» & Relationstypen
» O\ Attributtypen
TECHNIK
» Rechte (deaktiviert)
Trigger
» & Registrierte Objekte
» £+ Regelwerk
» 4% REST
» W View-Konfiguration
» Gesamtwissensnetz

» 4 Kerneigenschaften

Community

Regelwelt Regelsatz Keine Eintrage

In unserem Beispiel geben wir dem Regelsatz den Namen ,potenzielle Freunde”, weil wir zu
einer Person unter verschiedenen in diesem Regelsatz zusammengefassten Regeln poten-

00O
000
o I J

zielle Freunde finden wollen.
D Regelsatz filternde Gruppe ~gewichtende Gruppe Regel — 'ﬁ' D
W/ ORDNER —
WISSENSNETZ P
4 () Objekttypen
) Branche Name/Beschriftung Bestanditeil von (Name/Beschriftung)
& Firma potenzielle Freunde
¥ Hobby
@ Land
2 Person
% Stadt
b+ Relationstypen
» £\ Attributtypen . x [:J > p
TECHNIK
» & Rechte (dezktiviery 4 B3 potenzielle Freunde ielle F d Regelsatz
5 Trgger Fiter potenzielle Freunde
+ & Registrierte Objekte Gewichtung
» £ Ragelwerk Konfiguration Regeln

» 4® REST Name

| potenielle Freunde|
» W View-Konfiguration

» L} Gesamtwissensnetz

¥ £} Kerneigenschaften

Auswahlen

m om owowomomom
S

Auswéhlen ()

Regelwelt Regelsatz: Keine Eintrége

Der neue Regelsatz ist damit erstellt. Es kdnnen nun noch optional eine detaillierte Beschrei-
bung und ein Registrierungsschlissel (zum Beispiel zur Wiederverwendung in einer View-
Konfiguration) gesetzt werden.

1.13.3.2 Comparative amount / Reference amount

Jeder Regelsatz braucht zwingend eine Vergleichs- und eine Referenzmenge. Eine Vergle-
ichsmenge besteht immer aus Objekten. Diese Objekte kdnnen entweder Uber eine Struk-
turabfrage definiert werden (Vergleichsobjekte, Referenzobjekte) oder es kann ganz einfach
der Typ der Objekte eingegeben werden (Vergleichstyp, Referenztyp). Ist keine Referenz-
menge gesetzt, ist es dieselbe wie die Vergleichsmenge.

Die Referenzmenge ist die Menge an Objekten, aus der ein Objekt gewahlt werden kann,
fur das der Regelsatz verwendet wird (ausgehende Menge). Die Vergleichsmenge definiert,
woher die Ergebnisse entstammen durfen.

In unserem Beispiel wahlen wir hier sowohl fur die Vergleichs- als auch fur die Referenz-
menge alle Objekte des Typs Person aus.

00O
000
o I J

tedm

| I8 e femm@s | g | e

S o] #]r[o] 2 EIEES

4 O Objekttypen 9
% Branche Name/Beschriftung " Bestandteil von (Name/Beschriftung)
& Firma potenzielle Freunde
¥ Hobby
@ Land
& Person
% Stadt
» & Relationstypen

» O\ Attributtypen . x = > p
TECHNIK
Regelsatz
3 Trigger potenzielle Freunde
» & Registrierte Objekte Gewichtung

» £} Regelwerk Konfiguration ~ Regeln
» 4% REST Name

» W View-Konfiguration
Vergleichstyp
Referenztyp

» & Rechte (deaktiviert) 4 3 potenzielle Freunde
Fiter

potenzielle Freunde

» ¥ Gesamtwissensnetz

» £} Kerneigenschaften

o
v
S
|
momjm omom

Person
Person

Community

Regelwelt Regelsatz: Keine Eintrage

1.13.3.3 Filter/Weighting

Im nachsten Schritt missen wir uns entscheiden, welche Regeln wir unter ,Filter” setzen und
welche Regeln wir unter ,Gewichtung” setzen. Filternde Regeln filtern Objekte aus der Ver-
gleichsmenge aus, sodass sie nicht in der Ergebnismenge auftauchen. Gewichtende Regeln
verleihen den Objekten der Ergebnismenge, je nachdem wie viele Regeln zutreffen oder wie
stark gewichtet sind, eine Gewichtung untereinander, sodass die Objekte in der Ergebnis-
menge nach diesem Gewicht sortiert werden kénnen (Qualitat).

Wenn wir nun filternde Regeln erstellen wollen, klicken wir auf ,Filter” und dann auf ,neues
Unterelement erzeugen”. Hier muss zundchst ausgewahlt werden, welches Element des
Bausatzes zum Regelwerk verwendet werden soll. Es wird zwischen filternde Ableitung, fil-
ternde Gruppe, filternder Abzug und Regel unterschieden.

D Regelsatz filternde Gruppe ~gewichtende Gruppe Regel =¢'D

W/ ORDNER nﬂ XODL =

"= WISSENSNETZ

&

TECHNIK .y
- Name/Beschriftung Bestandteil von (Name/Beschriftung)
» i Rechte (deaktiviert)

3 Trigger
» & Registrierte Objekte
4 11 Regelwerk —_
» O Objekttypen \/ .p ™S 0
» & Relationstypen N/
(A <8 Freunde

Regelsatz
Neues Unterelement fr potenzielle Freunde erzeugen
» 4% REST Filter ¢ je

filternde Ableitung

potenzielle Freunde

» @ View-Konfiguration Gewichtung filternde Gruppe
" filternder Abzug
» £¥ Gesamtwissensnetz Regel
» £¥ Kerneigenschaften Abbrechen potenzielle Freunde

Beschreibung

Person

mowomomom

Person

Community

Regelwelt Regelsatz: Keine Eintrage

Bei gewichtenden Regeln wird zwischen gewichtender Ableitung, gewichtender Gruppe,

00O
000
o I J

gewichtendem Abzug und Regel unterschieden. Gewichtet wird dann, wenn Treffer mehr
oder weniger gut sein kdnnen.

Angenommen wir haben 3 Regeln, wobei Regel 1 die Gewichtung 1, Regel 2 die Gewichtung
2 und Regel 3 die Gewichtung 3 hat, dann gibt es insgesamt 6 Anteile (1+2+3) = 100%. Das
heil3t fir die einzelnen Regeln erfolgt eine Gewichtung wie folgt:

Regel 1=1/6=17%
Regel 2=2/6 =33%
Regel 3=3/6 =50%

Die Gewichtungsangabe wird im Reiter ,Regeln” bei ,Gewichtung” als Anteil an der Gesamtqual-
itat angegeben.

L0 HP P

4) Regelsatz Regelsatz
Filter Regelsatz

4 Gewichtung
@ Regel 1[1]
@ Regel 2 [2]
@ Regel 3 3]

Konfiguration =~ Regeln

Regel 1

1
Regel 2

2

Regel 3

3

Zu beachten ist hierbei auch der Unterschied zwischen Und-Gruppen und Oder-Gruppen:
Bei Und-Gruppen mussen alle enthaltenen Regeln zutreffen. Trifft eine Regel nicht zu, fallt
die Qualitat unter 100% und erhalt damit am Ende als Konsequenz eine Qualitat von 0%.
Im Grunde spielen bei Und-Gruppen Gewichte also keine Rolle. In Oder-Gruppen fallen die
Qualitatswerte wie oben beschrieben ins Gewicht. Die anteiligen Gewichte der Kindelemente
werden aufaddiert.

1.13.3.4 Rule types

Jeder Regelsatz besteht aus mindestens einer Regel. Jede Regel hat einen Namen und kann
eine Beschreibung erhalten. Zu Testzwecken kann sie auch auf , deaktiviert” gesetzt werden.

Es gibt 5 verschiedene Regeltypen:

e Attributvergleich
e Kardinalitat

e Relationsziel

Relationszielvergleich

e Vergleich durch Suche
Sobald ein Regeltyp ausgewahlt ist, wird die entsprechende Konfiguration zu diesem Regel-
typ sichtbar (Regellogik).

Bei ,Ausdruck” wird die Regel als Pradikatenlogik abgebildet. Sie dient nur der Information
und kann nicht bearbeitet werden.

00O
000
o I J

1.13.3.4.1 Attribute comparison

Ein Attributvergleich vergleicht entweder ein Attribut der Vergleichsmenge mit einem Attribut
der Referenzmenge oder das Attribut der Vergleichsmenge muss als Bedingung einen festen
Wert erflllen. Fur den Vergleich der Attribute, bzw. den Vergleich zu einem festen Wert muss
ein Vergleichsoperator gewahlt werden (<, =, >, 1=, <=, >=).

Will man zum Beispiel ausdruicken, dass nur die Menschen als potenzielle Freunde vorgeschla-
gen werden, die mindestens 50 Sympathiepunkte haben, so muss das Vergleichsattribut
~Sympathiepunkte” sein und der Referenzwert ,50".

\ §e; Regelsatz filternde Gruppe ~gewichtende Gruppe Regel =0
Wi/ ORDNER =
"= WISSENSNETZ p
TECHNIK =
- Name/Beschriftung Bestandteil von (Name/Beschriftung)
» G Rechte (deaktiviert)
3¢ Trigger potenzielle Freunde
» & Registrierte Objekte
4 1 Regelwerk
yO o
[JoR:3 2% 7 @> 0
b Relationstypen
¥ O Attributtypen 4 3 potenzielle Freunde . . Regel
» ¢ REST 4 Fiter Attributvergleich
+ W@ View-Konfiguration A Attributvergleich

¥ £F Gesamtwissensnetz Gewichtung Konfiguration

» £F Kemeigenschaften &

m mm
O

druck 3 vEV.Sympathiepunkte: v = 50

Regellogik

Attributvergleich | e

Sympathiepunkte

m m womom
v
<

v

Hinweis: Nicht alle Operatoren machen fur alle Attributtypen Sinn (z.B. kénnen Intervall-
Attribute auch Uberschneidende Operatoren haben). Hier ist der Regeleditor in der aktuellen
Version noch nicht fertig.

,Gilt fur alle Eigenschaften" muss angehakt werden, wenn das zu vergleichende Attribut
mehrfach vorkommt und alle Werte gleich sein sollen. Ist es nicht angehakt, reicht es der
Regel, wenn einer der Werte gleich ist. Die Bedingung gilt nur in einer Richtung. So mussen
alle Attributwerte des Vergleichsobjektes denen des Referenzobjektes entsprechen, aber
nicht alle Attributwerte des Referenzobjektes auch denen des Vergleichsobjektes.

1.13.3.4.2 Cardinality

Mit dem Regeltyp ,Kardinalitat” kann das Vorkommen einer bestimmten Eigenschaft am Ver-
gleichsobjekt gezahlt werden. Die Eigenschaft muss Uber ,Eigenschaftstyp” angegeben wer-
den. Mit dem Kardinalitdtsoperator gibt man an, ob die Eigenschaft kleiner gleich, exakt
gleich oder gréRer gleich dem bei ,Kardinalitat” eingegebenen Wert vorkommen soll.

1.13.3.4.3 Relation target

Beim Regeltyp ,Relationsziel” wird tber eine Vergleichsrelation geprtift, ob das Relationsziel
der Vergleichsrelation in der Referenzmenge enthalten ist. Die Vergleichsrelation kann dabei
transitiv unter Angabe eines Minimums und Maximums abgelaufen werden.

00O
000
o I J

e dm

IS nmn fimmaEeE | eS| R

& oronen uﬂ XOS =

= WISSENSNETZ

TECHNIK

- Name/Beschriftung Bestandteil von (Name/Beschriftung)
b & Rechte (deaktiviert)

» 37 Trigger

» & Registrierte Objekte
» £} Regelwerk . o&valv [=]>D
» 4® REST

» Wl View-Konfiguration

Angestellte einer Firma

4 B3 Angestelite einer Firma

Person arbeitet bei Firma

B
b £ Gesamtwissensnetz Filter ;
b 1F Kerneigenschaften & Person arbeitet bei Firma

Gewichtung Konfiguration

Name Person arbeitet bei Firma
Beschreibung

]

deaktiviert

Ausdruck V.arbeitet bei n R = &
Regellogik
Regeltyp = Relationsziel M
4 Vergleichsrelation = arbeitet bei
fehlende Eigenschaft zulassen = O
Community _
+ Transitiv = | Anlegen
Minimurm =

v

~Fehlende Eigenschaft zulassen” ist ein Metaattribut an der Vergleichsrelation. Es muss ange-
hakt werden, wenn man mdochte, dass die Regel auch erflillt ist, wenn das Vergleichsobjekt
die Vergleichsrelation gar nicht besitzt.

1.13.3.4.4 Relation target comparison

Der Relationszielvergleich ist der am haufigsten verwendete Regeltyp. Hiermit kann gepruft
werden, ob das Relationsziel sowohl das Ziel der Vergleichsrelation, als auch das Ziel der Ref-
erenzrelation ist. In unserem Beispiel kdnnen wir dartiber abgleichen, ob Start- und Zielper-
son das gleiche Hobby haben.

D Regelsatz filternde Gruppe = gewichtende Gruppe ~ Regel =¢I:I

el 0T, [o[~ PR

= WISSENSNETZ

TECHNIK = N
- Name/Beschriftung il von (N iftung)
» & Rechte (deaktiviert)
» 3 Trigger potenzielle Freunde . .
» & Registrierte Objekte o
L JOrss & & 4 => L
» £* Regelwerk
» 4% REST 4 3 potenzielle Freunde .
» W View-Konfiguration + Fiter gemeinsames Hobby
» £} Gesamtwissensnetz & kennt
» £ Kemeigenschaften 4E und Konfiguration
® gemeinsames Hobby Name = | gemeinsames Hobby
b = Stadt _
Beschreib =
2 sinnliche SchuhgréBe AT
» Gewichtung deaktiviert =0
Ausdruck = |V vEV.hat Hobby 3 rERhat Hobby: v = r
Regellogik
Regeltyp = | Relationszielvergleich v
4 Vergleichsrelation = hat Hobby
fehlende Eigenschaft zulassen =
Community Referenzrelation = hat Hobby
Gilt fir alle Eigenschaften =

Alternativ zu einer Referenzrelation kann auch ein festes Referenzobjekt angegeben wer-
den. Mébéchte man in unserem Beispiel ausdrticken, dass die Wohnorte der Personen in
Deutschland liegen sollen, so muss man als Vergleichsrelation ,liegt in” und als Referenzob-
jekt ,Deutschland” angeben.

~Fehlende Eigenschaft zulassen” ist ein Metaattribut an der Vergleichsrelation. Es muss ange-
hakt werden, wenn man mdchte, dass die Regel auch erflillt ist, wenn das Vergleichsobjekt

die Vergleichsrelation gar nicht besitzt.

,Gilt fur alle Eigenschaften” muss angehakt werden, wenn die zu vergleichende Relation
mehrfach vorkommt und alle Relationsziele gleich sein sollen. Ist es nicht angehakt, reicht es
der Regel, wenn eines der Relationsziele gleich ist. Die Bedingung gilt nur in einer Richtung.
So mussen alle Relationsziele des Vergleichsobjektes auch ein Relationsziel des Referenzob-
jektes sein, aber nicht alle Relationsziele des Referenzobjektes auch ein Relationsziel des
Vergleichsobjektes.

1.13.3.4.5 Comparison by structured queries

Um die ganze Machtigkeit von i-views auch in den Regeln verwenden zu kénnen, hat man
schlie8lich auch noch die Moglichkeit eine Strukturabfrage fur den Vergleich zweier Objekte
und/oder zweier Werte zu nutzen. Dazu wahlt man den Regeltyp ,Vergleich durch Suche”.
Wichtig hierbei ist, dass das Vergleichsobjekt durch den vordefinierten Bezeichner ,,compar-
isonObject” und das Referenzobjekt durch den vordefinierten Bezeichner ,referenceObject”
kenntlich gemacht werden. Der Vergleichswert muss durch den vordefinierten Bezeichner
~comparisonValue” und der Referenzwert durch den vordefinierten Bezeichner ,reference-
Value" kenntlich gemacht werden. Méchte man, dass beim Testen des Regelsatzes die Tabelle
zur Erklarung der Ursachen entsprechend beflllt ist, missen die Bezeichner gesetzt sein.

Wenn die Regel nicht vergleicht, sondern generelle Aussagen trifft, dann kénnen die Param-
eter weggelassen werden.

Eine Vergleichssuche, die die SchuhgroRen beider Personen vergleicht und dabei ausdruckt,
dass sich diese um maximal 5 unterscheiden darf, wiirde wie folgt aussehen:

+ | & person

a comparisonObject

+ | A schuhgréBe
a
8 Wert E]

+ |4 Person

a referenceObject
4 % |A schungrose | @

1.13.3.5 Derivation

Mit einer filternden oder gewichtenden Ableitung konnen - ausgehend von Vergleichs- und
Referenzobjekten - weitere Objekte abgeleitet werden, auf die dann wiederum Regeln angewen-
det werden kénnen. In der Produktwelt ist ein haufiger Anwendungsfall, dass Merkmale von
Komponenten im Vergleich bertcksichtigt werden sollen.

Um die abgeleiteten Objekte zu ermitteln, kann entweder jeweils eine Relation ausgehend
vom Vergleichs- und/oder Referenzobjekt angegeben werden oder die abgeleiteten Objekte
kdnnen Uber eine Strukturabfrage ermittelt werden. Wie auch bei dem ,Vergleich durch
Suche” mussen dabei die vordefinierten Bezeichner verwendet werden. Beispiel:

00O
000
o I J

'
o Relation He O hatziel a 5;_:—:'-_'"";_'| referenceObject |

Angenommen, wir wollen als erste Bedingung fir unsere Suche nach potenziellen Freunden
ausdrucken, dass beide Personen aus einem Ort kommen sollen, der in Deutschland liegt,
dann mussen wir hierzu eine filternde Ableitung erstellen, die - von einer Person ausgehend
- die Stadt ermittelt. Zu der Stadt kann man dann in einer darunterliegenden Regel eine
Bedingung ausdrucken.

| D Regelsatz filternde Gruppe ~ gewichtende Gruppe ~Regel — 'ﬁ' D
W/ ORDNER -
e ﬂ x @ @ =
"= WISSENSNETZ &
TECHNIK ~
- Name/Beschriftung Bestandteil von (Name/Beschriftung)
b & Rechte (deaktiviert)
4 Trigger potenzielle Freunde
» % Registrierte Objekte
4 11 Regelwerk
v O o
Qoo @ DN => 0
b o Relationstypen
¥ O\ Attributtypen « B3 potenzielle Freunde filternde Ableitung
» 4% REST 4 Fitter Stadt

» Wl View-Konfiguration =* Stadt
» L} Gesamtwissensnetz Gewichtung Konfiguration

» ¥ Kerneigenschaften Nam: Stadt

O

V — V.wohnt in, R — Rwohnt in

wohnt in

abgel

abge wohnt in

1.13.3.6 Group

Eine filternde oder gewichtende Gruppe hat entweder den Gruppentyp ,und” oder ,oder”.
Eine ,und“-Gruppe besagt, dass alle Regeln in dieser Gruppe zutreffen mussen. Eine ,oder"-
Gruppe besagt, dass nur eine der Regeln in der Gruppe zutreffen mussen, damit das Vergle-
ichsobjekt als Ergebnis angezeigt wird. Ist keine Gruppe gesetzt, gilt per Default, dass alle
Regeln zutreffen missen (,und“-Gruppe). Zu beachten ist das unterschiedliche Verhalten bei
angegebenen Gewichtungen der enthaltenen Regeln (Siehe Kapitel Gewichtungen).

1.13.3.7 Subtraction

Ein filternder Abzug zieht alle Objekte von der Ergebnismenge ab, die als Ergebnis aus den
darunter befindlichen Regeln hervorgehen.

Ein gewichtender Abzug zieht den Qualitdtswert einer enthaltenen Regel vom Gesamtergeb-
nis ab, wenn die Regel zutrifft. Wird zum Beispiel die Regel Sympathiepunkte < 5 erftllt und
die Gewichtung der Regel belauft sich auf 33% (Anteil von 1/3), so wird das Ergebnis nur noch
67% betragen.

00O
000
o I J

1.13.4 Testingrules

Zur Kontrolle der Ergebnisse kann die Suche gedffnet werden:

W/ ORDNER
= WISSENSNETZ

TECHNIK
» & Rechte (deaktiviert)
» 37 Trigger
» & Registrierte Objekte
4 1 Regelwerk
» O Objekttypen
» & Relationstypen
» O\ Attributtypen
» 4% REST
» W View-Konfiguration

» £+ Gesamtwissensnetz

L|| Regeisatz | fiternde Gruppe | gewichtende Gruppe | Regel

OoEBER .- -

Name/Beschriftung

potenzielle Freunde

{ X

4 B3 potenzielle Freunde
4 Filter
4E und
@ gemeinsames Hobby
4= Stadt
@ liegt in Deutschland

»
£ Kemeigenschaften P shnliche SchuhgroBe

4 Gewichtung
4 == ohne [1]
4 == oder [1]
A Sympathiepunkte < 5 [1]
PistEve [1]

Hier muss ein Objekt ausgewahlt werden, flr welches der Regelsatz angewendet werden
soll. Die Ergebnistabelle zeigt alle Ergebnisse unter Angabe von Qualitat, dem gerade aus-
gewahlten Referenzobjekt, dem gefundenen Vergleichsobjekt und den Ursachen.

Hinweis: Solange keine gewichtete Regel enthalten ist, erhalten alle Treffer 100%.

OEBEER xc: = -
L]

Qualitat Referenzobjekt

Vergleichsobjekt Ursache
100 Bob Alice Tanzen, Schachspielen, Frankfurt, Bob, Deutschland, SchuhgréBe: 39, Alice, SchuhgréBe: 39
50 Bob Bob

Frankfurt, Sympathiepunkte: 10, Bob, Deutschland, Schuhgrée: 39, Schachspielen, Tanzen

50 Bob Dave SchuhgroBe: 42, Sympathiepunkte: 3, Bob, Darmstadt, Deutschland, SchuhgroBe: 39, Schachspielen, Dave

Die Treffererklarung lasst sich per Klick auf Graph auch grafisch visualisieren:

=P LO

—
potenzie

Konfiguration |

Name

egistrierungs:
Vergleichstyp

Refere

O
000 i-views 5.3
088 3671534

-I-° Deutschland
+° Frankfurt

+ 0 Schachspielen
L 0 Tanzen

Qualitat Referenzobjekt

100 Bob
50 Bob
50 Bob

Ein Klick auf ,,Ursache” 6ffnet die einzelnen Ursachen im Detail in einer Tabelle. s >

o[+ [0 LR
| |

Qualitét Regel

0 Sympathiepunkte < 5

0 ist Eve
liegt in Deutschland
gemeinsames Hobby
ahnliche SchuhgroBe

Vergleichsobjekt
Alice

Alice

Frankfurt

Alice

Alice

OO

O

—
&

o 1

&

ol I _

&

1.13.5 Executing rules

Regelsatze kdnnen an verschiedenen Stellen verwendet werden. Doch damit ein Regelsatz

/| Regelsatz filternde Gruppe ~ gewichtende Gruppe ~ Regel

S DEREBRE xox =

= WISSENSNETZ

TECHNIK
Name/Beschriftung
¥ & Rechte (deaktiviert)

» 37 Trigger
» & Registrierte Objekte

Regelwerk . x

potenzielle Freunde

H = H ' ObJEknypen ‘D otenzielle Freunde
verwendet werden kann, muss dieser zunachst gespeichert werden. — » setonser el e

» I\ Attributtypen
» 4% REST

4= und
@ gemeinsames Hobby
4= Stadt
@ liegt in Deutschland
A zhnliche SchuhgroBe
4 Gewichtung
4 = ohne [1]
4= oder [1]
A Sympathiepunkte < 5 [1]
PistEve [1]

» W View-Konfiguration
» Gesamtwissensnetz

» £ Kemneigenschaften

Sobald man auf den Speichern-Button klickt, wird der Regelsatz in eine Such-Pipeline umge-
wandelt und als solche gespeichert. Zur Identifikation der Such-Pipeline wird der Reg-
istrierungsschlUssel verwendet. Es kann nur gespeichert werden, wenn ein Registrierungss-
chlussel angegeben ist. Bei jeder Anderung am Regelsatz muss erneut gespeichert werden,
damit sich die Such-Pipeline aktualisiert.

Im Viewconfigmapper kann die Such-Pipeline dann zum Beispiel als Suche in einer Zielauswahl
verwendet werden, um die Ergebnismenge einzuschranken. Die Ergebnistabelle und die Tr-
effererklarung kann ebenfalls verwendet werden, um sie beispielsweise in einer Webapp
darzustellen.

2 Admin Tool

You can use the Admin tool to create new semantic networks, manage all semantic networks
of a mediator and configure individual semantic networks.

2.1 Admin tool configuration

Like the Knowledge Builder, the admin tool can be startet with English or German user in-
terface (Ul). The preset Ul language ist German. To start the admin tool with English Ul, a
configuration needs to be done using an ini file.

The content of the ini file "admin.ini" for starting the admin tool with English Ul is as follows:

[Default]
language=eng

Please obey that without further configuration, the ini file needs to be located in the same
directory as the admin tool itself to take effect.

Note: If a new Knowledge Graph is created using the admin tool, the system attributes and
system relations are created in the same language as the admin tool has been started with.

OO

&

O

o] 1 J

&

o] 1 J

&

2.2 Launch window

After the Admin tool (Windows: admin.exe, Mac OS: admin, Linux: admin-64.im) has started,
the Start window appears.

Administration =
Server Verwalten
Wissensnetz Meu
Benutzer
Passwort
Start Info
2.2.1 Server

The URL of the server is entered in the free text field Server. (If no protocol is specified, the
protocol cnp:// is used). Valid URLs use one of the protocols [cnp://,cnps://,http:// or https://]
followed by [computer name or IP address]:[Port number]. This format corresponds to the in-
terface setting on the mediator.

If the mediator that is used to administrate the semantic networks is running on the same
computer as the Admin tool, it can also be addressed using the computer name localhost.

If the field remains blank, then the semantic networks are accessed which are in the direct
subfolder volumes relative to the position of the Admin tool. No mediator is required for this
type of access.

Entries entered once in the free text field are saved. The ... button allows them to be selected
from a list in a separate window.

The Administrate button is used to access the server administration, for which authenti-
cation using the server password is required.

2.2.2 Knowledge network
The semantic network that is to be administrated is specified in the free text field Semantic
network.

Entries entered once in the free text field are saved. The ... button allows them to be selected
from alist in a separate window. To display all semantic networks, the user may be prompted
to enter the server password.

2.2.3 Information

You can use the Info button to retrieve version-specific information in a separate window via
the Admin tool.

00O
000
o I J

gi' k-infinity 4.2.0

(C) intelligent views gmbh

Build:

Build 16050916

Release State:

Release

MNetzversion:

unbekannt

Volume-Information:

unbekannt @ unbekannt

Speicherbegrenzung:

RSA-Key kopieren Kopieren

Specifically, you can retrieve:

The version number of the Admin tool (Build),
The publication status of the Admin tool (Release state),

The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

The language setting active in the operating system (Locale),
The fonts provided in the Admin tool (Fonts),

The semantic network components including version numbers supplied with the Admin
tool (software components) and

The small talk packages including version number used in the Admin tool (Packages).

Information on the network version and volume information is not decisive here.

The information is output in an invisible text field, which has a context menu that can be
activated by right-clicking:

Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

Copy copies the selected text area to the clipboard of the operating system.

Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the
mouse. The query is case-sensitive.

00O
000
o I J

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-
board of the operating system. This key can be entered into the initialization file of a mediator
(default file name mediator.ini) and thus restricts this mediator s access via an Admin tool to
Admin tools with this specific key.

The OK button enables you to return to the start window.
2.2.4 Manage, New and Next

New forwards to semantic network generation.
Administrate forwards to the server administration.

Next forwards to the individual network administration. The entries user name and pass-
word are used for this for logging in with an administrator account.

2.2.5 End

The End button closes the Admin tool.

2.3 Create a new knowledge network
A new semantic network is created via a separate network creation window. It can be

reached via the New button on the start screen. Any inputs in the Server and semantic
network free text fields are ignored.

Server

Meues Wissensnetz | |

Paszwort

Lizenz = Licence.key

Administrator

Benutzername | Administrator

Passwort

Mame des Wissensnetzes muss angegeben werden

QK Abbrechen

2.3.1 Server

The name or the IP address of the computer is specified in the free text field Server on which
the mediator is running, and which should be used to create the new semantic network. If

this cannot be reached using the default port, then a correct port number must also be
named. The input form in this case is [Computer name or IP address]:[Port number].

If the mediator that should be used to create the new semantic network is running on the
same computer as the Admin tool, it can also be addressed using the computer name /ocal-
host.

If the field remains blank, the semantic network is generated in the Volumes subfolder in
direct relation to the position of the Admin tool.

2.3.2 New knowledge network

The name of the semantic network is specified in the free text field New semantic network.
The characters allowed for this purpose are specified by the file system of the operating
system on which the semantic network is to be stored. To ensure that the data can also be
stored in different file systems, the following applies:

e 64 characters maximum
e No blank spaces at the start or end

e Characters permitted: upper and lower scale Latin letters, numbers, spaces |@#%$%&/()+-
OA_{3~CEce and ASCII characters 160-255

e The following character sequences are not allowed: AUX, CON, NUL, PRN as well as
COMO0-COM9 and LPTO-LPT9

A name must be specified.

The name can subsequently be changed only during copy processes of the semantic network
or by changing file and directory names. If you make a change, keep in mind that the name
of the semantic network might be used in initialization files and that the license might have
been adapted to this.

2.3.3 Password (mediator)

The mediator supports authentication via a password. If a password has been set for the
mediator that will be used to create the new semantic network, that password must be en-
tered in the Password free text field, which is located between the New semantic network
and License fields. If no password has been assigned, the free text field must remain empty.

2.3.4 License

A semantic network must have a valid license so that Knowledge Builder and other software
components (with the exception of the Admin tool) can work with it. You can use the ...
button to access the file system of the operating system in order to load a license key (file
name: [License namej.key).

2.3.5 User name

The name of the first user registered in the semantic network is specified in the User name
free text field. The type and quantity of permitted characters is not restricted.The Adminis-
trator default setting is simply a suggestion. This field must not remain empty.

00O
000
o I J

The name can be changed later on in the Admin tool or the Knowledge Builder. The user
created in this way automatically has administrator rights.

2.3.6 Password (user)

In the Password free text field, you can enter a password for the first user registered in the
semantic network. This password will be required later on when this user attempts to log in
to the Knowledge Builder or the Admin tool for the semantic network.

2.3.7 Ok and abort

The OK button generates the semantic network, factoring in the data entered. The Cancel
button cancels the process. In both cases, the system returns to the start screen.

2.4 Server administration

The overall network administration allows the administration of all semantic networks of a
mediator, or the local subfolder volumes respectively. It can be reached via the Administrate
button on the start screen. A corresponding entry in the server field of the start screen is
necessary for this. Any entries in the semantic network of the start screen are ignored.
If the semantic networks to be administrated are addressed using a mediator, the correct
mediator password must also be specified in a separate window.

Datei Server Transfer Verwalten Garbage Collection

Volume Clients letztes Backup

neu 0

The overall network administration window is comprised of a network overview in the
form of a table, a message field and a menu line.

2.4.1 Network overview

The network overview in the form of a table provides details about

the name (volume)

the number of users currently active (clients),

the date and time of the last backup (last backup) and

the last status message (status) of the respective network.

The individual columns can be sorted by clicking on the head of the column.

The data are only updated when triggering operations, and are therefore not always up-to-
date. A manual update can be forced at any time using the menu item Server -> Update.

2.4.2 Message field

The Message field outputs all status reports for all networks. Status reports are created
when activities are triggered in the Admin tool. They are lost when the Admin tool is closed.
To prevent this, they can be exported via the menu option File -> Administration log. The
Message field can be edited, but changes are ignored during export.

2.4.3 Menu line

The menu line consists of the following menu tabs:

2.4.3.1 File

Save administration log saves all entries in the message window in a text file (default file
name: admin.log). You can freely choose the name and storage location in a saving dialog.
This operation requires the Admin tool to be connected to a mediator.

Log off closes server administration and opens the log-in window again.

Exit closes server administration

2.4.3.2 Server

Update reloads the data collected in the network overview in the whole network admin-
istration window.

Re-import ini file makes the server import its ini file again. Here, not all options can be
updated during operation. The server outputs a message about updated options.

Download log generates a copy of the mediator log file usually stored in the folder of the
connected mediator (default file name: mediator.log). You can freely choose the name and
storage location of the file in a saving dialog. The mediator log file keeps a log of all the
mediator s activities from its first commissioning.

Server connections shows the numbers and IP addresses of all software components (ex-
cept blob service) currently registered in semantic networks via the mediator in the message
field and groups them according to semantic networks. The number is generated sequen-
tially by the mediator and re-assigned whenever a new software component registers.

2.4.3.3 Transfer

Download volume creates a copy of the semantic network selected in the network overview
and saves it locally in the volumes subfolder that is located relative to the position of the Ad-
min tool. A new name can be assigned to this copy in a separately appearing free text field.

Copy volume creates a copy of the semantic network selected in the network overview and
saves it in the same folder as the original network. A new name must be assigned to this copy
in a separately appearing free text field.

Upload volume creates a copy of a selected local semantic network and saves it in the vol-
umes subfolder in the location relative to the connected mediator. A new name can be as-
signed to this copy in a separately appearing free text field. The local semantic network,
which must be stored in the volumes subfolder that is relative to the position of the Admin
tool, is selected in a separate selection window.

Replace volume creates a copy of the selected local semantic network and uses it to over-
write the semantic network selected in the network overview. In the process, the copy is
given the name of the semantic network it has replaced. The local semantic network, which
must be stored in the volumes subfolder that is relative to the position of the Admin tool, is
selected in a separate selection window.

As a result of the copy processes initiated by transfer operations, the block allocation of the
clusters and blobs within the semantic network copies is redefined, and their space con-
sumption is optimized in the process. The resulting compression effect is identical to the one
achieved by the operation Manage -> Compress volume.

With the exception of the Copy volume operation, all these operations require the Admin
tool to be connected to a mediator.

2.4.3.4 Administrate

Open Admin tool logs on to the selected volume with the Admin tool. No authentication in
the volume is required - mediator authentication is sufficient.

This makes it possible to access the user management of the volume if the administrator
password has been lost.

Create backup creates a backup of the semantic network selected in the network overview
and saves it in the backup folder, which lies in a parallel position relative to the position of this
semantic network. There a separate subfolder is created for each backup; its name contains
the time, precise to the second, at which this copy was created.Every backup is a full copy of
the original network.

Before the backup is created, a separate window asks whether the user wants to wait until
the copy process is complete. If applicable, further use of the Admin tool is blocked until
this time. Otherwise the copy process starts in the background, and there is no message
regarding the process or completion of the copy process.

Restore backup creates a copy of a selected backup and saves it in the same folder as the
semantic networks shown in the network overview. A new name must be assigned to this
copy in a separately appearing free text field. To select the backup, which must be stored
in a subfolder of the backup folder, which in turn is parallel to the position of the semantic
networks displayed in the network overview, two separate selection windows must be nav-
igated: in the first, the semantic network must be selected; in the second, the version must
be selected from a list sorted by creation date.

Delete backup deletes a selected backup. To select this backup, which must be stored in
a subfolder of the backup folder, which in turn is parallel to the position of the semantic
networks displayed in the network overview, two separate selection windows must be nav-
igated: in the first, the semantic network must be selected; in the second, the version must
be selected from a list sorted by creation date.

The block assignment of clusters and blobs within the original semantic network is not mod-
ified when a semantic network copy is created. The copy process initiated by the backup
operations therefore creates no compression effect.

Delete volume deletes the semantic network selected in the network overview.

Compress volume reduces the amount of space required by the semantic network selected
in the network overview. This is done by removing unused interior blocks. The copying
processes for clusters and blobs first move all unused blocks to the file end and then release
them in the file system of the operating system.

Update volume storage updates the version of the block file system of the semantic net-
work selected in the network overview. If the semantic network is addressed via a mediator,
the version it contains is used; otherwise, the version supplied in the Admin tool is used. The
update makes it possible to save index structures more quickly. It is possible for semantic
networks whose i-views core component is older than 4.2.

2.4.3.5 Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-
ing to a programming terminology reading) from the semantic network and thereby mini-
mizes the memory usage of the semantic network. Use of the garbage collection requires
that the semantic network that is to be cleaned up is activated via a mediator.

Start launches a new garbage collection for the semantic network selected in the network
overview or continues a paused garbage collection. No confirmation is sent when the pro-
cess is completed. You can determine its progress via the Status menu option.

Pause interrupts the execution of the active garbage collection for the semantic network
selected in the network overview.

Stop terminates the execution of the active garbage collection for the semantic network se-
lected in the network overview.

Status writes the current status of the garbage collection for the semantic network selected
in the network overview to the status column of the network overview and to the mes-
sage field. If garbage collection is active, feedback on its progress is provided in percent.

2.5 Individual network administration

Individual network administration allows you to manage an individual semantic network. It
can be reached via the Start button on the start screen. This requires the corresponding
entries in the fields Server, Semantic network, User and Password of the start screen.

2.5.1 User authentication
To access the network administration window the user needs to log on with administrator
rights.

If you no longer have access to the semantic network, you can access the semantic network
through authentication on the server by logging on to the server administration.

00O
000
o I J

2.5.2 Individual network administration window

4 Datenbestand
Transfer
Verwalten
4 |nformation
Job-Client
4 Leistung
Client
Server
Versionsinformation
4 Systemkonfiguration
Benutzer
Blob-Speicherung
4 Komponenten
Boost Libraries 1.18.0
Knowledge Portal
Konvertierungsservice
Lizenz
Zugangsherechtigung
4 Wartung
Client-Caches
Garbage Collection
Wartung

Wartungsinformation

Wartungsnachricht

Wartungsskript
4 ¥ML-Import/-Export

Schema und Konfiguration

Administrator

Zuriick Beenden

The network administration window has a menu list with a multilevel structure on the left,
and an operation window on the right. The content of the operation window depends on the
menu option selected in the menu list.

The Back button returns you to the start window.

The Exit button closes the Admin tool.

If the semantic network to be administrated is addressed without a mediator, other users
cannot access the semantic network via the Knowledge Builder or another instance of the
Admin tool for as long as the network administration window is open.

AN

&

OO0

o] 1 J

&

o] 1 J

&

C=4
2.5.2.1 Manage the data

Server. cnp://127.0.0.1 Volume: Preview = = =
kartenverwaltung Verwalten
4 Datenbestand Backup erstellen

Verwalten

Backup wiederherstellen
Developer

b Information Backup Idschen
P Systemkonfiguration Download
» Wartung Volume hochladen
P XML-Import/-Export
Inspect Zuriick | | Beenden

Create backup creates a backup of the semantic network and saves it (on the server) in
the backup folder, which lies in a parallel position relative to the position of this semantic
network. There a separate subfolder is created for each backup; its name contains the time,
precise to the second, at which this copy was created.Every backup is a full copy of the original
network.

Before the backup is created, a separate window asks whether the user wants to wait until
the copy process is complete. If applicable, further use of the Admin tool is blocked until
this time. Otherwise the copy process starts in the background, and there is no message
regarding the process or completion of the copy process.

Restore backup replaces the current semantic network with a backup (afterwards you are
logged off automatically). The backup is selected according to the time of the relevant
backup.

Delete backup deletes an individual backup of this semantic network.

The block assignment of clusters and blobs within the original semantic network is not mod-
ified when a semantic network copy is created. The copy process initiated by the backup
operations therefore creates no compression effect.

Download creates a copy of the semantic network and saves it locally in the volumes sub-
folder that is located relative to the position of the Admin tool. A new name can be assigned

00O
000
o I J

to this copy in a separately appearing free text field.

Upload volume transfers a locally stored network and replaces the current semantic net-
work with this network (afterwards you are logged off automatically)

2.5.2.2 Information
2.5.2.2.1 Jobclient

In order to relieve the workload on the Knowledge Builder for specific, processor-intensive
processes such as indexing, and querying semantic networks and executing scripts, some
of these processes can be optionally performed by Job-Clients while others are exclusively
performed as jobs by Job-Clients (a software service). To do so, the user interface of the
Knowledge Builder or a script must be used to trigger a job, or the conditions for triggering
it must be defined. Moreover, at least one Job-Client must be configured and started which
can perform jobs of this job type (job pool). The Admin tool largely functions as an observer
in this case. Jobs not completed appear in the Knowledge Builder under the entry Tasks in
the Technology category. In order to use the Admin tool to manage Job-Clients, the Admin
tool must be connected to a mediator.

neu Job-Client

¥ Datenbestand Job-Clients

4 |nformation
Job-Client

» Leistung

Mame Prozess Pool

Versionsinformation

Systemkonfiguration
Wartung
XML-Import/-Export

<

Job-Pools

MName JobPool Fehlgeschlagen
Abfrage Kinfinity.KQuerylob

Attribute aus dem Index ent Kinfinity.KRemovelndexlob

Attribute zum Index hinzufd Kinfinity KAddAlTolndexdeb

Index aktualisieren Kinfinity KLightweightindexlob

Index synchronisieren Kinfinity Ksynclndexlob

KMaintenancelob Kinfinity.KMaintenancelob

Zuriick Beenden

The Job-Clients overview table shows the following for each job-client that is currently run-
ning:

e its name in the format [Job-Client-Name]@[Mediator-Name] (name),
e its job-client number (/D),

its IP address (/P),
e the name of the mediator connected to it (server),

the process number assigned by the operating system (process),

the job types assigned to it (pool),

its work status (status) and
e the number of jobs it has completed (completed).

The Job-Client number is generated sequentially by the mediator and a new number is as-
signed with each new log-in. The Job-Client name and the job types assigned to the Job-Client
are defined in the initialization file for the respective Job-Client (default file name: jobclient.ini)
under the key name or the key jobPools respectively. Each job type of a Job-Client is shown
in a row of its own in the Job-Client overview, so that a Job-Client regularly takes up several
rows.

The individual columns of the Job-Clients overview can be sorted by clicking on the head of
the column. Right-clicking a row also opens a context menu:
e Display information displays all data listed in the selected row, with the exception of
the job type and the completed number of jobs, in a new window. Added are
- the date and time of the last time the Job-Client was started (startUpTime),

- the maximum working memory capacity available for use by it in bytes (max Mem-
ory),

- the name of its log file (logFileName) and

- its specific name, under which it can be forced to shut down (a concatenation of
the string “jobclient” and the Job-Client number) (shutDownString).

e The data there can be copied to the clipboard of the operating system (Copy to clip-
board button) or be exported to any location as a text file that can be given any name
using a saving dialog (Save button).

e The operation triggered using the menu item Display information can, alternatively,
be performed by double-clicking a row in the Job-Clients overview.

e Remove Job-Client ends the Job-Client selected in the Jobh-Clients overview.
e Remove all Job-Clients ends all Job-Clients listed in the Job-Clients overview.

The job pools overview in the form of a table lists all job types that are assigned to at least
one Job-Client in the Job-Clients overview. For each job type,

its name (name),

its technical name used in the Job-Client s initialization file (JobPool),
e the number of uncompleted jobs of this job type (ToDo),

e the number of failed jobs of this job type (failed) and

e the number of Job-Clients available to it (Job-Clients)

are named.

The individual columns of the job pools overview can be sorted by clicking on the head of
the column. Right-clicking a Job-Client also opens a context menu:

e Empty job pool deletes all uncompleted and failed jobs of the job type selected in the

00O
000
o I J

job pools overview. This operation is only possible when no Job-Client is running.

e Configure error messages to ignore allows specific error messages to be blocked
when executing jobs of the job type selected in the job pools overview. If an error
message is blocked this way, the job related to the error is not factored in when de-
termining the number of failed jobs in the job pools overview. This operation is only
possible when there are already jobs of the job type selected in the job pools overview
waiting to be processed, or that were already processed.

e The error messages to be blocked are administrated in a separate window:

- All error messages to be blocked are listed in the alphabetically sorted error mes-
sage list. An error message is blocked when its output text matches a text in the
error message list.

- + allows input of an error message to be blocked using a separate window. The
error message appears in the error message list.

- ... allows the error message selected in the error message list to be changed.
- - deletes the error message selected in the error message list.

2.5.2.2.2 Performance
Client

neu Client

» Datenbestand [[] Client-Leistungsdaten aufzeichnen
4 |nformation

Job-Client

Intervall 10 Sekunden

4 |eistung
Client
Server
Versionsinformation
Systemkonfiguration
Wartung
XML-Import/-Export

Aktualisieren Zuriicksetzen | | In Zwischenablage kopieren

Zuriick Beenden

Record client performance data starts and ends the collection of diverse key performance
indicators that are coupled to activities by the software components connected to the seman-

tic network. These key performance indicators can be used for the performance analysis.

Interval sets the required time period in seconds until a software component sends another
data packet with key performance indicators to the Admin tool. It cannot be changed after
recording starts. The preset is 10 seconds.

The key performance indicators are output in nested list items in the key performance indi-
cator overview. Clicking on the triangle symbols to the right of the categories allows listed
subitems to be expanded and collapsed. Alternatively, this can be implemented using a con-
text menu, which can be accessed by right-clicking a list item:

e Expand opens all directly listed subitems in the list item selected.

e Expand fully opens all directly and indirectly listed subitems in the list item selected.

e Contract fully collapses all listed subitems in the list item selected.
Double-clicking on a list item allows all key performance indicators stored below it to be
shown at a glance in a separate window. There, they can be copied to the clipboard of the

operating system (Copy to clipboard button) or be exported to any location as a text file that
can be given any name using a saving dialog (Save button).

Update refreshes the key performance indicators shown in the key performance indicator
overview.

Reset deletes the key performance indicators shown in the key performance indicator
overview.

Copy to clipboard copies the key performance indicators shown in the key performance
indicator overview to the clipboard of the operating system.

Server

00O
000
o I J

neu Server

» Datenbestand Leistung priifen

4 |nformation

Job-Client Test

4 |eistung
Client
Server

Versionsinformation

Systemkonfiguration
Wartung
XML-Import/-Export

In Zwischenablage kopieren
Zuriick Beenden

Check performance starts a test process that evaluates the performance of the mediator
connected. This sends four requests to the mediator, and the responses sent to the Admin
tool are evaluated. Measurements are taken of

e the times until a small file is send back (roundtrip: Blob) and

e the result of an index search request (roundtrip: RPC) and

e the average transmission rate when sending several 1 MB files (throughput: Blob (1.0 MB))
and

e the average transmission rate when sending several 100 KB files (throughput: Blob
(100.0 KB)).
The test results are written to the results list provided. The individual columns of the table
can be sorted by clicking on the head of the column.

Copy to clipboard copies the test results in the results list to the clipboard of the operating
system as plain text.

2.5.2.2.3 Version information

This menu item can be used to retrieve version-specific information for the semantic network
and Admin tool.

00O
000
o I J

F

Versionsinformation

Datenbestand keinfinity 4.2.0

Information
Job-Client

(C) intelligent views gmbh

Build:

» Leistung
Build 16050916

Versionsinformation
. Release State:
Systemkonfiguration
Wartung

XML-Import/-Export

Release
Netzversion:
4.2
Volume-Information:
neu @ localhost
Speicherbegrenzung:
4,172.312.576
VM Version:
7.10.1a
#[726975144 70161007269 75 144]
Locale:
de_DEWindows-1252
Fonts:

Standard: segoe wi~19~400~0~0~0~ansi~0

Seript: consolas~12~400~0~0~0~ansi~0

Komponenten: A

RSA-Key kopieren Kopieren

Zuriick Beenden

Specifically, you can retrieve:

The

The version number of the Admin tool (Build),
The publication status of the Admin tool (Release),

The version number of the semantic network (the network version), the name of the
semantic network and the mediator used (volume information),

The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

The language setting active in the operating system (Locale),
The fonts provided in the Admin tool (Fonts),

The semantic network components installed in the semantic network and their version
numbers (software components) and

The small talk packages including version number used in the Admin tool (Packages).

information is output in an invisible text field, which has a context menu that can be

activated by right-clicking:

Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

00O
000
o I J

o Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

e Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the
mouse. The query is case-sensitive.

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-
board of the operating system. This key can be entered into the initialization file of a mediator
(default file name: mediator.ini) and thus restricts this mediator s access via an Admin tool to
Admin tools with this specific key.

2.5.2.3 System configuration
2.5.2.3.1 User

The user administration compares the ones in the Knowledge Builder, with the exception
that no links between users and objects of the user-generated subnet can be processed.

Benutzer

¥ Datenbestand Benutzer Verkndpft mit Status Erstellen

b Information Administrator Administrator
. Passwort dndern
4 Systemkonfiguration

Eennieet Abmelden
Blob-5Speicherung Laschen

»
Komponenten Umbenennen
Lizenz

Mitteil
Zugangsherechtigung itteilung

¥ Wartung Administrator

¥ XML-Import/-Export Operationen

Administratoren

Benutzer

Zuriick Beenden

The user overview in the form of a table shows, for every user registered in the semantic
network,

e the user name (user),

the object of the user-generated subnet the user is linked to (/inked to),
e which status the user currently has (status),

on which date and at which time the user logged into the semantic network using the
Knowledge Builder(log-in date) if the user is still logged in, and

which method was used to encrypt the password (password type).

The individual columns of the table can be sorted by clicking on the head of the column.

The status provides information about whether a user has administrator rights, whether a
user with administrator rights does not have a password and whether a user is logged into
the semantic network using the Knowledge Builder. Names of users with administrator rights
without a password are marked in red.

Create creates a new user. User name (obligatory) and password (optional) are defined in a
separate window.The type and quantity of permitted characters is not restricted.

Change password changes the password of the user selected in the user overview. The
new password is entered two times in two windows that appear consecutively.

Log out logs out the user selected in the user overview from the semantic network following
a security confirmation. To ensure this operation has its effect, this user must be currently
logged into the semantic network using the Knowledge Builder.

Delete deletes the user selected in the user overview following a security confirmation. At
least one user with administrator rights must remain.

Rename allows a new user name to be assigned for the user selected in the user overview
by means of a free text field in a separate window. If the free text field remains blank, no
renaming occurs.

Notification uses a free text field in a separate window to send a message to the user se-
lected in the user overview. The message is buffered in the semantic network and appears
to the user addressed in a separate window in the Knowledge Builder as soon as the user
uses it to log into the semantic network. The user cannot reply to this message.

Administrator assigns the administrator rights to the user selected in the user overview ,
or takes them away. A user must have a password to obtain administrator rights. Once the
user has administrator rights, deleting the password is then possible. At least one user must
have administrator rights.

Operations opens a new window in which the user selected in the user overview can, from
a list of operations, these being

e Create backup,

e Delete backup,

e Restore backup,

e Garbage collection,

o Copy,

e Download log,

e Download volume,

e Upload volume,

e Delete volume,

select those operations that this user may execute within the scope of individual network

00O
000
o I J

administration in future, without input of the mediator password. To confirm the selection,
the correct mediator password must be entered in the free text field Server password for
operations.

The Operations operation can only be selected by a user with administrator rights. Its use
also requires that a mediator password has been set.

The field Administrators specifies the number of all users with administrator rights regis-
tered in the semantic network.

The field Users specifies the number of all users without administrator rights registered in
the semantic network.

The field Active specifies the number of all users currently logged into the semantic network
using the Knowledge Builder.

2.5.2.3.2 Blob storage

Attribute values of attributes with the attribute value type file (called blobs) can also be stored
in a blob store outside the semantic network. The advantage of this is that they can be
managed independently of the semantic network and can thus be managed in a different
system environment. To store blobs in a blob store, the blob store must be set up and
connected to a configured blob service (a software service).

neu Blob-5peicherung

, _ o
Datenbestand Externe Speicher fur Dateiattribute:

» Information

4 Systemkonfiguration
Benutzer
Blob-5peicherung

» Komponenten

Lizenz

Zugangsberechtigung

Anlegen Léschen
Wartung

XML-Import/-Export
URLs Y| Intern

Léschbare Dateien Léschen
Hinzuflgen

Externe Speicher im Blob-Service:

Entfernen Alktualisieren

Zuriick Beenden

Create generates a new blob store. Using the name format [semantic network ID]+[blob store
ID], the blob store overview appears in the text field above it.

Delete deletes the blob store selected in the blob store overview.

The numeric field Deletable files shows the number of blobs no longer required in the blob
store overview of the selected blob store. Blobs are no longer required when their respec-
tive attributes have been deleted from the semantic network or if the connection between
blob service and blob store has been removed using the Admin tool.

Delete deletes all blobs that are no longer required in the blob store selected in the blob
store overview.

You can identify a blob service in the free text field URLs. This is done by entering the net-
work address of the initialization file of the corresponding blob service (default file name:
blobservice.ini) stored under the interfaces key including the prefix http. If the blob service is
supposed to be addressed via several network addresses, these can be entered in comma-
separated form.

Alternatively, the blob service integrated in the mediator can also be addressed. In the initial-
ization file of the mediator (default file name: mediator.ini), the value true must be set under
the key startBlobService and the free text field URLs must be left blank. The internal check-
box to the right of the free text field URLs indicates whether the integrated blob service or
an external blob service is addressed. The blob service integrated into the mediator is not
configured via the mediator initialization file but via a separate initialization file (default file
name: blobservice.ini).

Add connects the blob store selected in the blob store overview to the blob service identi-
fied via the free text field URLs. To do so, the blob service must be active. If linking is suc-
cessful, the blob store using the name format [semantic network ID]+[blob store ID] appears in
the text field below, the overview of registered blob stores.

Update updates the overview of registered blob stores. To do this, a blob store must be
selected in the blob store overview.

Remove interrupts the connection of the blob store selected in the overview of registered
blob stores to the blob service and removes the blob store from the overview. In doing so,
all blobs stored in the blob store irrevocably lose their internal references to the respective
attributes in the semantic network and can no longer be retrieved in the semantic network.
To ensure removal is successful, the blob store selected in the overview of registered blob
stores must also be selected in the complete blob store overview.

All blobs stored via a blob service are stored in a subfolder called blobs that is located relative
to the position of the blob service. The internal assignment of every blob to its blob store and
its semantic network is established using an SQLite database.

2.5.2.3.3 Components

Semantic networks consist of semantic network components. In addition to the basic func-
tions, they basically provide the semantic network with additional interfaces and user inter-
faces for user data that can be displayed in the browser (web front-ends).

Publication status components (Release States), of which there are three variants (Preview,
Release Candidate, Release) are a special subgroup of semantic network components. If such
a component is installed in the semantic network, only software components with suitable
publication statuses are able to access the semantic network.

00O
000
o I J

Kompenenten

¥ Datenbestand Software

¥ Information)
Release State: Preview

4)
Systemkonfiguration Release State: Release

Benutzer Release State: Release Candidate
Blob-5Speicherung
» Komponenten
Lizenz
Zugangsherechtigung
P Wartung

» XML-Import/-Export

Standardkompeonente hinzufiigen Lizenztemplate schreiben

Wissensnetz

Attributversionierung 4.0.0
Boost Libraries 1.18.0
Druckkomponente 4.0.0
K-Infinity-Core 4.2.0
Kalenderkomponente 4.0.0
KEM 4.0.0
Knowledge-Builder 4.2.0

Marm Version 0O

Generische Komponente hinzuflgen Alktualisieren Entfernen

Zuriick Beenden

The Software list provides an alphabetical list of all semantic network components supplied
with the Admin tool and their respective version numbers. If they need a separate license,
there is also a note as to whether this is included in the current license of the semantic
network. Publication status components do not have a version number.

If you right-click on a semantic network component, a context menu appears. The menu item
Add standard component available there has the same functions as the button of the same
name.

Add standard component installs the semantic network component selected in the soft-
ware list in the semantic network. A separate window informs of the installation status.
Some semantic network components require other semantic network components installed
in the semantic network. Most installed semantic network components (except for publica-
tion status components) appear as separate entries in the Technical category in Knowledge
Builder. Only one publication status component can be installed at a time.

Write license template generates a template whose content is to be completed for the com-

ponent license configuration file to be used to generate the license key, and stores it at a loca-

tion of your choice via a saving dialog (default file name: [semantic network].componentLicenseTemplate.ini).
Irrespective of the configuration of the semantic network just administered, configuration
placeholders are specified for the components KEM, i-views core and Knowledge Builder. The

version number of the respective semantic network component supplied in the Admin tool

is pre-entered in every configuration placeholder.

The semantic network list alphabetically lists all semantic network components installed in
the semantic network with their respective version numbers. An installed semantic network
component for which a newer version is provided in the Admin tool is highlighted in red. The

optional Knowledge Builder component is pre-installed in a new semantic network by default.

The text fields Name and Version show the name and the three-digit version number of the
installed semantic network component selected in the semantic network list.

Add generic component adds a generic model component or a generic software compo-
nent to the semantic network list. The component type is selected in a separate window.
Generic components allow bundling of project-specifically created semantic network exten-
sions and simplify their installation (removal) and version monitoring via the Admin tool. The
name and version number of a generic semantic network component installed in the seman-
tic network can be freely assigned in the corresponding text fields.

Update (the name changes to Renew, if it can be deactivated) updates the installed semantic
network component selected in the semantic network to the version supplied in the Admin
tool. If the language of the currently running Admin tool differs from the language of the Ad-
min tool with which the semantic network component was originally installed in the semantic
network, identifiers of all elements and element types of this semantic network component
are also updated. Depending on the semantic network component, the update of the old
identifiers either adds new identifiers in the language of the Admin tool that is currently run-
ning (the respective applicable language version is then displayed depending on the language
setting in Knowledge Builder) or replaces the old identifiers with new identifiers.

Remove removes the installed semantic network component selected in the semantic net-
work list. If semantic network components in the installed status in Knowledge Builder have
an entry in the Technical category, they leave their own subnet after they have been removed,
which has to be removed manually. Semantic network components can only be removed if
no other semantic network components that depend on the semantic network component
to be removed are installed. The two semantic network components j-views Core and View
Configuration offer basic functions and cannot be removed.

Boost libraries 1.18.0

This configuration menu appears only if the boost libraries semantic network component is
installed.

With the exception of the blob service and the mediator, all the software components can
interpret JavaScript. In order to improve the scope and speed of interpretation of reg-
ular expressions embedded in JavaScript, it is possible to transfer their interpretation to
the Boost.Regex library. Under Windows and Linux, the library (file name in Windows:
boost regex.dll, file name in Linux: libboost regex.so) must be in the same directory as the
transferred software component. In Mac OS the library is integrated in the file of the trans-
ferring software component.

The boost libraries semantic network component makes it possible to ensure that access to
the Boost.Regex library is possible.

00O
000
o I J

Boost Libraries 1.18.0

b Datenbestand (®) Boost-Libraries fir alle inkl. Admins erforderlich:

¥ Information _) Boost-Libraries fir alle auBer Admins erforderlich

() Boost-Libraries nicht erforderlich, nur loggen

4 Systemkonfiguration
Benutzer
Blob-5Speicherung

4 Komponenten
Boost Libraries 1.18.0
Knowledge Portal
Konvertierungsservice
Lizenz
Zugangsberechtigung
¥ Wartung
» XML-Import/-Export

Zuriick Beenden

If the Boost libraries required for all incl. Admins option is selected, all software compo-
nents apart from the Admin tool can only access the semantic network if they can access the
Boost.Regex library.

If the Boost libraries required for all apart from Admins option is selected, all software
components apart from the Admin tool can only access the semantic network if they can
access the Boost.Regex library. The only ones excepted from this access lock are users with
administrator rights who access the semantic network via the Knowledge Builder.

If the Boost libraries not required, logging only option is selected, each software compo-
nent enters a corresponding warning in its respective log file, if available, if it cannot access
the Boost.Regex library during start-up. Access to the semantic network remains possible
regardless.

Knowledge portal

This configuration menu appears only if the Knowledge portal semantic network component
is installed.

The Knowledge portal semantic network component enables a semantic network to operate a
knowledge portal (of a front-end that can be displayed via browser). The configuration of the
display and control elements of this front-end is performed in the Knowledge Builder on the
relevant element types via an editor specially provided by the semantic network component
for that purpose and with the help of the XML markup language. To make maintenance
easier, and for the logical regulation of XML documents, it is possible to install schemas in
the DTD format, on the basis of which the XML documents can be validated.

In the front-end, a distinction is made between an edit view and a presentation view, each of

00O
000
o I J

which have exclusive display and control elements. Separate DTD schemas are maintained
for both views. Each of the control elements explained below exists for every view.

Knowledge Portal

» Datenbestand Edit Config DTD: Wahlen Zuriicksetzen Anzeigen
¥ Information) .
View Config DTD: Wahlen Zuriicksetzen Anzeigen
4 Systemkonfiguration
Benutzer
Blob-5peicherung
4 Komponenten

Boost Libraries 1.18.0

Knowledge Portal

Konvertierungsservice
Lizenz
Zugangsberechtigung
P Wartung
¥ XML-Import/-Export

Zuriick Beenden

The Select button can be used to access the file system of the operating system in order to
load a DTD schema file for the relevant view and install it in the semantic network. The default
file name for edit view DTDs is editConfig.dtd, and the default file name for presentation view
DTDs is viewConfig.dtd.

Reset deletes the DTD schema installed for the relevant view from the semantic network.

Display shows the DTD schema installed for the relevant view in a separate window. There
it can be copied to the clipboard of the operating system (Copy to clipboard button) or
exported to any location via a saving dialog as a text file with a name of your choice (Save
button). The window also features a context menu of its own, which can be opened by right-
clicking:

e Search allows a string to be input in a separate window, and next appears in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse.
The query is case-sensitive.

e Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark
any text segment.

e Copy copies the selected text area to the clipboard of the operating system.

Conversion service

This configuration menu appears only if the print component semantic network component

00O
000
o I J

is installed.

The print component allows selected semantic elements to be integrated into an electronic
document that can be saved. To do so, a document template in the formats ODT, DOCX or
RTF must be imported into the semantic network using the Knowledge Builder and be linked
to the semantic element to be integrated into a document. This layout of this document
template is created in an external Office program. You can use KScript and KPath to define
placeholders to be filled out by elements of the semantic network.

The conversion service is a function of the print component. If the context menu item Print is
used to generate a document in the Knowledge Builder, then along with the original format of
the imported document template, diverse other output formats can be selected into which
the document template can be converted. To ensure this conversion functions, a suitably
configured bridge (a software service) must be started and be linked to the print component,
and a version of LibreOffice or OpenOffice must be installed.

The bridge is suitably configured using its initialization file (default file name: bridge.ini). The
value jodService must be added in the section [KHTTPRestBridge] under the key services. More-
over, a new section [file-format-conversion] must be created and be stored there using the key
value pair sofficePath="[File pathj/soffice.exe” with a correct path name for the location of the
LibreOffice or OpenOffice start file.

Konvertierungsservice

¥ Datenbestand URL:

¥ Information .
Timeout: 20 | Sekunden
4 Systemkonfiguration
Benut -
enutzer Uberprifen
Blob-5Speicherung
4 Komponenten
Boost Libraries 1.18.0
Knowledge Portal
Konvertierungsservice
Lizenz
Zugangsberechtigung
¥ Wartung

» XML-Import/-Export

Zuriick Beenden

The bridge is linked to the print component using the free text field URL. The network address

of the bridge is entered there in the format http://[Bridge-IP-Number]:[Bridge-Port]/jodService/jodconverter/service.

The path section /jodService/jodconverter/service has historical reasons and activates the pre-
defined jodService.

00O
000
o I J

Check starts a test process. The test process uses REST to send a test document to the bridge
defined using the network address and expects that a properly converted test document is
returned. The test result is output in a separate window.

The free text field Timeout is used to define how many seconds to wait for the return of the
converted test document before generating an error message. The preset is 20 seconds.

2.5.2.3.4 Licence

A semantic network must have a valid license so that Knowledge Builder and other software
components (with the exception of the Admin tool) can work with it.

» Datenbestand Status | Lizenz ist giltig

¥ Information
4 Systemkonfiguration
Benutzer

Blob-Speicherung

» Komponenten intelligent views

Lizenz
Zugangshberechtigung
¥ Wartung
» XML-Import/-Export

Komponenten | [Kinfinity. KEMComponent]
maxlsers=10
version=4.2*

[Kinfinity KiInfinityCoreComponent]
version=4.2.*

[Kinfinity_KnowledgeBuilderComponent]
maxAdminUsers=10

Partner
giiltig bis
gultig far Netze

gultig far Server

Zuriick Beenden

The Status field specifies whether the license is currently valid or invalid. If it is invalid, a
reason is also stated. Reasons for an invalid license can be exceedance of the validity date or
maximum number of allowed registered users.

The Customer field describes the client for whom the license was issued. In addition to the
name, address and department may also be listed.

The Components field displays the content of the component license configuration file [se-
mantic network].componentLicenseTemplate.ini used to generate the license key. This specifies
e The licensed versions of individual components (version),

e The maximum number of registered users with administrator rights (maxAdminUsers)
and

e The maximum number of registered users without administrator rights (maxUsers)

The Partner field contains the name of the partner via which the license is forwarded.
The Valid to field contains the date on which the license expires.

The Valid for networks field contains a list of names of all networks to which the license is
restricted. This can be entered using a regular expression.

The Valid for servers field contains a list of all IP addresses and port numbers that can be
used to reach a mediator connected to the semantic network.

The fields Partner, Valid to, Valid for networks and Valid for servers can be left blank.
All fields have a context menu that can be activated by right-clicking.
e Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.
e Copy copies the selected text area to the clipboard of the operating system.

e Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

e Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the
mouse. The query is case-sensitive.

Add / Renew makes it possible to load a new license key (file name: [License name].key) via
the file system of the operating system.

2.5.2.4 Maintenance
2.5.2.4.1 Client caches

To improve performance, software components accessing the semantic network often fall
back on their own buffers (cache). These buffer the schema and configuration data of the
semantic network so they can access them more quickly if they need to use them later on.

00O
000
o I J

neu Client-Caches

Datenbestand Client-Caches zuricksetzen

Information
Systemkonfiguration
Wartung
Client-Caches
Garbage Collection
Wartung
Wartungsinformation
Wartungsnachricht
Wartungsskript
XML-Import/-Export

Reset client caches deletes these buffered data. This makes sense if they are obsolete due
to changes to the schema or the configuration. This operation requires that the semantic
network is activated via a mediator.

2.5.2.4.2 Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-
ing to a programming terminology reading) from the semantic network and thereby mini-
mizes the memory usage of the semantic network. Use of the garbage collection requires
that the semantic network that is to be cleaned up is activated via a mediator.

00O
000
o I J

Garbage Collection

Datenbestand Aktionen

Infarmation | Start

Systemkonfiguration | Pause

Wartung |
Client-Caches
Garbage Collection Information
Wartung |

Anhalten

Alctualisieren

Wartungsinformation

Wartungsnachricht

Wartungsskript
XML-Import/-Export

Start launches a new garbage collection for the semantic network or continues a paused
garbage collection. No confirmation is sent when the process is completed. You can deter-
mine its progress via the Refresh menu option.

Pause interrupts the execution of the active garbage collection for the semantic network.
Stop cancels the execution of the active garbage collection for the semantic network.

Refresh writes the current state of the garbage collection for the semantic network to the
neighboring text field. If garbage collection is active, feedback on its progress is provided in
percent.

00O
000
o I J

2.5.2.4.3 Maintenance

neu Wartung

Datenbestand Mitteilung Typ Prioritit Datum
Transfer

Verwalten
Information
Systemkonfiguration
Wartung

Client-Caches

Garbage Collection

Wartung
Wartungsinformation
Wartungsnachricht
Wartungsskript
XML-Import/-Export

Letzte Ausfihrung: -

Details Entfernen Wartung jetzt ausfihren

Zuriick Beenden

Perform maintenance now checks

the license (license)

indexes (indexes),

registered objects (the registry),

rights (access rights),

triggers (trigger) and

installed semantic network components (active components)

for faults. Over the course of the check, the statistics for property frequencies per object
(metrics) that can be viewed using the Knowledge Builder are updated.

Any

faults found are collected in a fault overview in the form of a table. For each fault,

a short description, if relevant including the cluster ID and the frame ID (format cluster
ID/frame ID) of the faulty object (in the terminology interpreted by the program) (notifi-
cation),

the superordinate semantic element affected by the fault (object),
its type (type),
the severity of the fault (priority) and

00O
000
o I J

e the first point in time at which it was identified in the form of a date (date)

are output. The individual columns of the table can be sorted by clicking on the head of the
column.

Details displays all data listed in the fault overview of the selected fault in a new window.
The time of the first point in time at which it was identified and date and time of the last time
it was identified are added. The data there can be copied to the clipboard of the operating
system (Copy to clipboard button) or be exported to any location as a text file that can be
given any name using a saving dialog (Save button). The operation triggered using the De-
tails button can, alternatively, be performed by double-clicking a fault in the fault overview.

Remove deletes the fault selected in the fault overview. This does not effect the first point
in time at which the fault was identified.

2.5.2.4.4 Maintenance information

neu Wartungsinformation

Datenbestand 2016-07-24-17-15-44 >> Add component: View-Konfiguration 4.2.0

Information 2016-07-24-17-15-43 >> Add component: K-Infinity-Core 4.2.0 (Unlizensierte Kompone

Systemkonfiguration

Wartung
Client-Caches
Garbage Collection
Wartung
Wartungsinformation
Wartungsnachricht
Wartungsskript

XML-Import/-Export

< >

In Zwischenablage kopieren Kemmentar hinzufigen

Zuriick Beenden

This menu option can be used to call up a chronologically ordered maintenance history of
all essential administration processes in the semantic network since its creation. It contains
backup and transfer processes, component installations and updates, and the execution of
maintenance scripts and garbage collection, each with the time and date.

The maintenance history has a context menu that can be activated by right-clicking:

e Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

00O
000
o I J

o Copy copies the selected text area to the clipboard of the operating system.

¢ Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

e Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the
mouse. The query is case-sensitive.

Copy to clipboard copies the entire maintenance history to the clipboard of the operating
system.

Add comment allows a note to be entered via a free text field in a separate window. It is given
a timestamp and added to the maintenance history. Notes added to the maintenance
history cannot be deleted.

2.5.2.4.5 Maintenance message

Wartungsnachricht

Datenbestand Durch das Setzen einer Wartungsnachricht kann verhindert werden, dass sich Benutzer

Information per Client im Wissensnetz anmelden.

Systemkonfiguration

Wartung
Client-Caches
Garbage Collection
Wartung
Wartungsinformation
Wartungsnachricht
Wartungsskript

XML-Import/-Export

Wartungsnachricht

Setzen Zurdcksetzen

Zuriick Beenden

The Set button activates a maintenance block that prevents all users from accessing the
semantic network via the Knowledge Builder. To do this, a maintenance notification must be
written.

The maintenance notification is written in the free text field Maintenance notification. It is
displayed as an error message shown to all users who try to access the semantic network via
the Knowledge Builder when the maintenance block is active.

The Reset button removes the previously set maintenance block and deletes the mainte-

00O
000
o I J

nance notification.

2.5.2.4.6 Maintenance script

neu Wartungsskript

Datenbestand Wartungsskript auswihlen

Information

Systemkonfiguration Kein Wartungsskript ausgewahlt

Wartung
Client-Caches
Garbage Collection
Wartung
Wartungsinformation
Wartungsnachricht
Wartungsskript

XML-Import/-Export

Wartungssknipt ausfihren

Zuriick Beenden

Select maintenance script can be used to access the file system of the operating system in
order to load a maintenance script (file name: [Maintenance script].kss). Maintenance scripts
are produced on a case-specific basis in the programming language Smalltalk and permit
operations that cannot be implemented using the predefined functions of the Admin tool or
using the KEM or JS interfaces.

If the maintenance script has a description, this description is output in an invisible text field
under the Select maintenance script button after the maintenance script has been loaded.
This text field has a context menu that can be activated by right-clicking:

o Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.
e Copy copies the selected text area to the clipboard of the operating system.

e Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

¢ Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the
mouse. The query is case-sensitive.

Execute maintenance script starts the maintenance script. A separate window tells you

00O
000
o I J

when the maintenance script was executed and, depending on the script, offers additional
execution information or permits script-specific execution options.

2.5.2.5 XML import/ -export
2.5.2.5.1 Schema and configuration

Along with subnets generated by the user and imported using components (schemas with
useful data), a semantic network, by extension, is also comprised of diverse other modules
(configurations) that extend, configure or work with this subnet in functional terms. Schemas
and configurations are referred to jointly as configurations within the context of this menu
item.

Numerous configurations of a semantic network can be systematically exported and im-
ported.

neu Schema und Kenfiguration

» Datenbestand Konfiguration

Information Abbildungen von Datenquellen
Abfragen

Datenquellen

Wartung Druckkonfiguration
AML-Import/-Export Ermittlung der View-Konfiguration
Indexfilter

Indizes

LDAP

Lizenz

Sammlung von Wissensnetzelementen
Skripte

Strukturordner

Trgger

Wissensnetz

Zugnffsrechte

Systemkonfiguration

Schema und Konfiguration

Hinzufiigen Entfernen Alle hinzufiigen

Wartungsskript vor dem Impert:
Wartungsskript nach dem Import:
Schema und Konfiguration

Export Import

Auswahl Schema zur Auswahl von Typen und Objekten

Speichern Altualisieren

Zuriick Beenden

The configuration overview is a list providing an overview of all configuration types in a
semantic network that can, in principle, be transferred by means of the operations described
in the following. Able to be transferred by principle are

e individual, registered mappings of data sources (mappings of data sources)

¢ individual search fields configured by administrators and are user-defined (queries)

e individual data source access settings for use for mappings of data sources (data
sources)

e the print configuration (print configuration)

e the set of all modules defined within the category Determination of view configuration
(view configuration determination)

e individual index filters (index filter)

e individual index configurations (indexes)

o the LDAP authentication (LDAP)

e the license for the semantic network (/icense)

e individual, registered collections of semantic objects (collection of semantic elements)
e individual, registered scripts (scripts)

e the working folder (organizing folder)

e the set of all modules defined within the triggers category (Triggers)

e individual subnets (semantic network) and

e the set of all modules defined within the rights category (access rights).

The configuration overview also manages all configurations specifically intended for ex-
port. Configurations intended for export appear as an expandable list of subitems of their
respective configuration types. If these configurations require other configurations for suc-
cessful export, these other configurations are, in turn, listed in the form of an expandable list
of subitems of the respective configurations. Configuration types without their own config-
urations are marked in italics, configuration types with their own configurations are marked
in bold and show the number of configurations assigned to them in brackets. Configuration
und configurations of each configuration type are sorted in alphabetical order respectively.

Expanding and collapsing lists of subitems in the configuration overview is carried out by
clicking on the triangle symbols to the left of the listed items. Alternatively, this can be imple-
mented using a context menu, which can be accessed by right-clicking a list item:

e Expand opens all directly listed subitems in the list item selected.
e Expand fully opens all directly and indirectly listed subitems in the list item selected.
e Contract fully collapses all listed subitems in the list item selected.

Add adds a configuration of the configuration type selected there to the configuration
overview. If more than one configuration exists in the semantic network for the configura-
tion type selected, then a selection option follows in a separate window. Selection is carried
out there by either clicking individually on the respective configurations in a list, or collectively
by using the Select/deselect all button.

Remove either deletes all configurations of the configuration type selected in the configu-
ration overview or the configuration selected in the configuration overview.

Add all adds all configurations existing in the semantic network to the configuration
overview and distributes them among the respective suitable configuration types.

The ... buttons can be used to access the file system of the operating system in order to load
a maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced
on a case-specific basis in the programming language Smalltalk and permit operations that
cannot be implemented using the predefined functions of the Admin tool or using the KEM
or JS interfaces.

If a maintenance script loads, the file name of the maintenance script selected appears in
the text field positioned to the left of the respective button. If configurations are imported
afterwards, then the maintenance script is executed. If configurations are exported after-

wards, the maintenance script is also exported and only executed when these configurations
are imported. The exact time of execution of the maintenance script in relation to the import
process depends on which of the two ... buttons was used to load it. It is either before the
import process starts, or after the import process finishes.

Export exports the configuration selected in the configuration overview. An export as one
single archive file in the archive format tar or as individual files in a folder can be selected.
The export method is selected in a separate window:

e The free text fields File or Directory can be used to specify the name of the archive
file (file name: [Semantic network].tar) or the folder respectively (no default name). The
archive file or the folder respectively is created in the same folder as the Admin tool. Al-
ternatively, Select can be used to open a saving dialog to define any name and location
used to save the archive file or the folder respectively.

Import imports configurations to the semantic network after confirming a prompt. An im-
port from one single archive file in the archive format tar or from individual files in a folder
can be selected. The import method is selected in a separate window:

e The free text fields File or Directory can be used to specify the name of the archive
file (file name: [Semantic network].tar) or the folder respectively (no default name). The
archive file or the folder respectively is searched for in the same folder as the Admin
tool. Alternatively, Select can be used to access the file system of the operating system
to select an archive file or a folder respectively from any location.

e Ifthe archive file or the folder to be imported respectively is selected, an overview of the
configurations it contains appears in an additional window. This overview can be copied
to the clipboard of the operating system (Copy to clipboard button) or be exported to
any location as a text file that can be given any name using a saving dialog (Save button).
The Import button starts the import process. The window also features a context menu
of its own, which can be opened by right-clicking:

- Search allows a string to be input in a separate window, and next appears in accor-
dance with the read direction in relation to the position of the cursor set by clicking
the mouse. The query is case-sensitive.

- Mark all marks the entire text. Alternatively, the mouse pointer can be used to
mark any text segment.

- Copy copies the selected text area to the clipboard of the operating system.
Save saves the configurations currently selected in the configuration overview for this se-

mantic network as an XML file. A saving dialog is used to define a name and the location of
the XML file (default file name: instruction.xml).

Load accesses the file system of the operating system to load a previously saved selection of
configurations for this semantic network from an XML file (default file name: instruction.xml).

Update adds the attribute types equipped with the Boolean attribute value type

e XML: Export all objects

e XML: Export direct objects

e XML: Do not export type and all subtypes and
e XML: Do not export subtypes

to the knowledge network if they do not yet exist in it. These attribute types are required to
select which elements and element types found in this configuration should be exported or

Q00O

—

ol I J

not exported respectively in the event of exporting a configuration of the configuration type
semantic network. To do so, these attribute types are attached to suitable object types using
the Knowledge Builder and are given suitable attribute values.

If nothing else has been configured using these attribute values, then this applies for every
object type that the object type itself is exported, not, however, its objects. If an object or
object type is exported, all attributes and relations directly connected to it and their attribute
or relation types respectively are also exported.

3 View Configuration Mapper

3.1 Introduction
View configurations can be transported into a web front-end and be displayed here in a
straightforward way using the ViewConfiguration Mapper (VCM for short). To do so, the JSON

generated in the view configuration is transported to the front-end via the REST interface in
i-views and is translated into HTML there using mustache templates.

Web-Frontend

: I 4

=3

I

REST

In addition, standard interactions such as content maintenance are supported directly, and
the option is provided to execute user-specific actions in the front-end that were defined in
the view configuration using VCM.

The ViewConfiguration Mapper is a single-page application that runs in the client s browser.
It uses ractive (ractive.js.org) for an interactive and reactive application that is based on mus-
tache templates. (mustache.github.io/) .

3.2 Configuration

The usual procedure involves activation of the ViewConfiguration Mapper components in the
semantic network and the creation of a modification project, into which vcm is integrated.
In order to modify the look & feel, making changes in CSS alone may be sufficient. vcm
supports LESS (lesscss.org/). The templates can also be changed or supplemented for more
complicated modifications.

Grunt (gruntjs.com/) is used as the TaskRunner, and as a Package Manager Bower (bower.io/).
More detailed information and a list of the Grunt tasks is available in the README.md in the
project.

00O
000
o I J

3.2.1 View configurations for the View Configuration Mapper

The View Configuration mapper interprets all view configurations created in i-views. How-
ever, there are several differences between processing in the Knowledge Builder and in the
View Configuration Mapper, which this chapter will discuss.

3.2.1.1 Panel confoguration

If the web application is supposed to be based on a panel configuration, the application must
be linked to the panel configuration.

W Viewkonfiguration-Mapper
» W Hauptfensterpanel - Objekt

» Wl P_Dialog
v P_Dialog_Layoutpanel Konfiguration KB Kontext Alles
» W P _Dialog Wechselndes Layout dentifikator = | viewConfigMapper
» W P_Dialog_Festgelegte_Ansicht
- 9 gelegte Konfigurationsname = | Viewkonfiguration-Mapper

» W P_Dialog_Flexible_Ansicht
W Dialog-Panel - Objekt

To do this, an object of the main window panel is appended to the application. All other
panel configurations can then be appended to this object. Additional panels (e.g. dialog
panels) are optional. However, if they are used in the web front-end, they must be connected
to the application in this way. It does not suffice to merely define it e.g. as a target window
of an action because it would not be taken into account for the display of the application
otherwise.

3.2.1.2 Applyin

In order to determine a suitable view configuration for a semantic element, it is necessary to
look to the type of the element and to the context in which the view configuration is to be
used. This context is determined via the “apply in” relation. If a view configuration is to be
used in vcm, it should therefore be ensured that the relation was sourced accordingly.

Konfiguration | Aktionen EVerwendung

Verwendung

]

Person

|

T
n

= Viewkonfiguration-Mapper

n

o0

mn

]

3.21.3 Style

To influence the display of a view, it is possible to use so-called “styles”. They can be used,
for example, to configure whether a heading is to be displayed, or whether data should be
highlighted in a specific way.

The setting for the styles for the display in the web front-end by means of the view configura-
tion mapper are available on the “View configuration mapper” tab. The prerequisite for this
is that a view configuration mapper component has been installed in the KB.

In total there are multiple setting options for the styles (see figure):

Konfiguration Viewkonfiguration-Mapper Kontext

[m}

There are a number of Style elements that are already defined in i-views. The following sec-
tion explains what these elements are and how these style elements are created in the Knowl-
edge Builder so that they can then be linked to individual elements of the view configuration
of an application.

In the view configuration, you first have to select the element with which one or more style
elements are to be linked. Depending on the type of the view configuration element, various
tabs are available for configuring the styles (“Actions and styles” -> “Styles” or just “Styles").

Once you have chosen this tab, you can either define a new style element or link and

existing style element (0. When defining a new style element it is first necessary to assign it
a configuration name. You can then configure it on the right side of the editor.

The following section describes the individual configuration options for style elements:

Name Attribute Configuration type | Description
type
class String CSS class Styling through specifi-

cation of a predefined
CSS class in the CSS of
the ViewConfiguration
Mapper or in the “view-
configmapper.config.GET"
script

AN

000

—
&

o] 1 J

&

o] 1 J

&

class (script)

Reference to
script

Definition of CSS styling in
the form of a script return
value

collapsed

Boolean

dateFormat

String

datetimepickerOp-
tions

Reference to
script

downloadRequest String
editCustomButtons | Boolean
editStageToggle Boolean

extra

Reference to
script

Can be used to create a
user-defined behavior for
an action with the help
of the script and render
mode. Example: A script
that returns URL attribute
values is used with the “ex-
ternal” renderMode and
with a parameter specifi-
cation in the “href” line
to define an external web
link for the action of a but-
ton.

extra

String

extraDateFormats

String

groupColumnGrid

String

The expected input is
a string of figures sep-
arated by a space or
comma. Each figure
defines the quantity of
columns if the maximum
is 12 columns.

hideFilters

Boolean

Hides the table query fil-
ters in the table header

hideLabel

Boolean

Hides the label of a view
configuration element (la-
bel on the tab of an alter-
native remains)

AN

000

—
&

o] 1 J

&

o] 1 J

&

href

String

Hyperlink

Link to a website or folder
path as per the HTML
standard. Alternatively,
you can enter a parame-
ter name in curly brackets
which is then equipped
with a URL under “extra”
by means of a script.

localAction

Boolean

Limits the effect of an ac-
tion to the current panel

numberFormat

String

readOnly

Boolean

Properties

The properties of the view
configuration element can
only be read in the appli-
cation, not edited. That is
why no “Edit button” is dis-
played.

renderMode

Selection

Property

See the “RenderModes”
sub-chapter

renderMode

String

Property

See the “RenderModes”
sub-chapter

style

String

Here you can define CSS
properties that are only
used for those views that
are linked to this style.

style

Reference to
script

Here you can use a script
to define CSS properties
that are only used for
those views that are linked
to this style.

target

String

tooltip

String

Context help

Note that is displayed dur-
ing mouse hover

vcmDetailed

Boolean

vcmMarkRowClick

Boolean

vcmPluginCalen- Reference to | VCM plugin Default values that can be
darOptions script defined by script, e.g. start
date when the calendar
view is called
vcmPluginChartDat- | String VCM plugin

aColumns

OO

&

O

o] 1 J

&

o] 1 J

&

534
vcmPluginChart- String VCM plugin This is used if the data
DataMode of the underlying table is

to be read out either by
row (“rows") or by column
(“columns”) for the chart
to be displayed; if not
specified, the default data
mode is “rows”

vcmPlugin- String VCM plugin Absolute height of a chart
ChartHeight in pixels (e.g.: “300px")
vcmPluginChartLa- String VCM plugin

belColumn

vcmPluginChartOp- | Reference to | VCM plugin Script that can be used
tions script to control the display of

components of the chart:
Display of keys, scaling of

axes etc.
vcmPluginChart- Selection VCM plugin Selection options for the
Type “chart” RenderMode (ap-

plicable for tables):

e bar

doughnut
e line

e pie

pole
radar

vcmPlugin- String VCM plugin Absolute width of a chart
ChartWidth in pixels (e.g.: “380px")

vcmStateContext Selection Selection options:
e global

e page

e None

vcmStateContext String

vecmTruncate String

Beachten Sie, dass es zu einzelnen View-Konfigurationselementen eigene Style-Mdglichkeiten
gibt, die entsprechend als Unterkapitel an den jeweiligen View-Konfigurationselementen erk-
lart werden. So ist zum Beispiel die Moglichkeit gegeben, bei Eigenschafts-Darstellungen die
Aufteilung eines Labels und seines Wertes anzupassen.

00O
000
o I J

3.2.1.3.1 Definition of style attributes
You can define your own style attributes in addition to those predefined by the application.
You can create the attributes of the styles under View configuration -> Attribute types.

To ensure the style attribute is also written to the JSON output, an addition must be added to
the attribute in the schema. You get to the schema by clicking on “Schema” in the = menu
of the attribute. In the schema, you then have to maintain the attribute “Property key” and
enter the name of the attribute there.

“Objects of style” must be entered in this “defined for” field. You add an entry by clicking on
the Plus icon (“Add” button). Once you have entered “Style” as the search term, a list appears
from which you select the entry “Style” (view configuration). Following that, you have to select
the additional tab page in which the new style element is supposed to be displayed.

readOnly %

Ubersicht Details

~

~
A editCustomButtons Eigenschaften des Typs
A editStateToggle
A extra

» NameTyp

readOnly

A extraDateFormats Symbol = m
& groupColumnGrid Eigenschaftsschiiissel = readOnly ‘
A hideFilters
A hideLabel Zusatzregisterkarte = gi te: tion-Mapper (Style) Zusatzregisterkarte
A href T T ———
A localAction
A numberFormat Definition
A readOnl
a read :\/Iy " Wertetyp Boolesch
renderMode
A renderMode nterner Name stylePropertyKey.readOnly LR
A target Definiert fiir Objekte von Style ‘ &

In the JSON output, the key and value pairs (StylePropertyKey -> Style property) are output as
an array under additionalConfig.

Example
Configuration of the type String for style value

Eigenschaften des Typs

» NameTyp Zeichenkette flr Style-Wert

jsonkey1

Farbe

{m|

Symbol

Eigenschaftsschllssel

Configuration of the type Additional string for style value

Eigenschaften des Typs

» NameTyp Noch eine Zeichenkette fUr Style-Wert

jsonKey2

Farbe

a0

Symbol

Eigenschaftsschilssel

Configuration of the type Display banner attribute

Eigenschaften des Typs

» NameTyp Banner anzeigen Attribut

Farbe

&

Symbol

Eigenschaftsschlissel Banner anzeigen

Configuration of the object One style configuration of the type Style

OO0
0
o 1

—
)
—
&

w

Konfiguration Viewkonfiguration-Mapper KB Kontext

O

jsonValue2
[}
[}

jsonValuet

JSON output:

"properties": [{
"values": [{ ... }],
"label": ““First name",
"additionalConfig": {
"jsonKeyl": ["jsonValuel"],
"jsonKey2": ["jsonValue2"],
‘“Display banner": ["true"]

1,
"viewId": "ID34304_461524079",
"schema": { ... }

3.2.1.3.2 Render modes
RenderModes can be used to apply additional predefined style properties.

RenderModes are available in the styles in the view configuration on the “view configuration
mapper” tab, once via drop-down menu and additionally via input line. Here the freely se-
lectable value entered via the input line takes precedence, which means that it overwrites a
value that was selected via drop-down.

The following renderModes are available in the drop-down menu:

render- Explanation Applica-
Mode bility
bread- Displays the hierarchy and path navigation Hierarchy
crumb

calendar Displays date information in a calendar view; the basis for this | Table

is a table containing the attributes of the value type time, date,
date and time, flexible time or interval with the date and time

type.

chart Displays the data from a table in a chart. Under vemPlugin- | Table
ChartType you can select the type of chart. Under vemPlugin-
ChartOptions you can use a script to format the chart more
precisely, e.g. axis scaling, display of keys etc.

download Link to file download Action

AN

&

OO0

o] 1 J

&

o] 1 J

&

edit

Subordinate properties can be edited

Group

external

Generates an external link in connection with href; can be
used, for example, in combination with icon and tooltip.

For dynamic links, an identifier in curly brackets can be used
in the href attribute. If the extra script provides a JavaScript
object with a value for the identifier, this is entered automati-
cally.

You can, for example, trigger a Google search for the name of
the current object in the following manner:

href: https://www.google.com/search?q={search}

extra script

function additionalPropertyValue(element, context) { ret

3

Action

urn { search|

grid

In combination with the groupColumnGrid property, the layout
can be divided according to a preconfigured grid with 12 units.
Depending on the quantity of elements, it is possible to de-
fine the relative distribution by specifying the available units.
Example: 534

Group

html

Shows the string without masking

String
property

markdown

Converts text sections equipped with mark-ups into text with
highlights by means of in-line formatting

Text
string
attribute

or

element .name ()

00O
o] 1 J

.
o 34
medialist Displays the table entries as an HTML text link; displays the | Table
element with their icons
Kiinstliche
Intelligenz
Gesundheitswesen
% Project Health
Data
o Project Diet
f Project WFO
= Project
i-C_ estauy "-u"i ew
v Project Pharma
Expert System
!L':|:'|!'.=~' Bradford
¥ lett Robertson
Marci H":r'-:'.l It
multiline Necessary to display the input field for a string in multi-line | Property
view in an edit view.
nolink The relation target is not linked, but instead shown only as | Relation
text. property
panel Has the effect of displaying as an expandable group Group
pre Displays the string as a pre-formatted and scrollable text String
property
table Table view Group
timeline Display of a data record in the form of a timeline; can be ar- | Script-
ranged vertically or horizontally. generated
view in
group
transla- Displays language variants (with the relevant flag icons in case | Property
tions of the string attribute)

The renderModes available in the input line are related to Bootstrap. They include the fol-
lowing renderModes, for example:

000
o] 1 J

&

o] 1 J

&

C=4
render- Explanation Applicabil-
Mode ity
email Creates a link to the email address String

property
image Displays an icon on the action Action
jumbotron | Highlighted display. Group
See getbootstrap.com/docs/4.1/components/jumbotron/
well Creates a box with a compressed effect. Group
See getbootstrap.com/docs/3.3/components/#wells

3.2.1.3.3 Usage of CSS

The view configuration mapper supports the use of Cascading Style Sheets (CSS). In addition
to that, it includes a predefined set of CSS properties to which you can refer in the style of
the views. It also offers you the option to define your own CSS properties.

The predefined set is based on the CSS classes defined the front-end framework bootstrap
(getbootstrap.com/docs/3.4/css/). To use these, they can be referenced in a style using the

class property (e.g. "h1" as the value for a heading). a:: h1

Separate CSS properties can be defined using the following values:

e The attribute style or style (script) is available on a style. Here you can define a CSS that
applies only to views to which this style is linked.

style background-color: red

e CSS properties that are supposed to apply to entire applications can be defined in the
script “viewconfigmapper.config.GET.” If separate CSS classes are defined there, you can
access these in the styles via the class attribute.

3.2.1.4 Executein

When you create a user-defined action, you can also fetch the relation “execute in.” This has
the effect that the returned data is not applied to all VCM contents but that the change only
relates to a certain view. This view must be set as the relation target of “execute in.”

00O
000
o I J

Konfiguration | Aktionen (Tabelle) | Aktionen (Zeile) | Aktionen (Auswahl) | Verwendung | Alles |

@ D Og x Konfiguration |Alles |

MNeu anlegen

-
-
2
a

]
@
&
"

= Skript -

G

= Neu anlegen

Skript = = JavaScript sse
Skript (ActionResponse) = = ActionResponse. editResult { soe
Style = @
Symbol = ‘? D

3.2.2 Login configuration

3.2.2.1 JWT authentication
3.2.2.1.1 Modify the login form
The login form can be modified using the following translation key:

Key Description

login.form.title Title of the form
login.form.message Descriptive/welcome text
login.form.username.label Label of the user name field
login.form.username.placeholder Placeholder of the user name field
login.form.password.label Label of the password field
login.form.password.placeholder Placeholder of the password field

3.2.3 The View Configuration Mapper component

To use the ViewConfiguration Mapper, activation of the corresponding components first in
the Admin tool is a prerequisite.

00O
000
o I J

N
@ Server: localhost Volume: testMapperKomponente Praview @M
testMapperKomponente Komponenten
» Datenbestand Software
Developer -

Attributversionierung 4.0.0 e

» -
Information Dependent Test-Component 3.4.5

4 Systemkonfiguration Druckkomponente 4.0.0

Benutzer K-Intelligence 4.0.3

m

Blob-Speicherung Kalenderkomponente 4.0.0

KEM 4.0.0 (Lizenz vorhanden)
Knowledge-Portal 4.1.0
Knowledge-Portal Collections 3.9.0

Komponenten
Lizenz
Zugangsberechtigung
» Wartung
¥ XML-Import/-Export

Licensed Test-Component 2.3.4 (Lizenz vorhanden)
Net-Navigator 4.1.0

Standardkomponente hinzufigen Lizenztemnplate schreiben

Wissensnetz

K-Infinity-Core 4.0.3
Knowledge-Builder 4.0.0
REST 4.1.0
View-Konfiguration 4.1.-92

éViewkonﬁguration—Mapper 4.1.0

Nami | Viewkonfiguration-Mapper Version 4 .1 .| 0

Generische Kompenente hinzufiigen ’ Erneuern][Entfernen]

The component ensures the specific properties required are created in the view configura-
tion and also creates all REST services that the vcm requires. (Please note: All requests are
preconfigured so that they expect an authentication. The attribute Password and Login is
required for an authentication on the object of the user, with its schema generated by the
component. Linking the user in the settings for the Knowledge Builder is not necessary for
this.)

Y viewconfig
"'q- actionfaction}

% blob/{bloblLocator}

b Y% config

b "'q- element/{element}
"'q- topiclcon/{topiclD}

Y viewconfig-static

These are, specifically:

e action

Q00O

—

o I

e blob
e config

element

e topiclcon

viewconfig-static

“action” and “element” perform all communication between the ViewConfiguration Mapper
and i-views. “blob” and “topiclcon” are responsible for delivery of the media data within a
network. “viewconfig-static” defines the area of the REST bridge in which the VCM front-
end files (scripts, templates, etc.) are found. “config” is called during the initialization of
vem to configure basic configurations (such as language and start topic). All REST services
are preconfigured so that modifying them is not always required. However, modifying the
“config” request is recommended:

function respond(request, parameters, response){
//Personalize your viewconfigmapper configuration here

var options = {

"application" : "viewConfigMapper",
"user" : {

"login" : $k.user() .name()
},

"startElement" : $k.rootType().idString(),
"language": getRequestLanguage(request),
translations: getTranslations()
s
response.setText (JSON.stringify(options, undefined, "\t"));

}
Values to be modified are
e application: The application configured in the view configuration for the ViewConfigu-

ration Mapper. This is, by default, “viewConfigMapper” and therefore does not have to
be modified.

e user: User configuration. The current version of vcm only reads the configured name
of the user for display in the front-end.

e startElement: ID or internal name of the topic that should be displayed initially when
the start screen is called up. The root type of the semantic network is preconfigured.
This should be modified.

e language: The language of the browser making the request is preconfigured. This

attribute should be configured for specific language settings. The relevant 118N set-
tings are foreseen in the front-end templates and can also be expanded in the attribute
“Translations”. Modifications to this should be made in these templates. At this point,
only the language is being defined.

e translations: |18N templates are located in the front-end and should be modified there.
Their function can be extended at this point.

3.2.4 Create a project with the View Configuration Mapper

To easily create an adjustment project, a project template is available in the Git under gitlab.ivda.i-

views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git. The README.md file
of the project explains all further steps. Initialization requires certain parameters. For exam-
ple, you will be asked for the basic path of the request and the name of the application. This
data should be available when first called.

3.2.5 Modify templates

The project template contains the directories components/ and partials/ in the webroot/ di-
rectory. Both directories contain examples of ViewConfigMapper components and partials.
You can add new templates here. The basic templates of ViewConfigMapper remain avail-
able, so you only need to create templates for special adjustments.

The js/ directory contains a JavaScript file where the ViewConfigMapper is initialized.

var vcmOptions = {
config: {
router: {
urlRewrite: true
1,
application: "{%= name %}",
ajaxBasePath: "{)=ajax_base_path %}",
instanceld: "vcm_{%= name}}"
},
partials: partials,
components: components,
translations: translations

};

var vem = new ViewconfigMapper ("#viewconfigmapper", vcmOptions);

The ViewConfigMapper receives the configuration settings, partials, components and trans-
lations. The position in which the content is to be rendered is also specified (in this example:
<div id=viewconfigmapper"/>). For partials and components it is only important that they
are located in the relevant directories, because there are grunt tasks that extract the files and
unload them to separate JavaScript files.

Values for application, ajaxBasePath and instanceld would be set during the initialization call
of the project template.

00O
000
o I J

3.2.6 Operate the frontend

The front-end can be built using grunt. The files required for operation are found in the
/webroot directory following generation. It is accessed, if not configured otherwise, using the
start screen index.html.

In the most straightforward case, the files are found locally and can then only be used on the
client side.

There are several ways to make the front-end accessible. The component ViewConfiguration
Mapper automatically generates a REST service that can deliver static files. This can be used
by placing the files in the webroot directory in the corresponding directory in the REST bridge
being used (default is viewconfig-static). After this, the front-end can be addressed in the
default configuration via HOST:PORT/viewconfig/viewconfig-static/index.html. In addition, it
is also possible to deliver the files using a corresponding server.

3.3 Actions
This chapter describes all VCM-specific options for setting actions and script parameters
(context, actionResponse).

VCM supports standard interactions, such as the editing of contents without these having
to be configured separately. However, it is possible to define user-defined actions in a view
configuration, which can then also be executed in VCM.

There are two types of user-defined actions:

e Standard action with user-defined return value
e Script action

Selection is made via a drop-down menu.

Konfiguration | Aktionen (Tabelle) ‘ Aktionen (Zeile) | Aktionen (Auswahl) | Verwendung | Alles. ‘

@ p 03 x Konfiguration | Alles |
Neu anlegen Konfiguration
= |Aktualisieren @
Anzeigen

n

Auswahl

n

Einblenden

Graphisch darstellen

n

Léschen

mn

Neu

Konfigurationsname Relationsziel auswahlen

Skript 3 Skript -
i o __ |Sortierung
Skript (ActionResponse) = . e
Springen
Style = |Suchen @
Symbol = |Ziel anlegen ‘} D

For a script action, you have to select “Script” in this menu and create a “Script” under the
“Script” entry in the list.

OO

&

O

o ¥
00®

(OAY), [:]
Konfiguration | Aktionen (Tabelle) | Aktionen (Zeile) | Aktionen (Auswahl) | Verwendung | Alles |
@ Konfiguration | Alles |
MNeu anlegen
4 Skript -
4 e ftung
(onfigurationsname Neu anlegen
Skript JavaScript
Skript (ActionResponse ActionResponse. editResult
100

To determine the return value of an action, a script can be created for both action types
under the entry “Script (Action Response).”

Example of a typical return script:

function actionResponse(element, context, actionResult){
var actionResponse = new $k.ActionResponse();
actionResponse.setFollowup ("show");
actionResponse.setData({

elementId: actionResult.idString(),

viewMode: "edit"

I9N

return actionResponse;

}
Possible follow-ups:

e show - The transferred contents are loaded and displayed on the entire page.

e refresh - All components update their contents.

e reload - The page is reloaded.

e update - The transferred contents are loaded and displayed in the view specified in
“execute in.” An error occurs if “execute in” is not set.

You can also define your own follow-ups. However, in that case the interaction with the
front-end must be adapted as VCM is not designed for this by default. On the other hand,
however, it is also possible to overwrite the current reactions to a follow-up in your own
adaptation project.

Additional possible return values:

e elementld - ID of the element to be displayed

e viewMode - At present only read and write mode are distinguished, whereby read mode
is assumed and write mode is only displayed for viewMode: “edit."

00O
000
o I J

You can also define your own values here and adapt the front-end accordingly.

3.4 Viewconfig elements
3.4.1 General
3.4.2 Alternative

An alternative view is a collective view for other views. That is, this type of view can be
used to group views that show data for a shared object (e.g. a Properties view with the life
data of an artist or a table view that lists the works of the artist). Unlike in a group view, the
summarized views are not shown simultaneously, but instead in alternating order (e.g. via
tabs).

Die Beschriftung des Reiters ist gleichzeitig die Uberschrift, die dargestellt wird, wenn der Reiter offen ist.
Hier kénnen beliebige Elemente angezeigt werden. Dieses Element hier ist ein statischer Text.

To group views, the corresponding views are appended to the alternative view as subviews.
Their position decides the order in which they are displayed. Hence, the arrow buttons can
be used to change their positions.

1) Alternative: Alternative - Objekt _ o x

WOEXE S W A

N0 vem-plugin-chart tl
W Text - Objekt
W Text - Objekt
N Text - Objekt Konfiguration ;| Ments Styles KB Kontext Alles
& Text - Objekt ¥ Beschriftung
4 I Alternative - Objekt
» I Line
» 0 Bar
» I Pie
») Doughnut
» 0 Radar
Custom Data
W Text - Objekt
» %) Alternative - Objekt
& Text - Objekt

Auswzhlen

Auswzhlen

The “Configuration” tab features options for specifying the general display of the list:

AN

&

OO0

o] 1 J

&

o] 1 J

&

La- | The value entered here appears as the heading of the alternative
bel

De-| By default the first attached view is displayed. If you prefer the view on the third
fault tab to be displayed first, for example, you can specify this view here. The front-end
al- | remembers the last displayed view within a session, so that the user always lands on
ter-| the tab they looked at most recently if they look at one alternative view several times
na-| within a session.

tive

Con- The configuration name can be used to identify views and panels.
fig-
u-

ra-
tion
name

ScripfAs an alternative to the “Label,” the title of the alternative can be determined in a
for | script.

la-
bel

Scripfhis script is used to define whether the alternative should be displayed, and under
for | what conditions.

vis-
i-
bil-
ity

Actions can be configured for the alternative in the “Menus” tab, while the “Styles” tab al-
lows certain display options to be selected. The “KB" tab features options that only apply to
Knowledge Builder and are not used in the web front-end. The “Context” tab can be used to
configure for which object types the alternative view is to be used and in which application
contexts.

An alternative view should be used when several views are based on the data of an object or
type, but are to be displayed not simultaneously but alternatively.

3.4.3 Group

A group view is a collective view for other views. That is, this type of view can be used to
group views that show data for a shared object (e.g. a properties view with the life data of
an artist or a table view that lists the works of the artist). To group views, the corresponding
views are appended to the group view as subviews. Their position decides the order in which
they are displayed. Hence, the arrow buttons can be used to change their positions.

AN

000

—
&

o] 1 J

&

o] 1 J

&

N~ Gruppe: Typen von Widget — O x

WO LXES W Am

. U
W7 Text - Objekt

Konfiguration Mends = Styles KB Kontext Alles

¥ Beschriftung

Auswahlen

Auswahlen

The “Configuration” tab features options for specifying the general display of the list:

Label The value entered here appears as the header of the group

Configuration The configuration name can be used to identify views and panels.
name

Script for label- | As an alternative to the “Label,” the title of the group can be determined
ing in a script.

Script for visi- | This script can be used to specify whether the group is supposed to be
bility displayed.

The “Menus” tab lets you configure actions for groups, while the “Styles” tab lets you se-
lect certain display options. The “KB" tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure
for which object type the group view is to be used and in which application contexts.

A group view is to be used when several views, which are based on the data of an object
or type, are to be displayed simultaneously and grouped. In contrast to this, there is the
alternative that displays the contained views for an object alternatingly (e.g. as tabs).

In the web front-end, there are different options for displaying grouped views. If not config-
ured differently, the views are arranged vertically. You can use a style to enable horizontal or
grid arrangement:

00O
000
o I J

' Gruppe: Widget - o 3

WL X2 $ W A=
) Widget U
W Text - Objekt
Konfiguration Menis Styles KB Kontext Alles
©OLX %]
Style - Objekt

n Ag

Konfiguration = Viewkonfiguration-Mapper Kontext Alles

= Auswahlen sse

|330‘
O
O

O

O

grid hd

O
O

Auswahlen [T}

To do this, the style object is created on the group view and the value “grid” is selected as the
“renderMode” and the desired grid configuration is entered under “groupColumnGrid".

4 Spalten 8 Spalten

The example view has the grid "4 8 0." The total of summands must always be twelve.

If you select “panel” as the “rendering mode,” you get an expandable group.

Der renderMode "panel” stellt eine Gruppe als klappbares Panel dar

The popular Bootstrap rendering mode values "jumbotron" and "well” are also supported for
the group.

3.4.4 Hierarchy

A hierarchy view is a hierarchical representation of the configurable aspects of an object.

O
000 i-views 5.3
ol I}
00O 426534
- . VCM

W Konfiguration

» g Panels
» 7 Plugins
v g Tips & Tricks
~ g Widget
v g Aktion
™) Alternative
» W Eigenschaften
) Gruppe
Nz Hierarchie
i Objektlisten/Tabelle
W Skriptgenerierter View
= Skriptgenrierter Inhalt

t‘." Statische Elemente

K Style
t-j Suche

The configuration is performed in the Knowledge Builder by creating a hierarchy view.

00O
000
o I J

% Hierarchie: Standardhierarchic - o x
o
| JOrSs & 3 4 v Am
N Typen von Hierarchie .-—
N Text - Objekt =
4 [Alternative - Objekt I
») Hierarchie mit Detailansicht Konfiguration | Hierarchie Knoten KB Kontext Alles
4\ Hierarchie ohne Detailansicht ~ » 5
W Text - Objekt
. Auswahlen eoe
N Standardhierarchie
» I Aktionen Standardhierarchie
o~
ist Obertyp von
1O showcasewidgetHierarchyUp sse
Auswihlen eoe
Auswihlen eoe
Auswahlen oo
O
O
Wert ~
Auswihlen oo
Auswahlen oo
O
< >

The “Configuration” tab provides options for determining the general display of the hierarchy:

Label The value entered here appears as the heading of the hierarchy

Script As an alternative to “Label,” the title of the hierarchy can be determined in a
for label | script.

Config- The configuration name can be used to identify views and panels.

uration

name

000
o] 1 J

&

o] 1 J

&

Relation
(ascend-
ing)
Relation
(de-
scend-
ing)
Struc-
tured
query
(ascend-
ing)
Struc-
tured
query
(de-
scend-
ing)
Script
(ascend-
ing)
Script
(de-
scend-
ing)

The hierarchy view starts with an object as the basis. This object is passed
to the hierarchy either by the context element on the higher-level panel or by
influencing it from another panel.

Which nodes and branches should be shown for this object can be configured
in both ascending and descending order. A relation defined in the network can
be selected as a connection between the nodes, however a structured query
or even a script can too. A combination of these three types is possible, i.e.
it is possible to specify a relation in a descending order, for example, and a
structured query in an ascending order. Specifying both directions in optional,
however it is also possible to configure the ascending order or the descending
order only. In the first case, the object on which the hierarchy is based would
be the node at the bottom. And in the second case, the base object of the
hierarchy would then be the root node of the hierarchy.

Sort
down-
ward

The hierarchy is sorted in ascending order by default. Activating the checkbox
reverses this sort order.

Action
(selec-
tion)

The action that should occur when a user selects an element in the hierarchy
can be configured at this point.

Display
the hi-
erarchy
root
banner

This checkbox is used to define whether the root element banner should be
displayed in the hierarchy view. This configuration is only taken allowed for in
the Knowledge Builder.

Hide
details
view

By default, a details view is displayed for a selected node (also see Action (se-
lection)) and can be deactivated using this option.

Primary
sort
criterion

The sort criterion is used to determine the aspect used to sort the hierarchy
elements on one level.

Sec-
ondary
sort
criterion

Like “Primary sort criterion,” except this is only used if the position computed
from “primary sort criterion” is the same for two or more attributes.

00O
o] 1 J

&

o] 1 J

&

34
Script This script is used to define whether the list should be displayed.
for visi-
bility
Script This script is used if “Script for sorting” was selected as the primary or sec-
for sort- | ondary sort criterion.
ing
Deny This option is used to disable the option of allowing the user to re-sort a hier-
manual | archy. This option is only used in the Knowledge Builder.
sorting

It is possible to configure actions and styles on the entire hierarchy, or to only apply them at
node level. This is why there is a “Hierarchy” tab with the sub-items “Menus” and “Styles” and
a “Nodes" tab with the same subitems. Actions can be configured for the list in the “Menus”
tab, while the “Styles” tab allows certain display options to be selected. The “KB" tab features
options that only apply to the Knowledge Builder and are not used in the web front-end. The
“Context” tab can be used to configure for which object types the hierarchy view is to be used
and in which application contexts.

3.4.5 Properties

A Properties view is a list of the attributes and relations of an object.

W Eigenschaften: Eigenschaften - Objekt - m] x
WOLXES W A
W Eigenschaften - Objekt .

W Zeichenkette

Menos Styles KB Kontext Alles
O

O

Auswahlen
Auswihlen

Auswahlen

The “Configuration” tab features options for specifying the general display of the list:

AN

&

OO0

o] 1 J

&

o] 1 J

&

Sort downward Generally the contained attributes/relations are displayed in
the order specified by the order of the included property view.
As it is however possible to specify higher-level types (e.g.
“User relation”) here, the properties grouped in this way are
sorted by name in ascending order. You can change this order
by activating the “Sort downward” check-box.

Label The value entered here appears as the heading of the list

Initially expanded If there are a great many properties, they are not displayed
directly in the Knowledge Builder, but instead in expandable
form. Activating this option expands them directly.

Configuration name The configuration name can be used to identify views and pan-
els.
Primary sort criterion Generally the contained attributes/relations are displayed in

the order specified by the order of the included property view.
This option can be used to change this behavior. The available
values are “Position”, “Script for sorting” and “Value". In case
of “Value”, sorting is performed by attribute value, and not by
the name of the attribute.

Secondary sort criterion | Like “Primary sort criterion,” except this is only used if the po-
sition computed from “primary sort criterion” is the same for
two or more attributes.

Script for label As an alternative to the “Label,” the title of the list can be de-
termined in a script.

Script for visibility This script is used to define whether the list should be dis-
played.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain
display options to be selected. The “KB" tab features options that only apply to the Knowledge
Builder and are not used in the web front-end. The “Context” tab can be used to configure
for which object types the Properties view is to be used and in which application contexts.

For the read view, the Properties view can be used on its own, but it is often also used in
group or alternative views. In order to allow object properties to be modified, a Properties
view must be included in an Edit view.

The attributes and relations to be displayed for an object can be configured. For that pur-
pose, it is necessary to add property views to the Properties view which can be used to select
the relevant attribute/relation and determine in detail how these should be displayed.

3.4.5.1 Styling of a property view

FUr individuelle Eigenschaften-Konfigurationen kann es vorkommen, dass die Aufteilung des
Layouts geandert werden muss, weil fur eine darin befindliche Eigenschafts-View andere
Platzverhaltnisse benétigt werden (Label vs. Eigenschaftswert). Dies lasst sich durch eine
Anpassung mit einem neuen Style unter "Style" > "Viewconfiguration-Mapper" > "class" er-

OO

&

O

o] 1 J

&

o] 1 J

&

reichen.

FUr den "class"-Eintrag gibt es die Klasse "list", die die Aufteilung zwischen Label und darzustel-
lendem Eigenschaftswert bestimmt. Voreingestellter Wert ist "list-5-6". Die Eigenschaften-
View ist in ein gedachtes Raster von zwolf Einheiten unterteilt, wobei die letzte Einheit fur die
Aktion an einer Eigenschaft reserviert ist. Daraus ergibt sich ein Eintrag mit "list-N-M", wobei
N+M =11 ist. N steht fuUr die Breite des Labels, M steht fur die Breite des Eigenschaftswerts.

Wenn beispielsweise das Label einer untergeordneten Eigenschaft aufgrund der Benennung
mehr Platz benotigt, kann unter "class" der Wert "list-8-3" eingegeben werden.

Wenn das Label gar nicht dargestellt werden soll und durch die Option "hide label" deaktiviert
ist, kann unter "class" der Wert "list-0-11" eingegeben werden.

3.4.6 Property

A Property view is a display configuration of an attribute or a relation to an object. A Property
view can only be used underneath a Properties view.

Wd Eigenschaft: Zeichenkette - m] x

W Ax
Konfiguration Mends = Styles KB Kontext Alles
Absteigend sortieren]
Ation “
- .
» o
Zeichenkette
O
O
Auswahlen
-
||

Auswihlen

Auswihlen

Auswahlen

In the “Configuration” tab, there are options for determining the general display of the at-
tributes/relations:

Sort downward Since there can be several attributes/relations of a type for ob-
ject, these are sorted in ascending order of property value if
there are several. This option reverses the sort order. For
“Property,” you can also select a higher-level attribute type
(e.g. user relation). The sort order of the subordinate attribute
types, however, is determined via the sorting configuration of
the corresponding Properties view. The Property view can only
be used to influence the sorting within the same attribute.

AN

&

OO0

o] 1 J

&

o] 1 J

&

Action (selection)

The action configured here is executed if the property value is
selected in the front-end (e.g. by clicking).

Apply to/apply in

At this point, you can specify the context in more detail so that
different configurations of a property can be used in a Proper-
ties view.

Label A property is displayed as a name and value pair on the front-
ends. The name of the configured property is used by default.
You can use “Label” to display a value other than the name.

Property The attribute/relation type of the displayed object is deter-

mined here. It is possible to specify a higher-level attribute
type. For example, if “User relation” is selected, this displayed
list shows all relation values for this object that are subordi-
nate to this user relation. The sort order of these properties
can be configured in the Properties view.

Show new properties

If no attribute of this type exists on the displayed object yet,
the attribute would not be listed in the default view. You can
use this option to configure that a placeholder with an input
field for the value of the new attribute is displayed if no at-
tribute value exists yet.

Show additional proper-
ties

If the configured attribute may occur several time, you can use
this option to specify that a new placeholder for an additional
attribute value is displayed automatically.

Display filter

This script can be used to filter the existing attributes of this
types that only specific ones of these are taken into accountin
the display.

Configuration for em-
bedded meta proper-
ties/configuration for

metaproperties

If an attribute contains a meta property, a view can be placed
here to determine how these meta properties are displayed.
The only difference with the embedded meta properties is that
they appear indented under the attribute.

Configuration name

The configuration name can be used to identify views and pan-
els.

Script for label

Instead of using the “Label,” the displayed attribute name can
be determined in a script.

Script for visibility

This script can be used to specify whether this property is sup-
posed to be displayed.

Script for sorting

This script can be used if there are several values of a property
for an object.

There are additional options for relations:

00O
000
o I J

Wd Eigenschaft: Testrelation - m] x
W AT
Konfiguration Mends Styles KB Kontext Alles
Absteigend sortieren =0O
= 7~
» =
= Testrelation
tionsziels = [
Einblendung neuer Eigenschaften =
Einblendung zusatzlicher Eigenscha=
Auswahlen see
Auswahlen see
Auswahlen see
Auswshlen see
Auswahlen see
Auswéhlen see
Auswshlen 17
Display relation target By default, the attribute value of the name of the relation tar-

get object is displayed as a link. This option is used to display
the configured properties of the relation target. The view used
for this purpose can be determined via its context, i.e. for “ap-
ply in” the corresponding view, the property view should be
specified.

Relation target view By default, a link or relation target editor is displayed in edit
mode. However, it can make sense to display e.g. a drop-down
list with pre-filtered relation targets instead. These alternative
views can be configured here.

Relation target filter To assist users with their selection of a suitable relation target,
a filter query can be placed here.

Relation target type filter | If several object types have been defined as the target of a
relation, a filter on the displayed types can be configured at
this point.

Script for relation target | By default, the name of the relation target object is displayed.
identifier This can be adapted here by means of a script.

In the “Menus” tab, you can configure additional actions for the property, while the “Styles”

Q00O

o] 1 J

&

o] 1 J

&

tab lets you select certain display options. The “KB” tab features options that only apply to
the Knowledge Builder and are not used in the web front-end. You can use the “Context” tab
to trace in which view the Property view is used.

3.4.6.1 Relation target filter

Um den Benutzer in seiner Auswahl eines geeigneten Relationsziels zu unterstutzen, kann bei
Relationszielfilter eine Abfrage zur Filterung der moglichen Relationsziele angebracht wer-
den. Klickt der Nutzer im Frontend auf die Lupe, so erhalt er eine gefilterte Auswahl.

Q

Soll zum Beispiel die Auswahl von Events, fUr die sich eine Person interessiert, nur auf die
Events beschrankt werden, bei denen Musikgruppen auftreten, die die Person kennt, so muss
die Abfrage zur Filterung der moglichen Relationsziele diese Bedingung enthalten.

™1 Objekte von Person
4 Wl Eigenschaften Konfiguration Erweitert Meniis Styles KB Kontext
¥ Name A~
& Event
O

Auswahlen

Relationszielfilter: nur Events mit bekannten Musikgruppen

Auswahlen

In der Abfrage kan wie gewohnt das Zugriffselement - in diesem Beispiel die Person -
Ubergeben werden.

' + teilnehmende Musikgruppe
(o] + 33Musikgruppe
& #+ | wird gekannt von

0] # |3 person
e

StandardmaRig werden Relationsziele als einfache Tabelle mit Name dargestellt. Ist eine
definierte Tabelle gewlinscht, kann diese erstellt und per Relation "anwenden in" mit der
Eigenschaft - in diesem Beispiel "Event" - verknUpft werden.

3.4.6.2 Styling of a property view
A property in a properties-list is displayed by default as follows:

O
“ee
00 =4
Tourism

249 577
591.535
4.153
,

The label of a property is on the left side and the value is on the right side. As all view
configurations a property view can be styled, too. In the following you can see how to style a
property with an example.

For example, if you want to display the values right-aligned, you must first create the appro-
priate css class:

.text-align-right .property-value {text-align: right;}

This must then be passed as style to the individual properties for which this class should
apply:

(/

Configuration Extended Menus Styles KB Context
| AFOPS & X 4 u

text-align-right
Configuration Extended Viewconfiguration-Mapper KB Context

Configuration name = |text-align-right

Tourism

The result of the four styled properties

3.4.7 Edit

And edit view is used to manage attributes or relations.

00O
000
o I J

Konfiguration

Meniis Styles KB Kontext Alles

=0
=0
= | Auswahlen ene
= | Auswahlen ess

In the process, all child configurations of the properties type are displayed as form fields. An
edit view may contain exactly one child view. This should be a properties configuration. How-
ever, it is also possible to use a group view to use several Properties views. Changes can be
synchronized with the semantic network by means of a Save button.

]

test ﬁlf

The “Configuration” tab features options for specifying the general display of the edit view:

Edit This option makes the form mode “switchable”. That means Properties are first
mode shown only in read mode. A Switch button can then be used to switch to edit
switch- | mode.

able

Only This option can be used to configure custom buttons for switching over and
custom | saving. For this purpose, a menu with actions must be configured.

but-

tons

Custom buttons

If the option Only custom buttons is active, then users can configure their own buttons for
switching and saving. When doing so, a separate ActionResponse with defined follow-ups
must be configured on the respective action:

Action Follow-up
Save edit-save
Switch to read mode edit-state-read

Switch to edit mode edit-state-edit

00O
000
o I J

Example of a user s own save button:

function actionResponse(element, context, actionResult) {
var actionResponse = new $k.ActionResponse();
actionResponse.setFollowup("edit-save");
return actionResponse;

3.4.8 Table

A table view is a display configuration of a list of objects. A table view can be used indepen-
dently at different points and its content depends on the context.

LB

WO W A |
i Objekte von Wahl ...:

» | Name H

» | f Wahltag

Tabelle Zeilen KB Kontext Alles

= Lz

Ronfigurationsname

o
E
m
Lm
]
g 2
-
=
=h

= &

] .

] =

o

wy

o

=

m

=

&

i om o m

—] Auswihlen see

Tabelle von = Query_Results

The “Configuration” tab features options for specifying the general display and behavior.

Action | The action configured here is executed if a row is selected in the front-end (e.g.
(selec- by clicking).
tion)

OO

&

O

o] 1 J

&

o] 1 J

&

Num- This specifies the maximum number of rows that are displayed on one page.
ber of
rows
(page
size)
Auto- Options:
matic e Automatic search
search
e Automatic search up to limit
e No automatic search

Label A table is displayed with the heading in the front-ends. By default, the name is

generated from the context. You can use “Label” to display a value other than

the name.
Config- | The configuration name can be used to identify views and panels.
uration
name
With- Here you can determine whether a column filter is supposed to be displayed
out between the table header and table content. The column filter can be used to
column | filter the query result for the column by entering a term.
filter
Script Instead of using the “Label,” the displayed attribute name can be determined in
for a script.
label
Table This references the view whose results are displayed in the preceding table. This
of can be a query, of a query result view or another table.

On the “Sorting” tab, you can configure the sort response using the columns.

The “Table” tab has two sub-items: “Menus” and “Styles.” In the “Menus” tab, you can con-
figure additional actions for the table, while the “Styles” tab lets you select certain display
options that affect the entire table. In the next tab, “Columns" > "Styles" you then select the
display options for columns accordingly.

The columns of the table are defined using sub-configurations, which are explained in the
next section. The order of the columns can be changed using arrow buttons in the tree view
on the left side.

The column view represents the configuration of an entire column. Here you can influence
the display and the response (e.g. filtering).

The content of the cells (“column element”) in turn is defined by the sub-configuration as
described in the next section.

00O
000
o I J

12 Tabelle: Objekte von Wahl — O b4
O —
WOLSXES W A
¥ Objekte von Wahl . 8
4 | f Name .
N Name
» | { Wahltag p 28
Konfiguration Operatoren Mends Styles Kontext Alles
» Beschriftung = | Name
Breite der Spalte =
Konfigurationsname =
Nicht anzeigen =0
Nicht sortierbar =4
Obligatorisch fiir Abfrage = O
g von Ein= | Auswihlen sse
Label Column name displayed
Column Width of the column in percent of the width of the table
width (%)

Configuration
name

The configuration name can be used to identify views and panels.

Hide This is used to hide a column. It is nonetheless calculated in the back-
ground and can be used e.g. for sorting.

Cannot be | In the default setting, the columns can be sorted by clicking on the

sorted header. This function can be deactivated here.

Script for label

Instead of using the “Label,” the displayed attribute name can be de-
termined in a script.

Script for pre-
processing input
fields

The text that was specified in the column filters can be influenced via
a script here.

Standard opera-
tor

This is where the default is selected from the possible filter operators
If nothing is configured, the first one in the list is selected.

Search text

The text for column filtering can be specified in advance here.

00O
000
o I J

The column element sub-configuration determines the content of the column. The content
is typically derived from the elements to which this table refers.

|2 Tabelle: Objekte von Wahl — O %
QL2248 W A

Vi Objekte von Wahl . "

4 | ¢ Name El

\ ? Spaltenelement - Ok

¥ N £ Wahltag m ‘5’}\
Konfiguration Menis Styles Kontext Alles
= ot

Auswihlen sen

rage-Baustein
= | Auswihlen s

O
O
(]

I
O

Prop- | The property of the element to be displayed in this column
erty

Struc- | As an alternative to “Property,” the content to be displayed can also be deter-
tured | mined using a structured query.

query
mod-
ule

Script | As an alternative to the first two method, the content to be displayed can also be
derived from the element via a script.

Hide This is used to hide the column element. This is nonetheless calculated in the
background and can be used e.g. for sorting or filtering.

High- | This lets you choose if the content of the column element is to be highlighted by
light underlining it.

OO

&

O

o] 1 J

&

o] 1 J

&

Use Allows the use of all meta properties of a search result (“hit"), such as quality,
hits cause etc.

If the search results are processed further by a script, JavaScript object
$k.SemanticElement or $k.Hit is forwarded.

Con- The configuration name can be used to identify views and panels.
figu-

ration
name

3.4.8.1 Menus in tables

Menus can be configured at different points of a table. The selection of the configuration
location determines whether a menu is available for the entire table, for the column of the
table or for every column element:

Configuration location Menu with actions for the ele-
ment
Table: Actions for the entire table:

"Table" tab > “Menu” tab
w

i Tabelle - Objekt
H

Konfiguration | Sortierung! | Tabelle! | Zeien | KB | Kontext .{
Mentis Styles L

B @

[] TabellenMenu

Styles KB

| Objekt 1

Objekt

(=]

Objekt 3
Objekt 4

Objekt 5

00O
000
o I J

Column:
“Menus” tab

WMORXE S

i Tabelle - Objekt
\ : Spalte - Objekt

]

Jo

Konfiguration Operatoren Menis Styles Kontext

BFOr2 & 2 4

[*] spaltenMena

w

Konfiguration ~ Aktionen Styles KB
Konfigurationsname =
» Beschriftung =
Ersetzt Standardmend =

Meniiart =

&

= spaltenMenu

I

a

Werkzeugleiste ~ E
Attribut oder Relation hinzufiigen

Actions are displayed in the col-
umn description of a table:

MName

Objekt 1
Objekt 2
Objekt 3
Objekt 4

Objekt 5

::.Graphlscl'

00O
000
o I J

i-views 5.3
443534

Column:
Menu as a subelement of a column

WORXES W

i Tabelle - Objekt
\ : Spalte - Objekt

i Wahlen - o x

Wahlen

Mend (Zelle)
Spattenelement

A Details zeigen

Actions are output in every row in a
column:

Menu in a separate column:

MName

Objekt 9 =

Objekt 1

Objekt 2

Objekt 3

Objekt 4

Objekt 5

Menu element in the same col-
umn as the column element to be
displayed:

MName

Objekt 9

Objekt 1,

Objekt 2,

Objekt 3,

Objekt 4,

Objekt 5,

00O
000
o I J

Column element:
“Menus” tab

[ROF°2 & 2 2 w

i Tabelle - Objekt

e
N hat Zielobjekt E

Konfiguration = Mens
HPR%

[+ SpaltenElementMena

N
\;
Styles Kontext
Konfiguration ~ Aktionen Styles KB
| /Fer-2 & & 4 (%

Graph

s KB Kontext

Skrip= | Auswahlen
Aktio= ~
Skrip= | Auswahlen

Skrip= | Auswahlen

The action is output after every
value:

Output for one object per column
element:

=3

Objekt 1

o3

Objekt

<

Objekt 3

=3

Objekt 4

31

Objekt

(¥h]

Output for several objects per col-
umn element, e.g. in the dis-
play of target objects of a relation.
The target objects are comma-
separated (configuration as shown
on the left). In this case, you
should preferably use icons to
save space; alternatively, the la-
bel can be replaced with a tooltip
(mouse-over display).

Objekt 9

o

Objekt 1, ®® Objekt 1a, ®

)

Objekt Objekt 2a, ®

<

Objekt 3

o4

Objekt 4

<,

il ~al-4 C

Objekt 1b, :!'
Objekt 2b, :f

OO

&

O

o] 1 J

&

o] 1 J

&

3.4.9 Search

A search view allows search pages to be created on which the search query and the search
results are displayed at the same time. If the search does not have any parameters, or only
optional ones, then the search is run immediately and the results displayed directly. If there
are obligatory parameters, then the search is only run following a user input.

If, for example, only a search slot is supposed to be displayed in the title of a page and
the results of this search then are then to be displayed further down the page, this can be
achieved by configuring a search field element and search result aspect (view). Furthermore,
facets can be created as well. These three configurations are described in more detail in the
subsections of this chapter.

If a search with facets needs to be configured, the functional chain regarding panels influ-
encing each other has to be obeyed: Search field aspect / action -> facet -> search result
view.

Aarbergen 4,588 1.999 1.983 16
24.02.2013
Abtsteinac 2.040 1412 1.389 23
27.03.2011
Ahnatal 09.11.2014 6.657 2.839 2.790 49
Alhgim 28.09.2014 4.016 2.609 2.573 36
Allendorf (Eder) 4.212 1.335 1.329 6
14.08.2011

A search view is created in the Knowledge Builder for a simple search page.

00O
000
o I J

1) Attemative: Alternative - Objekt - o x
o
WORX 2 ¥ W Ad
) Typen von Suche u
W Text - Objekt

W Text - Objekt

4) Alternative - Objekt Mends Styles KB Kontext Alles

» I Direkt ausgefuhrte Suche £ Strukturabfrage .
4 J Suche mit Parametern
name
W Text - Objekt
2 Suche - Objekt Auswahlen ves
4 U Suche mit Benutzereingabe Benutzereingabe (deaktiviert, wenn leer) "
W Text - Objekt
xsdistring -
N Suche - Objekt
Kreis

» I Suche mit Skriptparametern

» I Suche mit tberschreibbaren Skriptparameten

wahlberechtigte

Auswiahlen oo
Benutzereingabe (deaktiviert, wenn leer) v
xsdinteger ~

Wahlberechtigte

Auswihlen eee
Auswihlen eee
io Auswahlen eoe

Tabelle showcaseElections

The “Configuration” tab provides options for determining the general display of the search:

Quielyis is where you configure the query that is to be executed when the query is exe-
cuted.

Pa-Name of a search parameter. All parameters that are configured in the search must
rafnalso be configured at this point to ensure no errors occur in the search.

e_
ter
ngme

Scripthe parameter value is to be determined via a script, this has to be configured here.

AN

&

OO0

—

ol 1}

&

o] 1 J

&

Valtiere you specify how the parameter value is to be determined.

ter-

ng

tign

“Script” (value determined via script)

“Script, can be overwritten” (the value is determined via script, but is overwritten
by user input on the front-end)

“User input (optional)” (the parameter value is copied from the user input if it is
set. It is displayed to the user as optional in the front-end. Please note that the
search is then configured in such a way that this parameter does not have to be
set)

“User input (obligatory)” (the user must enter a value in the front-end, otherwise
the search is not executed)

“User input (deactivated if blank)” (the parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is
executed)

TypBata type of the parameter

bal

La-Name of the parameter in the front-end

Or-The order in which the parameters are displayed in the front-end
der

bal

La- The value entered here appears as the heading of the search

u-
rar

tian
ngme

Canithe configuration name can be used to identify views and panels.
fig-

for
la-

bal

Scrips an alternative to the “Label,” the title of the group can be determined in a script.

for

Vig-

bil-

ity

Scriphis script can be used to specify whether the group is supposed to be displayed.

000
o] 1 J

&

o] 1 J

&

Scrips an alternative to “Table”, a script can be used to determine the table displayed at
for this point.

ta
ble
con-

fig-

rat
tign

Ta+ The search results are displayed in the front-end in the table configuration that is con-
ble figured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows
certain display options to be selected. The “KB" tab features options that only apply to the
Knowledge Builder and are not used in the web front-end. The “Context” tab can be used
to configure for which object types the search view is to be used and in which application
contexts.

3.4.9.1 Search field view

A search field element is used, for example, if only a search slot, and no search results, is to
be displayed in a certain place. Configuration takes place as for the search view but without
the configuration for displaying the results.

00O
000
o I J

- Suchfeld-Ansicht: Search_Params

W Az

Konfiguration Menls Styles
Abfrage

4 Parametername

Skript

Konfigurationsname

Skript fur Beschriftung

KB Kontext Alles

D Abfrage
searchString

[=] JavaSeript

Skript, Uberschreibbar

xsd:string

Search_Params

Auswihlen

The “Configuration” tab provides options for determining the general display of the search

field:

cuted.

Quefihis is where you configure the query that is to be executed when the query is exe-

Pa

ter
name

Name of a search parameter. All parameters that are configured in the search must
ram-also be configured at this point to ensure no errors occur in the search.

Script the parameter value is to be determined via a script, this has to be configured here.

OO

&

O

o] 1 J

&

o] 1 J

&

C=4
Valuélere you specify how the parameter value is to be determined.
'(tjeer- e “Script” (value determined via script)
mi- e “Script, can be overwritten” (the value is determined via script, but is overwritten
na- by user input on the front-end)

tion o “User input (optional)” (The parameter value is copied from the user input if it is

set. It is displayed to the user as optional in the front-end. Please note that the
search is then configured in such a way that this parameter does not have to be
set)

e “User input (obligatory)” (The user must enter a value in the front-end, otherwise
the search is not executed)

e “User input (deactivated if blank)” (The parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is
executed)

Qu

for

eBroposed values are possible elements or strings that are offered to users in a list at
the search slot. These in turn can be selected as search string input (also known as

pro- “type ahead").
poselebr configuration, a query or a script can be placed on the parameter. If a structured

val

query is used, the names of the elements found are displayed as default values on

ues, the front-end.

scr
for

P+ ‘subject

pra- o + ‘contained in | 0.} € + ‘subject Q ‘

posem this example, only subjects belonging to "product class" would be listed as proposals,

val

represented by their primary name.

ues In detail, a query allows to define which attributes of the element should be used (it

doesn't have to be the primary name in every case).

A search pipeline can be used to combine arbitrary conditions (structured queries)
with arbitrary attributes (queries). A search pipeleine needs a’'searchString’ parameter
for input.

A script (see template in the semantic network) can also be used to deliver la-
bels/strings as fixed values only (that is, without a mandatory reference to the se-
mantic network). The "elementld" and "iconLocator" keys are optional.

TypeData type of the parameter

La-
bel

Name of the parameter in the front-end

Or{ The order in which the parameters are displayed in the front-end

der

La-
bel

The value entered here appears as the heading of the search

OO

o] 1 J
O
=
—

O

p
&

ol 1}

Co
fig
u_
ra-
tiot
nat

n-The configuration name can be used to identify views and panels.

mne

Scr|
for
la-

bel

ipAs an alternative to the “Label,” the title of the group can be determined in a script.

In th
tab |

e “Menus” tab, you can configure actions for the search field element, while the “Styles”
ets you select certain display options. The “KB” tab features options that only apply to

the Knowledge Builder and are not used in the web front-end. The “Context” tab can be
used to configure for which object type the search field element is to be used and in which

app!

Sear
that
view

ication contexts.

ch field elements can be combined with search result views and facet views. To ensure
the results of a search from a search field element are shown in a search result or facet
, the actions must be configured accordingly. The simplest option is to configure the

panel that contains the search field element so that the actions are executed in a panel that

cont

ains a facet view or a search result view.

Konfiguration Layout Kontext Alles
Aktionen aktivieren in Pane P_Body_Query_Facets
4 beeinflusst -
SF - Zielobje
Konfigurationsname P_Header_Query
Paneltyp Festgelegte Ansicht hd
Skript Sta ssensnetzelemer Auswihlen
Slider O
Sta ssensnetzelemer
Sta ssensnetzeleme O

[

ub-Konfiguration Search_Params

If you want to connect all three views to each other, you activate the actions of a search

field

element in a panel that contains a search result or facet view as described above or you

configure this panel so that the other result view panel is influenced by this panel.

00O
000
o I J

i-views 5.3
452534

Konfiguration Layout Kontext Alles
Aktionen aktivieren in Panel =
4 beeinflusst =

Skript fiir Zielobjekt
Konfigurationsname =
Paneltyp =

Skript fiir Start-Wissensnetzelemer=

Slider

Start-Wissensnetzelement

Start-Wissensnetzelement nicht Gt

Sub-Konfiguration

3.4.9.2 Facetview

Display

Skill-Level
1 Trained [7]u}
2 Experienced 5]a]
3 Advanced 10 Ju]
4 Expert @o
Skill
Accelerate IT + ®o
Agile skills + (131
Agile coaching ©Oo
Agile transformation [Ju}
Product owner [1]a]
Scaled Agile oo
Scrum master [10 Ju]
A [1]a]
Banking spezific (product) knowledge + ©o
IC Methodology Experience + ®o
Lenguage Skills + @o
Programming skills + o
SAP Finance + [2]a]
SAP Logistics Value Chain + ©o0
SAP S/AHANA + [2 Ju}
verfiigbar
i G0

Configuration

P_Body_Query Results

(T 1)
‘ P_Body Query_Facets ‘
‘Festgeleg'te Ansicht ~ ‘ E
(1)

Query_Facets

Attribut oder Relation hinzufiigen

Qualitit Name Skill

Scrum master (Expert)
Scrum master (Advanced)

SAP Finandial Services, Collection and
Disbursements (Advanced). Scrum master (Trained)
Agile IT (Expert), Scrum master (Experienced)

Agile transformation (Expert), Retail/Consumer
Banking (e.g Accounting products) (Trained), Scrum

master (Expert)

Agile IT (Experienced), Scrum master (Trained)

Scrum master (Expert)

Agile transformation (Expert), Scaled Agile
(Advanced). Scrum master (Expert)

SAP Fieri (Advanced). Scrum master (Expert), Value
Realisation Method (VRM) (Experienced)

Sprache

Deutsch (Expert),
Franzdsisch (Advanced)

Deutsch (Advanced).
Englisch (Expert)

Deutsch (Experienced)

Deutsch (Experienced),
Englisch (Advanced)

Deutsch (Expert),
Franzosisch (Trained),
Spanisch (Experienced)

Bulgarisch (Experienced),
Deutsch (Advanced),
Englisch (Experienced)

Deutsch (Expert), Englisch
(Experienced)

Arabisch (Expert), Englisch
(Advanced)

Deutsch (Advanced),
Englisch (Experienced)

Branchenerfahrung

Landwirtschaft, Medien &
Marketing

Bildung, Industrielle
Fertigung

Kommunikationsdienste

Landwirtschaft

Finanzdienstleistung

Karten und Zahlungen

Kommunikationsdienste

Gastronomie und
Freizeiteinrichtungen,
Gesundheitswesen,
Chemikalien

Gastronomie und
Freizeiteinrichtungen.
Grundmetallerzeugung

A facet view can be created as a sub configuration of a panel, but not within another view
configuration elements. The panel of the facet view needs to influence the search result

panel.

00O

o] 1 J

&

o] 1 J

&

34
4 user
4 Hauptfensterpanel
¥ Titel
» P:Oben Konfiguration Erweitert Mends Styles KB Kontext
“ P:Hauptbereich Konfigurationsname Facetten
4 P:Hauptbereich-5tart
4 "] P:Hauptbereich-Suchen b Beschriftung
4 P:Personensuche » Abfrage Strukturabfrage nach allen Angestellten
4 P:Facettensuche
4 P:FacettensucheLabel
4 P:Facettensuche-Body
4 P:Links-Facettensuche
- P:Facette
4 W Facetten
S Skill-Level
S skill
4 %% verfugbar
I'ja
Querilere a query must be configured when the facet view is not linked with a search field
view. If, for example, the facets are intended for influencing a search result table
containing employees, the query must output the employees as source for the facets.
If the facet view is linked to the search field view, no query needs to be defined.
La-| The title to appear above the facet view in the front-end.
bel
Con-Configuration names can be used to identify views and panels.
fig-
u-
ra-
tion
name
Scrips an alternative to a permanent label, the title can also be set via a script (to be found
for| in the tab "Extended").
la-
bel
In order to configure facets, it is necessary to create facet views and attach them to the facets
view. These can be arranged in multiple hierarchical orders.

00O
o] 1 J
o I J

i-views 5.3
454534

TOLRE S
l@user

- [j Hauptfensterpanel
b Titel
¥] P:Oben
- I:] P:Hauptbereich
» [j P:Hauptbereich-5tart
a0 P:Hauptbereich-Suchen
» [j P:Personensuche
- G P:Facettensuche
> @ P:Facettensuchelabel
4 P:Facettensuche-Body
4 [j P:Links-Facettensuche
- [§J P:Facette
4 . Facetten
W Sil-Level
T skl
4 werfagbar

Wi

Skill-Level

Kenfiguration
Konfigurationsname

¥ Beschriftung
Term-Operator

Termart

Facette

| Skill-Level

| oder

OO

O

—
&

o] 1 J

&

o] 1 J

&

Quehy case a term hierarchy is needed, the parent term must be configured by this query.
fon The child element is used as input element here fore. In the query, the label "parent-
der Term" identifies the parent element.

ter-
min-
ing
the
par-
ent
tenn

Bl Thema

o B hat Oberbegrit | o Thema | < parentTerm

Accelerate IT +

®@ 0

Agile Skills +
Agile coaching
Agile transformation
Product owner
Scaled Agile
scrum master
Al +
Banking spezific (product) knowledge +
IC Methodology Experience +
Language Skills +
Programming Skills +
SAP Finance +

SAP Logistics Value Chain +

0O0OO0OO0OOOOODOOOOODO

SAP S/4HANA +
Note:
e For the facet hierarchy to be able of being built up, the "query for term detection"
needs to be configured for comprising both terms and parent terms. The herein
contained parent terms are subsequently used for building up the hierarchy by

means of the "query for parent term detection". Therefore, testing the queries is
advised.

e At the moment, only terms of the same type can build a hierarchy.
e As usual in hierarchies, you can not display infinite loops.

000
o] 1 J

&

o] 1 J

&

QueSgructured query that is used to form the facet. This query is obligatory when the
fon standard behaviour comes into account or when it is set dynamically (which means
det that it keeps empty in case of static mode).

ten- The query must be specified as follows: For narrowing down the search results, facets
mincan be defined for relation targets. The input element type is equal to the type of
ing the search results from the query of the query view. The terms to be found must be
the identified by the label "term".

tenn

o Angestellter
e + | hat Skill
O el Thema

L # | in skl Level | © + lls«il Level | @

In principle, everything is possible like in all structured queries. It is also possible that
the label "term" is used several times within one structured query. In this case, the
behaviour of the terms specified by the values of "Term operator".

Hiderhe facet is hidden if the search results underlying the facet exceed this number.
from
num-
ber
of
terms

La+ Ideally, a label is always specified. If not set, the name of the input element of the
be| query is used.

Dis-If the facet has a hierarchical structure, you can use this option to define whether the
plgysub-facets should be displayed initially. Per default, the child elements are displayed
childafter the parent element has been selected.

terms

ini
tially

ConViews and panels can be identified via a configuration name.
fig

ra-
tion
name

Dis- If no results are found for the facet, it is hidden by default. This option ensures it is
playdisplayed nonetheless.

blgnk

terms

OO

&

O

o] 1 J

&

o] 1 J

&

MaxBPescribes the maximum number of terms the facet can have. per default, all terms
i- | are displayed.

mum

num-

ber
of
terms

Dg In the front-end, the number of found terms is displayed right behind the facet title.
not This option deactivates this.

dis-
play
term
num-
ber

TermAt this point it is possible to configure how the terms are linked to each other. You can
opt use the “And” or the “Or” logic that applies on the search result regarding the selected
er- facets.

a_
tor

AN

&

OO0

o] 1 J

&

o] 1 J

&

Ter

nif no term type is selected (default behaviour), the terms will be detected by the query

typeof the facet configuration. In the query, relation targets or attribute values can be

defined for terms. Additional to the default behaviour following settings are available:

e Dynamic: The value range of the terms are detected automatically. The values
used for term detection must be identified by the label "terrmValue" within the
"Query for term detection".

e Static: All terms to be displayed must be configured indiviudally. For every term
a query needs to be configured that specifies the possible hits of the main query.

Example of a static facet:

4 user F AN

\\/4

- Hauptfensterpanel
» Titel
» P:Oben Konfiguration Erweitert
- P:Hauptbereich ORI e =
» P:Hauptbereich-Start 7

. » Beschriftung = | verfugbar
4 [} P:Hauptbereich-Suchen - 9
4 P:Personensuche Term-Operato = | oder v
4 P:Facettensuche Tairar: = | Statisch ~

4 P:Facettensuchelabel
- P:Facettensuche-Body
“ P:Links-Facettensuche
4 P:Facette
4 W Facetten
W skill-Level
i7_skill
4§ verfugbar
- ja
Each term of the facet needs a label for display:
4 user .
4 Hauptfensterpanel
» Titel
» P:Oben Konfiguration Erweitert
“ P:Hauptbereich Konfigurationsname =
» P:Hauptbereich-Start =
- P:Hauptbereich-Suchen
» P:Personensuche
“ P:Facettensuche
4 P:Facettensuchelabel
“ P:Facettensuche-Body
4 P:Links-Facettensuche
4 P:Facette
4 W Facetten
W skill-Level
7 Skill
4 3 verfugbar
] ja
The query within the tab "Extended" defines the applicable criteria for the facet:

+ Angestellter

+* Verflighar o) =W

OO

&

O

o] 1 J

&

o] 1 J

&

SortBy default, the terms found for a facet are sorted in ascending order. This option
termreverses the sort order.

in
dey
scend-
ing
or-
def

SortThe facet terms are generally sorted in alphabetical order; with this option, they are
termsorted by the number of results found.

by
num-
ber

Faceting for attribute values

Search results can be faceted concerning predetermined attribute values, for which the term
type "static" must be set. If the term type "static" is chosen, the terms must be added as a
subconfiguration within a facette by clicking on the button "link new". For this purpose, the
configuration is built up as follows:

1. As usual, the structured query of the facette contains the elements to be filtered, including
the identifier "term" at the property:

* @ Task
#[4 roges o] @
Example of a query for term identification with attribute values as terms

2. The facette itself has a further facette with a query for a more detailed definition of the
terms. The structured query for the terms then only contains the conditions for the proper-
ties of the elements:

* @ Task
4 Progress [%] | 4ok <
Example of a query of a static term (predetermined attribute value)

Note: The labeling of the facet term sub-configutaion is obligatory. If no label is set, the facet
term will not be displayed.

3.4.9.3 Search result view

A search result view is used if a view is supposed to display only the results of the search,
and not the search parameters. If the configured search has no parameters, it is enough to

00O

o] 1 J

&

o] 1 J

&

configure one search result view. If there are parameters, the search result view should be
linked to a search field element.

It can be created in the Knowledge Builder.

. Suchergebnis-Ansicht: Query_Results - O X

w A

Konfiguration Menils Styles KB Kontext Alles

Auswihlen

Query_Results
Auswiahlen

Auswihlen

Tabelle Objekte von Wahl

The “Configuration” tab provides options for determining the general display of the search:

Query This is where you configure the query that is to be executed when
the query is executed.

Label The value entered here appears as the heading of the search

Configuration The configuration name can be used to identify views and panels.

name

Script for label As an alternative to the “Label,” the title of the group can be deter-

mined in a script.

Script for table | As an alternative to “Table”, a script can be used to determine the
configuration table displayed at this point.

Table The search results are displayed in the front-end in the table config-
uration that is configured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows
certain display options to be selected. The “KB" tab features options that only apply to the

000
o] 1 J

&

o] 1 J

&

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used
to configure for which object types the search view is to be used and in which application
contexts.

3.4.10 Graph configuration

A graph configuration is used to display objects in a graph. A first introduction to the use
of graphs in the Knowledge Builder can be found under Knowledge Builder > Basics > Graph
editor.

Details on the setting options for the different views that are required when embedding a
graph in the front-end are explained under Knowledge Builder > View configuration > View
configuration elements > Graph.

A Graph view and a Graph configuration view are required for display.

The panel in which the graph is to be displayed contains a graph view (“V:Graph”). Up to ver-
sion 5.1, the context element (called start semantic element) was optional and displayed in
the graph when the application started. From version 5.2, it is obligatory to assign a context
element in order to avoid triggering an error message. The object itself is not important, it is
not displayed by default.

The graph view only has to contain a link to the graph configuration. The setting for the size
of the graph field via the Width and Height fields is optional but usually available.

-
W V:Graph -

Konfiguration Menis Styles KB Kontext

nfigurationsname V:Graph

chriftung Auswihlen

Breite 900

Einheit Pixel ~
Graph-Konfiguration G:Graph
4 Héhe 900
Einheit Pixel A
|

Auswihlen

Auswihlen

tartelemente Strukturabfrage

The Graph view ensures that the graph is displayed in full. The Graph configuration is used
to determine which nodes and relations are to be displayed.

00O
000
o I J

WO XE8 W

¥ G:Graph u
<\ Meldung

W Verknipfung - Obje

» W Topic Konfiguration Styles KB Kontext
» W Komponente
» Wl Land)
» W Kunde eschrtung
» W Industrie

» W MaBnahme
» Wl Person _
» N Werkzeug chritte bis Knotenausblendung
» Wl Projekt | |
» W Installation
» W Produkt

Konfigurationsname

G:Graph

-
[ns]
T
A
7]
1
2
=
i

V:Graph

n
]|

A node category must be created for every type whose objects (or types) are to be displayed.
These are displayed by default as a key in the graph.

The graph displays objects that are directly attached to the type or its subtype. Use Adapt to
concrete type to display subtypes separately in the key without having to create them individ-
ually as node categories.

In order to display types instead of objects, a checkmark must be placed by the Apply to
subtypes box in the Context tab.

In the Nodes tab you can go to Menus and assign a satellite menu in order to continue
working in the graph (see Knowledge Builder > View configuration > Actions > Actions for the
ViewConfiguration Mapper > NN-Expand/NN-Hide/NN-Pin actions).

WOX14$ W

3 G:Graph -
«\m Meldung

W Verknipfung - Obje
» Wl Topic Konfiguration Kategorie Knoten Kontext
' Komponente Konfigurationsname =
» W Land :
» M Kunde » Beschriftung = |Meldung
» W Industrie An konkreten Typ anpassen =04
» W MaBnahme Erweiterungen initial anzeigen =0
» W Person
» W Werkzeug Farbe = -
» W Projekt In legende anzeigen = “
» W Installation EnTiERE =
> 9 Produia Nur das Icon malen =04

Symbol = i.\ D

In order to display the relations between the nodes, a link is required under each node cat-
egory. Here the relations to be displayed for this type are specified. The relations can be
specified via a prompt, a script or via the direct specification of the relation. User relation can
be assigned if all relations (apart from system relations) are to be displayed.

00O
000
o I J

0
QL5 X248 W
e G:Graph -
«\g Meldung
W Verkniipfung - Obje
» W Topic Konfiguration Menlds Styles Kontext
» W Komponente Konfigurationsname =
» W Land
» Beschriftung =

» W Kunde T
» W Industrie Skript fiir Beschriftung = | Auswihlen .
» W MaBnahme Abfrage fiir Verkniipfung = | Auswihlen ses
» @ Person =

Bevorzugt ausklappen —
v Werkzeug - app
» W Projekt Farbe = -
» W Installation Initial ausgeklappt =0
» W Produkt _

Relation = Benutzerrelation

Skript fiir Verkniipfung = | Auswihlen oo

For more details see the vcm-plugin-net-navigator chapter

3.4.11 Text

The text view can be used to display text that is either statically specified or calculated via a
script.

Text Static, multilingual text

Script for text Script for calculation of the text

Label Optional heading

Script for label Optional script for calculating the heading

Example of a text script:

function text(element)
{
return ‘““Through a script in the network" + $k.volume() + " generated text";

}

VAL

OO0

o] 1 J

&

o] 1 J

&

3.4.12 Image

Displays an image saved in the knowledge network that is either statically specified or calcu-
lated by means of a script.

Im- Static image

age

Script | Script for calculation of the image. A blob attribute is expected as the return value.
for Dynamic blobs (e.g. through download by means of HTTP client) are not possible.
im-

age

Label | Optional heading

Script | Optional script for calculating the heading
for
label

Width | Fixed width / height of the image
/ height

3.4.13 Script generated HTML

This view generates HTML via a script. Both Knowledge Builder and ViewConfigMapper show
this unfiltered. Hence, the script developer is responsible for ensuring that user contents
are not output unfiltered. The display options in Knowledge Builder are very limited (e.g. no
CSS).

For more complex HTML you should use a script-generated view instead.

The following arguments are transferred to the script as parameters:

ele- $k.SemanticElementThe element in the context of which the view is displayed
ment

docu- | $k.TextDocument | Document on which HTML is output
ment

There are two approaches for outputting HTML:

e Output the HTML source code using the print() function of the document

e Structured output using an MXL writer

The example below illustrates the use of an XML writer for outputting a heading:

/%%
* Render the semantic element on the document.

OO

O

o~

o 1

&

ol I _

&

* Q@function
*x Qparam {$k.SemanticElement} element The element to render
* @param {$k.TextDocument} document Target document
*% /
function render(element, document)
{
var xmlWriter = document.xmlWriter();
xmlWriter.startElement ("h1");
xmlWriter.characters(element.name()) ;
xmlWriter.endElement ("h1");

3.4.14 Scriptgenerated view

A script-generated view allows custom view components to be defined. The data are gener-
ated by a script and passed on using JSON. Displaying this is the job of the front-end.

view Freely selectable identifier that is output in JSON. This is used for assigning the cus-
Type tom components in the front-end.

ScriptDelivers the data that are output in the JSON.

Two parameters are passed to the script:

el- | $k.SemanticElemetament in the context of which the view is displayed
e_
ment

view object Prefilled object with the view data. Configuration elements such as styles
are already included in this.

The following script provides the data for a view that the plugin vem-plugin-timeline contains:

Get json object to modify.

@function

Q@this $k.View

@param {$k.SemanticElement} element
@param {object} json object

@returns {object} modified json object
*%/

¥ ¥ ¥ X X *

function customizeView (element, view) {
view.options = {
layout: ’vertical’
}

view.events = $k.Registry.type(’election’).alllnstances() .map(function (election) {

00O
oy I
ol I

return {
elementId: election.idString(),
name: election.name(),
date: election.attributeValue(’electionDate’).toString()
}
1))
return view

}

3.5 Bookmarks and history

Due to the fact of the ViewConfig-Mapper being a single-page application, the address of the
application keeps always the same (http://xxx/yyy/index.html) - irrespective which content is
being visualised or which panel is being displayed.

By means of defining bookmarks, the application designer in person is able to define a
schema which builds up specific addresses for the currently shown content. For the user,
this in turn grants direct access to a specific application state and the usage of forward and
backward navigation in the browser is possible. Furthermore, bookmarking improves index-
ability of the application by web search engines.

3.5.1 Bookmark Resource

The definition of bookmarks has its starting point at the bookmark ressource. The book-
mark ressource is situated within the REST service for the ViewConfig-Mapper. The book-
mark ressource automatically is co-created when the ViewConfig-Mapper component is be-
ing added. Keep in mind that the ressource has to be configured to run without any authen-
tication. This is because the ressource creates redirects which must work prior the moment
of login (prior loading of the application) as well.

REST Service REST Resource — ﬁ D
W/ FOLDER Q=
KNOWLEDGE NETWORK -
4 Object Types é’
» [Federal state Service ID
& Location viewconfig
* Person . o o
User £ p ox x A

» Relation types

¥ [N Attribute Types
TECHNICAL

» Rights

» Registered objects
4 4% REST

&3 viewconfig

[%4 accessToken/login

[accessToken/logout

b 4% accessToken/renew

b 4% action/{action}/{view)
4% blob/{blobLocator]

Configuration Extended

Applicati

viewConfigMapper

[3 Object Types [3 config
» Relation types » element/{element} =
¥ 2\ Attribute Types [3 panel/contents =
Not used rd topiclcon/{topiclD} _
+ Wl View configuration 4* viewconfigmapper ran = A
» Entire semantic network 4% >> viewconfigmapper/i =
* & Core properties = | compare/llefi)firight)
Actior = | 4]

Community

P:Compare

left

right
location/{federalstate}/{name}

Action - Instance

OO

&

O

o] 1 J

&

o] 1 J

&

The ressource allows the definition of any desired amount of "path patterns" - thus address
patterns that can be used by the application from that point on. Path patterns must not
overlap. This means, a specific address must be relatable to exactly one specific path pat-
tern. Furthermore, overlap with other ressources must be avoided (e. g. "action" or static
ressources as well).

A path pattern consists of static and variable parts. Dynamic parts are written in curly brack-
ets (see chapter concerning REST ressources):

4 Path pattern compare/f{left}/iright}
Pane P:Compare
parameter left
parameter right
Further examples:

e help/{topic}

e performance/{company}/{year}
Following the definition of a path pattern, parameters have to be defined for the variable
part. Parameters are meta-attributes of the path pattern attributes. A parameter normally

represents an element of the knowledge network and is shown in forms of the ID of the
element when the address is being created (e. g. ID1527_373749).

By defining a "parameter conversion" script the default behaviour can be modified. This
comes into account for following:

e representing elements in addresses in a more meaningful way

e using external IDs (e. g. part number) for addressing content

e using stable IDs that keep valid even if internal IDs change

A common use case is the indication of an object name instead of the objects’ ID:

Q00O

/—
)
—
&

i

Path pattern ,.,
4% name *

Configuration Extended

Parameter Conversion nameToTopic

rarameter name name

In this example, the variable (e. g. optionalElement.name()) is accessed in the function "iden-
tifier()", in combination with assignment of the variable (e. g. $k.Registry.elementAtValue('name’,
parameterValue)) in the function "element()":

/*x

* Returns an (element-) identifier for the parameter

* @function

* Qparam {$k.SemanticElement} optionalElement The element for which the identifier shall be retu:
* Qreturns {string}

*% /

function identifier(optionalElement) {
if (optionalElement)
return optionalElement.name ()
else
return undefined

}

/%%

* Returns an element for the given parameter value

* Q@function

* @param {string} parameterValue The parameter value
* Qreturns {$k.SemanticElement}

*% /

function element(parameterValue) {
return $k.Registry.elementAtValue(’name’, parameterValue)

}

Composite parameters allow addressing of elements by means of structured descriptions (e.
g. {chapter}/{version}). For each parameter fragment of the composite parameter there must

Q00O

000

be a corresponding Bookmark-Parameter object configured below the Composite-Parameter
object. The Composite-Parameter object requires a Parameter Conversion script, which han-
dles the multiple parameters.

Hint:
By using parameter conversion scripts, session varaibles can be transported as well. This
allows addressing an application state which itself is not defined solely by the displayed con-
tent.

Herefore the variable (e. g. $k.Session.current().getVariable("currentPersona")) can be ac-
cessed in the function "identifier()", in combination with assignment of the variable (e. g.
$k.Session.current().setVariable("currentPersona", parameters.persona)) in the function "ele-
ment()".

3.5.2 Link to Panels

Path patterns, as explained in the preceding chapter, can be linked to a panel (via the relation
"Path pattern" of the respective panel). This means that the pattern is going to be used for
construction of the address, as soon as the panel is activated (= visible).

4 Viewkonfiguration-Mapper

“ Main window panel - Instance Configuration Extended Layout Context

Title - P ~
» P:Header . e
» P:ComparisonHeader Path pattern: person/{name} (> > viewconfigmapper/index.html)
a Panel - Instance Path pattern parameter element

4 P:Tree

. name
4 P:Main

» P:Welcome

» P:Persons
- P:Person

» W PersonDetails
» P:Compare

4 influences P:Tree

» P:QueryResults Choose

» P:Location

» Dialog panels

w

Caution: When designing the application, it is important to observe that at no time more
than one panel with path pattern can be active simultaneously. Otherwise, the ViewConfig-
Mapper cannot decide which address pattern has to be used.

The element, which is visible in the active panel, is going to be used for parameter construc-
tion of the path pattern. It is necessary to ensure that the panel knows its element so that a
parameter can be constructed. A fixed view panel usually knows the element, so it should be
preferred instead of using a layout panel containing a fixed view panel. A layout panel only
knows the element if a context element is set.

If the element of another panel is to be considered for constructing parameters, the concern-
ing panel has to be linked to the parameter via the relation "Path pattern parameter".By this,

you can for example address a comparison view of two products (compare/product_A/product_B):

00O
oy I
ol I

P X1 ¥

P:\Welcome

3

' PiPersons Configuration Extended Layout Context
»

4

P:Person i ~
P:Compare 00 e °

» P:Compareleft Path pattern Path pattern: compare/f{left}/{right} (> > viewconfigmapper/index.html)

3 P:CompareRight T [(LT

» P:QueryResults
3 P:Location

¥ Dialog panels v 4 influ

L_FORt2 & & 4

P:Welcome

[

4 P:Persons Configuration Extended Layout Context

4 P:Person 7
4 P:Compare

] P:CompareLeft

» P:CompareRight

left
4 P:QueryResults

4 P:Location

¥ Dialog panels v

L _ROR2 & & 4

PiWelcome

]

4 PiPersons Configuration Extended Layout Context

4 P:Person 7S
4 P:Compare poor : '
] P:CompareLeft

» P:CompareRight right

¥ 9] P:QueryResults -
» P-Location rath pattern parameter f‘

¥ Dialog panels v
In order for the panel being able to show the needed content if activated via the path pattern,
it requires a "Script for context element". The script reads the previously set session variable

an gets the context element:

/%%

* Returns a semantic element

* Q@function

* @this $k.View

* @param {$k.SemanticElement} element Existing semantic element
* Q@returns {semantic element or undefined}

*% /

function contextElement(element) {
return $k.Session.main().getVariable(’comparison.left’)

}

Additionally, the option "Do not overwrite by external context element" must be activated.

In order to display the content in the previously mentioned panel, the session variables for
the comparison action of a menu within a view needs to be set first. For this purpose, a script
needs to be added:

@)
S+
00 534
L JOFNS & X 2 .za

[] Menu - Instance

¥+ Left Compare Configuration Extended Styles KB Context
W2 + Right Compare

= | =l JavaScript |uu
= Choose e

¥ Script for question before executiof= Choose ese

The action script for setting the session variable is shown in the following example:

/%%

* Performs a custom action. Can access the UI (open dialogs etc. with context.ui)
* @function

* @param {$k.SemanticElement} element

* @param {object} context Parameters defined by the environment

*%/

function onAction(element, context) {
$k.Session.main() .setVariable(’comparison.left’, element)

return element

As soon as the panel with the related path pattern is activated, it shows the content which
has been stored as the session variable by means of the action script.

<« c ‘Q‘ @ localhost:8815 viewco nfig/compare/Hans Peter/Karl/ sss hird Search

Hans Peter vs. Karl

~ |[# Federal states

Hans Peter Karl
» | Brandenburg
Frankfurt 12/21/2002
- | Hesse
~ # Frankfurt Frankfurt
* Karl
A peter

When accessing a bookmark link by typing it into the browser input line, the configuration
principle "vice versa" comes into account:

1. The apropriate path pattern is determined

2. The concerning panel is being activated and, if applicable, is being equipped with an
element for indication. The indication of element itself is defined by the parameter
rules.

3. Panels, which are linked by parameters, are activated as well. If applicable, the element
is indicated additionally according the parameter rules.

Q00O

—

4. The activation chains (see chapter about panel activation) are executed and the applica-
tion is visible in the desired state.

&« c @ @ localhost:8815fviewconfig/compare/Karl/Udc oo ww Search

Karl vs. Udo

» |# Federal states

Hint: Dialogs can be addressed by means of the previously described mechanism as well.
When defining the path pattern for dialogs, it is important that both the content of the dialog
panel and the content underneath the dialog panel is defined by the bookmark link. This can
be done by linking of a parameter with a panel of the main window panel.

3.5.3 In-app navigation with bookmarks

By means of the in-app navigation with bookmarks, an action-based navigation can be real-
ized alternatively by using web links (panels are activated by an action and/or by exchange of
content between panels).

In this case, functionalities of the browser like "open in new tab" / "open in new window" are
available for the user. Furthermore, search engines can follow and index these links.

The definition is simply done by linking the action to the desired path pattern. If the pa-
rameter construction shall not (only) be executed by the element of the action, this can be
adjusted by means of the script "Parameter construction".

3.6 Plugins
In general, the following is to be documented:

e What are plugins for
e Code example for embedding plugins in the view config mapper should NOT be docu-
mented here, but in the chapter on creating adjustment projects
The following should be documented for each individual plugin:

e General description of its mode of function and a screenshot

e View configuration elements to which a plugin is bound (e.g. vcm-plugin-calendar ->
table view)

e Which plugin-specific styles are supported
e Plugin-specific actions (e.g. nn-expand for vcm-plugin-net-navigator)

00O
000
o I J

3.6.1 vcm-plugin-calendar

The vcem-plugin-calendar can be used to display data in a calendar.

Marz 2010

Mo. Di. Mi. Do. Fr. Sa. So.

8 9 10 11 12 13 14

Homberg (Ohm), 5t
Morschen 14.03.201

In order to display the data as a calendar, it is necessary to add a style element containing
the calendar renderMode to the table configuration. The value under Number of rows (page
size) specifies the maximum number of calendar entries that can be shown per view (in this
case per month). The table must contain the following columns:

e start: A date with which the calendar entry begins.
e end: End date of the entry (optional)
e title: The title of the entry

allDay: Boolean value that specifies whether the entry applies to the whole day (op-
tional)
Further options for columns can be found in the fullcalendar.io Event_Object documen-
tation.

It is also possible to configure a select action for the columns of the table. This action is then
executed when a calendar entry is clicked.

In addition, the vemPluginCalendarOptions style attribute can be used to make additional
configurations.

Further information on the plugin can be found at fullcalendar.io.

3.6.2 vcm-plugin-chart

The vem-plugin-chart is used to display data from a table configuration on the web front-end
in the form of a chart. Various chart types are available: Line, bar, pie, ring and radar charts.

Example of a bar chart:

00O
000
o I J

I A rcneburg, St27.03.2010 [Angelburg 10.04.2011 [Angelburg 27.03.2011
B Antrifttal 22,00.2013 M AGlar, 5t.03.11.2013 I Eabenhausen, St 28.09.2014
I Ead Arolsen, St.09.02.2014 I Bad Camberg, St.07.11.2010 [Bad Emstal 25.03.2012

I Bad Endbach 14.08.2011
15000

10000

5000

Wahlberechtigte Wahler Gltige Stimmen Ungiltige stimmen

Example of a pie chart:

I E:d Homburg vor der Hohe [Bad Nauheim [Ead Vilbel I Bensheim I Darmstadt
I Dictzenbach [Dreicich I Frankfurt am Main [Frecdb=s B Fuids I GicBen
B Hznau I Hofheim am Taunus [Kassel I +emoetetn [Lampertheim
I ! angen (Hessen) M Limburg an der Lahn [Maintal [Marburg

i

3.6.2.1 Configuration

To generate a chart, it is necessary to create in a table configuration a style with the “chart”
option as its renderMode.

If, for example, you add an action with the “Display graphically” option to the underlying table
configuration, you can then display the relevant data record additionally in the Net-Navigator
by clicking on parts of the chart.

The plugin uses chart.js to generate the charts.
For vem-plugin-chart there are multiple options for display adjustment that can be defined
by means of styles:
e vemPluginChartDataColumns:
String with column numbers that are used as the data source. Default: columns 1-n
e vcmPluginChartDataMode:

'rows’ or '‘columns’. Default: 'rows’

e vcmPluginChartHeight:
Specification of chart height in pixels. Default: ‘auto’

e vcmPluginChartWidth:
Specification of chart width in pixels. Default: ‘auto’

e vcmPluginChartLabelColumn:
Column number for labels. Default: O

e vcmPluginChartOptions:
Options for adapting how keys are displayed and axes are scaled; they are transferred
to chart.js.

e vcmPluginChartType:
Specification of the chart type: line , bar , horizontalBar , radar , pie or doughnut .
Default: 'line’

The following example shows how to use a script for vemPluingChartOptions in order to
disable the chart legend while scaling the axis to units of the size 1 and setting the axis origin
to O instead of 1:

function additionalPropertyValue(element, context) {
return {
legend: { display: false },
scales: { yAxes: [{ ticks: { stepSize: 1, beginAtZero: true } }] }

}

3.6.2.2 Configuration on basis of a scriptgenerated view
Charts can be display instead of tables using a script-generated view as well.

The prerequisite for this is that “chart” must be specified as the “viewType" in the configura-
tion tab of the script-generated view.

Furthermore, as is the case for the table configurations, a style must be assigned that uses
the property vemPluginChartType to specify the preferred chartType (lin€e’, ‘bar’, 'radar’, 'pie’
or doughnut.” Default: 'line’).

The following is an example script that counts jobs according to their status and shows the
set in a pie chart. Note that this script is an example of the “pie” chart type. Use the doc-
umentation for the chart.js to define the differences in the data formats of the other chart
types: https://www.chartjs.org/docs/latest/

function customizeView(element, view) {
var taskCount= $k.Registry.type(‘‘job").allInstances().reduce(function (result, job, index) {
var status = job.attributeValueString(‘‘statusJob");
result[status]= (result[status]||0)+1
return result;

OO

&

O

o 1

&

ol I _

&

A

view.chartData = {

datasets: [{
data:0Object.keys(jobsCount) .map(function(key) {return jobsCount[keyl}),
backgroundColor: [’red’, ’green’]

H,

labels: Object.keys(jobsCount)
}
view.type = ’pie’

return view;

This pie chart was generated using a script that uses the chart.js plugin.

3.6.3 vcm-plugin-html-editor

Web front-end

The vcm-plugin-html-editor makes it possible to edit HTML-formatted text. For this purpose
it uses the summernote WYSIWYG editor.

Zeichen-) Absatz-
Style formatierung H_Ei;nﬂart ‘@;rhebuﬂg Hﬁatierung ‘
. - Vollbild-/Code-
Tabelle ’—U;;ﬂdfvldeo ’—}:S\icht,Hi”E ‘

42 49

Fazit:

[

R @
Speichern Abbrechen

Configuration

00O
000
o I J

A group is required for the view configuration of the HTML editor: In the “Context” tab, the

"vem-plugin-html-editor" entry is required under “apply to”.

WOXE ¥

W Edit - Objekt
4) vem-plugin-html-editor
NG Text - Objekt
I3 Text - Ohjekt
4 W Edit - Objekt
i@ Eigenschaften - Objekt
¥ hitmiEditorText

After the configuration of the group, a property configuration must be created.

&)

Konfiguration Menis KB Kontext

Styles

Kontext

4 anwenden auf vem-plugin-html-editor

anwenden auf Untertypen =

anwenden in P_Body_Main_Content

Relation hinzufiigen
Verwendung
Subkenfiguration von = Edit - Objekt Edit
b Style = edit Style
» Style = edit-toggable Style
» Subkonfiguration = Edit - Objekt Edit
» Subkonfiguration = Text - Objekt Text
» Subkonfiguration = Text - Objekt Text
Relation hinzufiigen

equipped with a style containing the “htmleditor” renderMode:

QL LXt S

W Edit - Objekt
4 I vem-plugin-html-editor
W3 Text - Objekt
I3 Text - Ohjekt
4\ Edit - Objekt
4 W Eigenschaften - Objekt
¥ htmiEditorText

The property configuration also requires a string attribute that is supposed to contain the

text.

To ensure that the content can be edited from the web front-end, an additional style with the

&)

w

Konfiguration

DXt ¥

Menis KB Kontext

Styles

htmleditor
hidelLabel w
Konfiguration Viewkonfiguration-Mapper KB Kontext

href =
localAction = [
numberformat =
readOnly = [
renderMode =
renderMode = | htmleditor
target =
tooltip =
vemDetailed =0
vemMarkRowClick =0

U

It must be

[/

v

00O

o] 1 J

&

o] 1 J

&

“edit” render mode must be created in the higher-level group of the property configuration.
Alternatively it is possible to create a higher-level edit configuration for this purpose.

3.6.4 vcm-plugin-maps

The map plugin makes it possible to embed a map in the front-end. For this purpose the
objects to be displayed must have an attribute of the “geographical position” type.

CaHkT-
+ C & Metep6ypr
26 11 =lsinki

Stockholm esti

Ees
e Latwija
Danmark]
Lietuva Mockea
Rodom 1
Hamburg Benapyce
Irelanc] Berlin P

London Nederland Polska
L Deutschland
@
£ Kuiia
Paris y
[p
5 gpaiha Kazaxcrar
Chisindu
France ©
Romania X
Hryy Cphuja @ Bucuresti
Ttalia Brnrapwa; ey
rcelona & @ wleMmznen O'zbekiston Tos
4 8N - Conje Istanbul
Espafia Gplwlie Azarbaycan
Rort 2 Termir Tiirkiye Tlrkmenistan)
ENIEGa & ©
iz e Asgab.
Rabat =0 © L2 ik

The map can be configured as a script-generated view or as an object list.
For use via object lists, a style with the “maps” renderMode is applied to the “Table” tab in a
table view.

WOLEK w

N VimapDetail g

4 | { mapsLabel .:::
N E Name

4 | ¢ mapsCoordinates Konfiguration =~ Sortierung Tabelle Zeilen KB Kontext
\:Geo Meniis = Styles

4 | f mapsToolti

i reneToate WOSXE S -

maps
L]

Konfiguration EVlewkUnﬂguratlcn-MapperE Kontext

maps

Auswahlen

]

Columns are used to further configure the map. The columns with the labels “mapsLabel”
(contains the name of the object) and “mapsCoordinates” (contains the attribute with the
geographical coordinates) are obligatory because they are used to determine the objects for
display and its coordinates. Please note that this exact label must be used.

Q00O

I
)

Optional columns and functions:

e “mapsPopup” - ensures that a pop-up with the contents of this column is called up when
the icon is clicked (accepts html). If a selection action is available, this column is deacti-

vated.

e “mapsTooltip” - displays the configured property as a tooltip.
e “mapsColor” - determines the color of the marking element on the map.

e “mapsliconLocator” - by default the icon of the type is used to display the objects on the
map. Here adjustments are possible by specifying a different icon location in the form

of the ID of the corresponding file attribute.

A selection action can be applied to the table; this action is activated when the marking

element is clicked.

3.6.5 vcm-plugin-markdown

The HTML output enabled by the VCM Markdown plug-in makes it possible to output Mark-

down texts.

It can be used by adding a style with the render mode markdown to one of the following

configuration elements:

e Static text: The Viewconfig property text of the configuration element is interpreted as

markdown.

@

Konfiguration Menils Styles KB Kontext

Auswihlen

Auswihlen

Auswihlen

b Text Das vem-plugin-markdown ermdglicht die HTML Ausgabe von Markdown Texten. [..]

(T

To use the plug-in, the render mode called "markdown" must be entered on the “Style”

tab:

00O
o] 1 J
o I J

i-views 5.3
480534

Text - Objekt

Viewkonfiguration-Mapper

renderMode = | V|
renderMade = |markdown |
target = | |
tooltip = | |
vemDetailed = I
vemMarkRowClick =

vemPluginCalendarOptions

P

vemPluginChartDataColumns = | | e

Wert Wissensnetzelement Typ

Markdown: ### Markdown in Attributen (...)

Markdown ### Markdown in Attributen [..]

Attribute

Attribut hinzufiigen

Relationen

Relation hinzufiigen

The view for the string attribute “Markdown” is configured using a property view:

00O
000
o I J

@ LiXE4S W

N vem-plugin-markdown u
W3 Text - Objekt
W3 Text - Objekt

4 I Eigenschaften - Objekt G

¥ Markdown .)
Konfiguration Mends Styles KB Kontext
Konfigurationsname = ~
» -
= | Auswihlen eee
= Markdown
ten = [
=0
< > . “

Like a text object, the property also receives the render mode “markdown.”
After rendering, the text has the following visual highlights in the web front-end:
Auch hier aktiviert der renderMode markdown die Umwandlung von Markdown in HTML.

Further configuration of the plug-in is possible via the style attribute vemPluginMarkdownQOp-
tions.

The plug-in uses the module markdown-it

3.6.6 vcm-plugin-timeline

Events can be displayed chronologically on a timeline using the vcm-plugin-timeline plugin.

The timeline can be horizontal or vertical. The horizontal variant of the timeline provides two
additional buttons for scrolling when the timeline is wider than the space available. A scroll
bar should be provided by the browser for the vertical variant in this case.

02122012 24022013 27032011 28062015

Mieste 02.12.2012 Aarl

022013 Weilburg, 5t 27.03.2011 Marburg, Universitat

O o o O o o O

22092013 21112010 27032011

Bad Hersfeld, Kreisstadt 2111 2010 FrSinkisch- Crumbach

Birstein

Q00O

—

3.6.6.1 Configuration

First, a “script generated view” has to be created and its view type attribute must be set to
“timeline.” In addition, a script must be placed on the view which provides data for the time-
line, for example:

function customizeView (element, view) { //other content

view.options = {
layout: ’horizontal’,
// layout: ’vertical’,
itemHeight: 130

}

view.events = element.relationTargets(’hasAlbum’) .map(function (album) {
var obj = {3}
var name = album.name ()
var date = album.attributeValue(’releaseDate’)

if (date) { date = date.toString() } else { date =’ }

return obj = {name: name, date: date, elementId: album.idString()}
b
return view

This script can be used with the following parameters under view.options in order to modify
the appearance of the timeline:

e 'layout’: determines the direction of the timeline, either 'horizontal’ or vertical.’
e ‘itemHeight: Height of the elements on the time bar in pixels. If this is not set, all
elements receive the height of the element that requires the most space.

Under 'view.events' an array has to be created which contain the results as objects. Each of
these requires the attributes name,’ 'date’ and elementid.

3.6.6.2 Styling
CSS rules are used to modify the default style of the timeline.

Depending on the alignment configured for the timeline, the following class hierarchy is avail-
able for this:

The text fields for the results can be modified using the following selectors:

.timelineVertical ul 1i
.timelineHorizontal ul 1i

The mark points for the results can be modified using the following selector:

.timelineVertical ul 1li::after
.timelineHorizontal ul 1li::after

00O
000
o I J

3.6.7 vcm-plugin-net-navigator
The vem plugin Net-Navigator visualizes elements in a graph-like view.

Objekte von Kreis Objekte von Stadt Objekte von Wahl =

3.6.7.1 Configuration
The plugin can be configured by means of styles.

Styles of the view

Style Description
vcmPluginNetNavigatorOp- | AJSON object for the view options. See below for details
tions
extra Alternative to vemPluginNetNavigatorOptions
Options
Option Description
vcmPluginNet- Show/hide category labels
NavigatorOp-
tions.categories.hidelLabel

00O

o] 1 J

&

o] 1 J

&

vcmPluginNet-
NavigatorOp-
tions.categories.embedded

Configure where actions are to be displayed. For true, they
are shown next to the categories
JActions

vcmPluginNet-
NavigatorOp-
tions.categories.compactA

Combine actions in a menu

ctions

vcmPluginNet-
NavigatorOp-
tions.history.enabled

Activates/deactivates the navigation history

vcmPluginNetNaviga-
torOptions.enableEditing

Activates/deactivates the option of creating new links be-
tween elements in the graph

vcmPluginNetNaviga-
torOptions.nnOptions

Options for the Net-Navigator component

vcmPluginNet-
NavigatorOp-
tions.nnOptions.overload.n

Number of nodes that can be opened simultaneously before
a query dialog regarding the relations to be opened appears.
nakexpefaditadése is 5.

Styles of nodes

ex- A JSON obiject for the node options. See below for details

tra

Node options

color Overwrites the background color of the node

label Overwrites the la

bel of the node

icon Overwrites the icon of the node

Styles of borders

ex- | AJSON object for the border options. See below for details

tra

Border options

color | Overwrites the background color of the border

00O
000
o I J

label

Overwrites the label of the border

3.6.7.2 Actions

Nodes and relations can be supplemented with actions. These are arranged in a circle around
a node or the relations.

Actions are configured in the graph configuration within a node category or link.
WOLXE S W A=

5] Graph-Konfiguration - Objekt .
4 gl Objekte von Kreis
- Verknipfung - Objekt
» Wl Objekte von Stadt Konfiguration Kategorie Knoten Kontext Alles
v Objekte von Wahl

Menis Styles

HYeFS S & X 2 @
() nnn-default
W A
Konfiguration Aktionen Styles KB Alles
| /PORS & X 2 u
expand
hide B Aa@

pin .
Konfiguration Styles KB Kontext Alles

nsname expand

= | Auswahlen see
= NN-Expand | -
= | Auswahlen see

= | Auswahlen e

Preconfigured actions

Action | Description

type

NN- A small plus symbol can be used to display neighboring nodes (for which a con-
Expand | figuration exists)

NN- Hide a node

Hide

NN- Pin a node

Pin

AN

&

OO0

o 1

&

ol I _

&

C=4
Custom actions
A symbol image is always required for the display
3.6.7.3 Followups
The graph view reacts to the following follow-ups:
Follow- | Data Description
up
graph- {elementld: Displays the elements in the graph. Elements already dis-
show ['ID123_456"]} played are hidden
graph- | {elementld: Adds the elements to the graph. Elements already dis-
join ["ID123_456"]} played are retained
graph- | {elementld: Removes elements from the graph
hide ['ID123_456"]}
graph- Moves one step back in the graph history
back
graph- Moves one step forward in the graph history
forward
graph- Updates the elements in the graph.
reload

Example: ActionResponse script which adds the root term to the graph view:
function actionResponse (element, context, actionResult) { var actionResponse = new $k.ActionRespc
actionResponse.setFollowup(’graph-join’)
actionResponse.setData({
elementId: [$k.rootType().idString()]
1))

return actionResponse

3.7 Special configuration

This chapter covers specific application cases in the ViewConfiguration Mapper which require
a combination of viewconfig element, search and/or script.

3.7.1 Display change history in a web frontend

Prerequisite: Change history recording has been set up

For changes to elements to be recorded, it is necessary to set up a meta-attribute with the
internal name “changelLog” of the “string” value type. See also the “ChangelLog Trigger” chap-
ter.

Q00O

o] 1 J

&

o] 1 J

&

View configuration

The view configuration of ChangelLog entries for the web front-end can be implemented in
the form of a table via ViewConfiguration Mapper:

Vi Anderungshistorie: .

4 | £ Datum

\ ! logEntry.timestamp
4 | £ Anderung t‘ﬂ
\ { logEntry.eventTypeStrin
9=y P g Konfiguration Menils Styles Kontext
4\ £ Objekt

\ { logEntry.topic

4 | : Eigenschaft O
N ? logEntry.propertyType =
4 N Wert
\ ! logEntry.changeLogValue 0
Skript logEntry.timestamp

From the change history it is possible to read out values such as date, change, affected ele-
ment, modified properties etc.

For each of these values, it is necessary to create a column configuration that contains a script
as its column element. The script processes the entries as per the $k.HistoryChangelLogEntry
class and returns the relevant value, filtered by value type, for the column element (for syn-
tax, see JavaScript API). For script examples see the sections below.

As only one attribute element is generated for each semantic element of the Changelog
attribute type to be logged, all entries in the change history are written to the string as an
attribute value. Therefore, the entries of the string must be read out individually by means
of the script. To ensure that the entries are even available, it is necessary to activate (tick) the
“Use hits” option. For more information, see the “ Hit content model” chapter.

Please note:

1. In the view configuration, the ChangelLog entries can be handled like the “hits” for a
query. If the “Use hits” option is not activated, the semantic element is output with-
out properties and without the corresponding ChangelLog entry (result: as many empty
column elements as there are ChangelLog entries).

2. To ensure that the view configuration of the table is told for which attribute the ChangelLog
entries should be displayed, influence from another view is required, on the basis of
which the context element is forwarded to the table.

The output table in the web front-end looks like this:

OO

O

o~

o 1

&

ol I _

&

C=4
2019-02-21T11:16:57 Andern Cabriolet Name — Roadster
2018-02-21T11:17:58 Anlegen Cabriolet hat Ausstattung — Verdeck
2018-02-21T11:18:17 Andern Cabriclet Name Roadster — Convertible
2019-02-21T11:18:23 Andern Cabriolet Name Convertible — Cabriolet

In this example, an object called “Roadster” has been created, a relation has obtained the
“has equipment” relation for the “Folding top” object, and then the object has been renamed
“Cabriolet”. Due to the script, each row in the “Object” column displays the current name of
the object that was modified.

Script examples for the ChangelLog output

Change date

function cellValues (logEntry, queryParameters) {
return [convertToLocal(logEntry.timestamp()) 1]

3

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

function convertToLocal (date) {
return new $k.DateTime(date.valueOf() + (date.getTimezoneOffset() * 60 * 1000))
}

Change

function cellValues (logEntry, queryParameters) {
return [logEntry.eventTypeString() 1]
}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Object

function cellValues (logEntry, queryParameters) {
return [logEntry.topic() && logEntry.topic() .name()]
}

Q00O

000

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Property

function cellValues (logEntry, queryParameters) {

return [logEntry.propertyType() .name()]
}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Value

function cellValues (logEntry, queryParameters) {
var oldValue = logEntry.oldValue()
if (loldValue) { oldValue = ”’ } else if (oldValue.length > 100) {
oldValue = oldValue.substr(0, 100) + ’...°

}

var newValue = logEntry.newValue()

if (!'newValue) { newValue = *’ } else if (newValue.length > 100) {
newValue = newValue.substr(0, 100) + ’...’

}

return [oldValue + > ’ + newValue]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

3.8 Installation

e Make ViewConfiguration Mapper available as a ZIP file via static REST resource
e Reference to VCM demo with sourcing option (link)

e Using (other) web server

e Productive operation/test operation

3.9 Extension project

OO0
O
O
O

3.9.1 Development environment

e Node.js/Webpack/etc.

3.9.2 Technical details

e Diagram showing information flow in the case of actions
e Component state

4 j-views services

4.1 General

4.1.1 Command line parameter

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher
priority.

-inifile <File name>, -ini < File name >

Name of the ini file that is used instead of the standard ini file.

4.1.2 Configuration file

Some settings can be specified by means of a configuration file (*.ini) . The structure of the
file is as follows:

[Default]
parameterNamel=parameterValuel
parameterName2=parameterValue2

Below is a list of configurations that can be used for any service. For service-specific settings,
see the “configuration file” section of the relevant service.

Logging settings
loglevel = <LoglLevel>

Configures the messages that should appear in the log:

e FATAL ERROR: Critical error messages only
e ERROR: Error messages only
e WARNING: Warnings and error messages only

NORMAL (default value): All messages excluding debug outputs

NOTIFY: All messages including several debug outputs

Q00O

—

ol I J

e DEBUG: All messages including all debug outputs

debug = true/false

Obsolete. Sets the log level to DEBUG for true, and to NORMAL for false. Only evaluated if
logLevel is not set

nolog = true/false

Obsolete. If true, logTargets=null. Only evaluated if logTargets is not set
channels = <Channell> [,<Channel2>,...]

Names of channel filters. Channel filters are used to output only the log messages belong-
ing to the specified channel filters. The name of a channel filter indicates the topic area
to which the log outputs belong. To find out which channel filters are possible, use the -
availableChannels parameter in the command line.

channellevels = <Channell>:<Levell> [,<Channel2>:<Level2>,...]

Targeted configuration of the log level for the respective channel.

logTargets = <Namel> [,<Name2>,...]

Names of log targets. For the configuration, see the “Log targets” section.

logprefix = <Prefixl> [, <Prefix2>,...]
Additional data that are added for each log output:

e pid : Process ID of the application

e $procs: ID of the current Smalltalk thread

e $alloc$: allocated memory on the VM (in megabyte)
e $free$: Free memory on the VM (in megabyte)

e $incGC$: Status of incremental GCs

e $0s$% : Information about the OS

e cmd : Command line

e $build$: Build version

e $coast$: COAST version

If the prefix is not contained in this list the prefix is output without change.

logTimestampFormat = <FormatString>

Formatting specification for the timestamp of the log entry, e.g. “hh:mm:ss”.

exceptionlLogSize = <Integer>

Sets the maximum size for the StackTrace supplied with an error message.

Q00O

000

Log targets

Log targets can be used to specify different targets for logging; it is possible to configure the
log level, channels, formatting and more for each of them. For each specified name from the
log targets list, a configuration must be specified in section [<configuration name>]

[Default]
logTargets=erroroutput

[erroroutput]
type=stderr
format=json
loglevel= ERROR

is an example that configures the output of all error messages in the JSON format in the
standard error stream.

The null log target is an exception: if logTargets=null is configured, no configuration section
needs to be created. If this section is missing, this has the same significance as the following
configuration

[Default]
logTargets=null

[null]
type=null
It is however possible to use null as the identifier for any log target configuration.

Generally it is possible, just as in the general configuration, to specify loglevel, debug, chan-
nels, channellLevels, logprefix and logTimestampFormat (see above). The configuration of the
log target always takes precedence; if none is specified, the general configuration is used.

In addition there are several other configuration options:

format = <Format>

Specifies the output format. Possible values:

e plain: Standard formatting in machine-readable form if possible
e json: Single-line output as JSON string, above all for machine processing

type = <Target type>

Specifies the type of the output. This configuration MUST be specified, otherwise the log
target is ignored. The following section contains the description and other configuration
options for the different types:

file
Outputin a log file.

file = <File name>

Specifies the file name of the target file.

Q00O

—

o I

maxLogSize = <size>

The maximum size of the log file before the old log file is archived and a new one is written.
For values below 1,024, the output is to be understood in MB.

maxBacklogFiles = <amount>
The maximum amount of archived log files. When a new one begins the oldest one is deleted.
transcript

Output to the transcript, can also be redirected to a log file and therefore accepts the same
configuration as file.

stdout

Output to the standard out stream.
stderr

Output to the standard error stream.
mail

Sends the log output via email.

[errorMail]

type = mail

loglevel = ERROR

;Sender address:

sender = mail@example.org

;Recipient address:

recipient = rec@example.org

;Mail server:

smtpHost = stmp.example.org

;Port of the mail server:

smptPort = 465

;If true, activates the secured connection (TLS/SSL).
;If true, the username and password must have been set.
tls = true

username = mail@example.org

password = 12345abc

;Amount of attempts to resend the email in case of failure:
retries = 3

;Waiting time between the attempts in seconds:
retryDelay = 5

mailfile

Like mail, however the outputs with a low log level are first collected and only sent via email
when an entry with a high level is logged.

mailSendLevel = <LogLevel>

Sets the log level from which the email is sent.
syslog

Output as UDP datagram to a syslog client.

Q00O

—

ol I J

format = <Format>

Unlike with other log targets, json and plain are not supported as format; instead, the syslog
version can be specified here:

e rfc5424: Formats the message as per RFC 5424. Most data are placed in the structured
data field in structured form. Only the actual log message is transmitted in the message
field .

e rfc3164: Formats the message as per RFC 3164. As this standard has no structured
data field, the corresponding data are placed at the beginning of the message field in
the same formatting. Please note: The timestamp is specified in the local time of the
sending computer as per the standard.

facility = <Integer>

The facility as an integer. For detailed information see https://tools.ietf.org/html/rfc5424#section-

6.2.1

targetHostname = <Hostname>

The host name of the target system. If not specified, localhost is used.

targetPort = <Integer>
The target port. If none is specified, the syslog standard port 514 is used.

hostname = <Hostname>

The host name of the sender. If none is specified, the host name of the system is read out.

appname = <Name>

Name of the sending application. If none is specified, the name of the EXE is used.

maxMessageSize = <Integer>

The maximum message size in bytes. If none is specified, the maximum size for UDP is used.
To shorten the message, structured data is removed incrementally at first, and the message
is cut off if necessary. The message remains in the valid syslog format even after shortening.

null

For suppressing the log outputs. No options are read out.

4.1.2.1 Text extraction

To extract texts and meta-data from file contents, use of Apache Tika must be set up:

e Download the current Tika app (e.g. app-1.18.jar) from the website http://tika.apache.org/ and

copy it into the directory of the Job-Client.
e Add the following entry to the configuration file (e.g. jobclient.ini or bridge.ini):

Q00O

—

o I

[text-extraction]
tikaJavaParams=-Xmx1024M
tikaJarPath=tika-app-1.18. jar
; Optional: Maximum size of the binary files,

; for which text is extracted
; extractedTextSizeLimit=100000

>

; Optional: Java path, the default value is ’java’
; extractorPath=C:\Program Files\Java\jdk-9\bin\java.exe

B

4.1.2.2 Macros

Within *.ini configuration files, further *.ini configuration files can be included:

$(include:Dateiname) .
This allows information from several files (e.g. host name) being stored into one common
file.

e in one and the same ling, the include instruction mustn’t be surrounded by further con-
tent; otherwise, the include instruction will not be recognized
include corresponds to a textual replacement
include can be nested: the included file turn may include further files

the file name may consist of path specifications; within Windows, slashes / will be re-
placed by backslashes \ automatically

Including environment variables is possible as well:

$(env:Variablenname)

"$(env:USERDNSDOMAIN)" is translated into "I-VIEWS.COM" for example.

Note: This macro only can be used in key values, for categories / key names it will not be
replaced.

Example:

jobclient.ini $(include:../shared/ivcontent-host.ini) $(include:../shared/ivcontent-volume.ini)

4.1.2.3 Caching
The following excerpt shows an *.ini file example for caching:

; pre-fill corresponding fields in the login window host=demo-server.empolis.com user=peter volume

4.2 Mediator

Q00O

o] 1 J

&

o] 1 J

&

4.2.1 General

The i-views server provides consistent and persistent data storage, and ensures that the data
on the i-views clients that are connected are up-to-date.

Data is managed in an object-oriented database that uses an optimistic transaction system
to allow cooperative work on the semantic network.

Functioning as a communication center, the i-views server ensures clients and services are
synchronized. As a basic mechanism, it makes a shared object space and active updates
available for this.

Technical data:
e Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (media-
tor.exe or mediator.im).
e Configurable TCP/IP server port for communication with the clients, standard in i-views
5.1 is 30064.
The i-views server can be operated in three modes:
1. Classic/Compact: The server starts as an individual process in this mode - the so-called
“mediator”.

2. Multiprocess: The server starts at least two processes in this mode. This results in higher
memory usage than in compact mode, however many jobs can be executed in parallel.

3. Distributed: The server components “stock” and “dispatcher” can be configured and
operated separately in this mode. This makes it possible to distribute the server com-
ponents across different computer nodes.

4.2.2 System requirements

The i-views server is platform-independent and runs on all popular operating systems, e.g.
Windows and Linux. Other systems on request.

OS | Version Pro- | Sup- | 64
ces- ported Bit
sor VM
Win- | All versions, servers and clients currently supported by | x86 Yes Yes
dows Windows
Linux RedHat, SLES, etc. (Kernel >= 2.4, glibc >= 2.5) x86 Yes Yes
Kernel >= 2.6, glibc >=2.5 PPC No
ARM No

Mac | OSX 10.9+ x86 Yes Yes

4.2.3 Operating modes

First, the following start parameters generally determine the mode in which the server is
started. Without parameters, the server starts in the compact “mediator” mode.

-stock

Starts the “Stock” server component, which is responsible for persistent data storage.
-dispatcher

Starts the “Dispatcher” server component, which is responsible for the synchronization of
the clients and for the distribution of “active updates”.

-server

Starts the complete server in the multiprocess mode.

4.2.3.1 Multi process mode (-server)

The start parameter -server automatically starts a stock and a dispatcher. The dispatcher
opens a server on the default port (30064). The port of the stock is selected automatically.
Authentication tokens between the two processes are generated automatically and do not
have to be configured.

Please note: It is important that all clients (Knowledge Builder, bridge, batch tool etc.)
have access to stock and dispatcher.

If this is only possible for certain ports, stock and dispatcher must be configured explicitly.
The local directory uses the same configuration files as the actual distributed mode

e dispatcher.ini configures the dispatcher process

e stock.ini configures the stock process

Other configuration files cannot be used at present.

4.2.3.2 Configuration of the Stock

The stock is responsible for storing the data on the hard drive. A simple is example of this is
the configuration file stock.ini

[Default]

0.0.0.0interfaces=cnp://0.0.0.0:4998

This configuration ensures that the stock listens on port 4998 and communicates via the
native Coast protocol.

The configuration file can contain the following entries:

[Default]
parameterNamel=parameterValuel
parameterName2=parameterValue2

Q00O

000

The following parameters can be used at this point:

port=<port number>
Starts the stock with port number <num>. Without this entry, port 30064 is used.

This parameter is obsolete. Itis replaced by the “interfaces” parameter. The entry “port=1234"
corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,
multiple values are possible here, which can be listed consecutively in comma-separated
form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several
values are permissible and are separated by a comma. Possible protocols are: http, https,
cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol
Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,
host and port. The host component is used to manage which network address(es) is/are used
to access the server. For example: “0.0.0.0"=IPv4 all interfaces, “[::1]"=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-
cessed using an IIS running on port 443, for example.

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end
on volumes, this directory is used directly without creating an additional “volumes” directory
below it.

volumesDirectory=<Directory>

The semantic networks are stored in this directory. Here, “volumes” is entered as the default
value.

backupDirectory=<Directory>

Specifies the directory to which the semantic network backups are written and also read for
restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value
is 20480. In some infrastructures you can specify

networkBufferSize=4096
to achieve a higher throughput.

flushJournalThreshold=<Number of clusters>

Specifies the maximum value that “changed cluster" + “index cluster" may reach in a saving
process. If the value for “changed clusters” has already been exceeded, no “index clusters”
are saved; these are kept with the journal instead.

A low value (e.g. 50) guarantees fast saving time but can potentially generate a large journal.
A value of “0"” deactivates journaling. The default value is “2000.”

Note: A “flush” of the journal is executed after complete saving at the latest. This in turn is
triggered if:

Q00O

000

e The mediator is closed
e The last client of the corresponding volume is logged off
e Saving is triggered by a full-save job (see jobs.ini)

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after
the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message
before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361

password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)
hash value. These two pieces of information then suffice for the mediator to check an au-
thentication request. During authentication on the server, the user name must be specified
as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini
file. The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not
be used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting
the mediator is skipped

Changed
Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-
ration file.

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You
may specify values either in megabytes or actual bytes, whereby it is assumed that values
under 1048576 refer to megabytes.

maxMemory=<Integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base
memory available (under Windows) or 512 MB by default.

baseMemory=<Integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMem-
ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<Integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use
again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs
are stored separately from the database on the hard drive, the following setting must be
entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-
low).

4.2.3.3 Configuration of the Dispatcher

The dispatcher is responsible for transaction control and coordination of several clients. A
simple configuration file is

[Default]
interfaces=cnp://0.0.0.0:5000

stockAddress=cnp://localhost:4998
stockAuthentication=dsfkhvqw3n9485z432504

This configuration opens a server on port 5000 to which clients can connect. The dispatcher
looks for the stock under localhost:4998. This address is also the address that clients use to
fetch data from stock

If dispatcher and stock are running on the same server, the dispatcher tells its clients its own
host name to ensure connections via the network work.

Token dsfkhvqw3n9485z432504 is used to authenticate the dispatcher on the stock. This
token must be set in the stock configuration using the "password.*" keys .

4.2.4 Installation

By principle, the i-views server does not require a specific installation, i.e. it can be started
ad-hoc from any directory.

However, it must be ensured that the necessary access rights (read/write/generate) have

been set for the server s working directory and all subdirectories.

4.2.41 Start parameter

A range of parameters can also be transferred to the mediator process when starting. Most
parameters can, however, also be specified in the mediator.ini, allowing the mediator to
be started using a simple command line. When doing so, the rule is that the parameters
specified on the command line take precedence over any parameters specified twice in the
.ini file.

The complete list of possible start parameters is output by the mediator when called up using
the parameter “-?".

-interface <interface-1>

This parameter determines the addresses and protocols used to access the server. Possible
protocols are: http, https, cnp, cnps. The abbreviation “cnp” stands for “Coast Native Pro-
tocol” or “Coast Native Protocol Secure.” The syntactic structure of an interface definition is
equivalent to a URL with schema, host and port. The host component is used to manage
which network address(es) is/are used to access the server. For example: “0.0.0.0"=IPv4 all
interfaces, “[::1]"=IPv6 loopback only.

The "http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-
cessed using an IIS running on port 443, for example.

-clientTimeout <sec>

Sets the time within which a client must automatically answer to <sec> seconds. The value
should be set to a minimum of 600 (which is also the default value).

-baseDirectory <directory>

Sets the directory in which the “Volumes” directory is located. Along with the “Volumes"”
subdirectory, the directories for backups and downloads are created. This parameter used
to be called “-volumes”.

The following parameters give commands to the mediator executable to run specific jobs,
without functioning as a server for semantic networks afterwards.

-quickRecover <volume> -recover <volume>

In the event that the mediator was not shut down properly (e.g. computer crash), lock files
in volumes that were in use stop running. The volume will then not be able to be entered. In
order to disable the lock, remove the lock by calling -quickRecover <volume>. It cannot be
called when (possible) inconsistencies were found. In this case, the start parameter -recover
must be used.

Please note:

The working directory called must be the directory that contains the “volumes” directory. The
“Volumes” parameter therefore does not function in this case.

-bfscommand <volume> <command>

Executes commands that are identified by the BlockFileSystem.

Command line parameter for logging:

Q00O

000

-nolog
Disables logging
-loglevel <integer>

Configures the messages that should appear in the log:

e 0: All messages including debug outputs

10 (default value): All messages excluding debug outputs

20: Warnings and error messages only

30: Error messages only

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this
parameter when several clients are being started in the same working directory.

-debug
Switches logging to debug mode
-log <logname>

Sets the log file to <logname>.

4.2.4.2 Configuration file "mediator.ini"

A number of mediator settings can also be defined in the configuration file mediator.ini. The
structure of the file is as follows:

[Default]
parameterNamel=parameterValuel
parameterName2=parameterValue2

The following parameters can be used at this point:

Network communication

port=<port number>
Starts the server with port number <num>. Without this entry, port 30061 is used.

This parameter is obsolete. Itis replaced by the “interfaces” parameter. The entry “port=1234"
corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,
multiple values are possible here, which can be listed consecutively in comma-separated
form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several
values are permissible and are separated by a comma. Possible protocols are: http, https,
cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol
Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,
host and port. The host component is used to manage which network address(es) is/are used
to access the server. For example: “0.0.0.0"=IPv4 all interfaces, “[::1]"=IPv6 loopback only.

Q00O

000

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-
cessed using an IIS running on port 443, for example.

For SSL communication (cnps:// or https://), the file paths for certification and private key
must also be specified in the configuration file:

certificate=name of the .crt file privateKey=name of the .key file
Directories
baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end
on volumes, this directory is used directly without creating an additional “volumes” directory
below it.

volumesDirectory=<Directory>

The semantic networks are in this directory. volumes is entered as the default value at this
position.

backupDirectory=<Directory>

Specifies the directory to which the semantic network backups are written and also read for
restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value
is 20480. In some infrastructures, you can specify

networkBufferSize=4096
to achieve a higher throughput.

journalMaxSize=<Maximum size of the journal>

journalMaxSize=0 can be used to deactivate journaling, which is normally active. The default
value is 5242880 (5 MB).

autoSaveTimelnterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after
the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message
before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)
hash value. These two pieces of information then suffice for the mediator to check an au-
thentication request. During authentication on the server, the user name must be specified
as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini
file. The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not
be used at the same time as the SHA256 hash variant.

Changed
skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting
the mediator is skipped

Logging
For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-
ration file.

Working memory

The following three parameters are used to configure the memory allocation and usage. You
may specify values either in megabytes or actual bytes, whereby it is assumed that values
under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base
memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMem-
ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use
again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs

are stored separately from the database on the hard drive, the following setting must be
entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-
low).

4.2.4.3 Security concept of the Mediator

The i-views server is a generic component that can be used for more than i-views. Along with
the restrictions due to authentications on the server or in the database, the user can also
control which applications may connect to it.

Each application (client and server) receives a pair of RSA keys that is unique for each ap-
plication delivered. The public key can be obtained by using the information (KB: “Tools”
menu, “Information”, then the “Copy RSA key” button) or be called up using the parameter
-showBuUildID for console applications. The build information exported this way includes the
public RSA exponents (rsa.e_1) and RSA module (distributed across several rsa.n_X) and an

MD5 checksum for this information (buildID).

Example of build information:

[buildID.90A1203EFB957A58C2268ADSFE3CC5A3] rsa.n_1=93D516DF61395258AA21A91B33E8EE6G7 rsa.n_2=B07C¢

If you would now like only a specific set of client applications to be able to connect to the
server, then you must transfer the respective sections into the mediator.ini in the server. The
client transfers its buildID when it connects. When the mediator receives a suitable entry, it
authenticates the client. In other cases, it will only connect when there are no entries on
build information in its ini file. This, for example, prevents outdated client applications or
modified client applications from being able to connect to the mediator.

Conversely, corresponding buildIDs for the mediators can be entered in the respective ini file
in the client application in order to prevent a compromised or outdated server from estab-
lishing a connection.

This allows an environment to be configured in which only the latest software can be used
to access productive data, but also allows access to the server with the test data from a
development environment. The user software, in turn, can only access the productive server
or the test server.

If neither the server nor the client is configured, then the installation performs the same
way as the predecessor version: Each application can connect to any server (as long as the
protocol version is correct).

Server version 5.4 or higher requires the server password as a parameter in order to run
administrative commands (by means of the Rest interface or by means of the administration
using an administration tool). An authentication as the administrator in the volume has been
sufficient since version 6.2 for actions that relate to an existing database (backup, download,
garbage collection, etc.).

Conversely, it is possible to log into a volume using the server password. Details of this can
be found in the Admin tool.

If no password has been configured on the server, then any password can be used to log
onto the server. However, logging in on the volume is then not possible.

4.2.4.4 Audit log configuration

In a number of application scenarios, it may be necessary to log all accesses to a Knowl-
edge Graph in an access or audit log. This audit log contains entries for all log-in and log-out
processes, write and read access to Knowledge Graph contents, search requests made, print-
outs, exports, etc.

The log must be activated in the System configuration / Audit log category in the Admin tool.
The activation or deactivation of the log, in turn, results in a entry in the audit log.

An analysis tool can be opened in the administrator menu of the Knowledge Builder to view
and search within the access log.

The log can be configured by creating a file named 'log.ini’ in the data directory of the volume.
This configuration file is only read when the volume is opened. If the configuration was
changed while the volume was opened, then the Mediator has to be restarted.

[Default]

; A comma-separated list of log names. The log is configured in the section with the same name.

applicationLog=audit

[audit]

; Create a compressed backup every 28 days and start with a new empty log
backupInterval=28

; Max size of a JSON file, in MB

maxLogSize=5

; Do not flush the log immediately, for better performance
writeBackImmediately=false

4.2.5 Operation

4.2.5.1 Shut down the server

The i-views server can be shut down locally by means of the Ctrl-C abort signal.

In case of installation as a Windows service, the server must be stopped using the service
management.

Under UNIX and if operated as a Windows service, the server is shut down properly when the
operating system is shut down.

4.2.5.2 Storage and backup of semantic networks
Directory structure

The basic directory of the i-views server has the following structure:

volumes/
knowledgenetworkName/
knowledgenetworkName. cbf
knowledgenetworkName. cdr
knowledgenetworkName.cfl
knowledgenetworkName.lock (if the semantic network is open)

backup/
knowledgenetworkName/
<ten-digit number>/
knowledgenetworkName. cbf
knowledgenetworkName.cdr
knowledgenetworkName.cfl

Storage of semantic networks

Semantic networks are stored in the file system in the “volumes” subdirectory of the basic
directory of the i-views server. In this directory, a subdirectory with a corresponding name
is created for each semantic network. A file with the .lock file extension indicates that a
semantic network is currently in use.

Backup of semantic networks

The semantic network directories must never by copied while the server is running. For this

purpose the server has a backup service, which copies a consistent state of the semantic
network to a backup area. This backup area must be backed up at regular intervals (e.g. as
part of an overall backup strategy).

The location where backups are created can be specified using the entry
backupDirectory=<directory>

in the “mediator.ini” file. Without this information, the “backup” subdirectory of the basic
directory is used.

The backup service of the K-Infinity server can be initiated in two ways:

1. With a direct request to the server process (e.g. from the administrator tool)
2. With entries in the jobs.ini file in the working directory of the server. For each semantic
network, this file can contain a category [name_of_network] with the following entries:

Example jobs.ini

[volumel1]
;Backup of network ‘‘volumel’’

;Time the backup starts
backupTime=00:45

;Interval in days - daily in this case
backupInterval=1

;Keep the last 5 backups of this semantic network
backupsToKeep=5

backupsToKeep specifies the number of backups to be kept. This also includes backups that
were created manually. The default value is 3.

When specifying the network names in square brackets, you can use the wildcards “*" and
“?"; the names are not case-sensitive.

4.2.,5.3 Garbage Collection

Without Garbage Collection, the semantic network continues to grow through use. Hence,
it makes sense to perform a cleanup (Garbage Collection) from time to time. Like a data
backup, you can start the Garbage Collection manually at any time (e.g. with a special admin-
istrator tool) or it can be started automatically.

Depending on the size of the network, the Garbage Collection might require a lot of time and
memory. When running the Garbage Collection in large networks, we recommend starting it
without connected clients (e.g. Knowledge Builder and Job-Clients) and without other active
processes (e.g. backup).

Automatic Garbage Collection: Structure of the jobs.ini file
Automatic Garbage Collection is configured through an entry in the ‘jobs.ini’ file, e.g.
[volumel] garbageCollectTime=00:55 garbageCollectInterval=7

This entry in jobs.ini ensures that a garbage collection in the network called “volume1” is

Q00O

o] 1 J

&

o] 1 J

&

performed at “00:55" a.m. every “7" days. The default value for the interval is “1” (i.e. daily);
the time of day must be specified.

When specifying the network names in square brackets, you can use the wildcards “*" and
“?", the names are not case-sensitive.

Manual start of Garbage Collection

Alternatively, Garbage Collection can also be controlled using special call parameters of the
i-views server:

-startGC Starts the Garbage Collection on the network named <volume> and on a
<volume> potentially remote mediator on the computer <hostname> (optional incl.
-host port information).

<hostname>

-stopGC Ends any Garbage Collection of the network named <volume> that might
<volume> be running on the mediator <hostname>.

-host

<hostname>

-infoGC Informs about the current status of the Garbage Collection.

<volume>

-host

<hosthame>

These commands are transferred to another already running mediator by means of a medi-
ator executable.

Another option is to start the Garbage Collection via the Admin tool.

To execute these demands, the parameter -password must be used to transfer the correct
server password.

4.2.5.3.1 Status check of carbage collection via REST interface

For maintenance purposes, starting and status requesting both can be done via REST inter-
face.

mediator.ini

The initialization file mediator.ini must include two interfaces for the [Default] block:

e cnp-Interface for communication with the job clients
e http-Interface for REST communication

The needed line will be as follows:

interfaces=cnp://0.0.0.0:67890,http://0.0.0.0:45678
The ports are freely selectable, but they must be adjusted for every other access.

Q00O

ol I _

&

o 1

&

Note: After changing the ini files, the mediator needs to be restarted.

Credentials

In order to prevent user and password from appearing within the process lists, a credentials
file needs to be used. For this, we create a file called ".iviews_auth" containing the following
lines:

machine localhost login admin password "<PASSWORD>"

The access rights need to be set to "0600" (read and write access) for the user who is intended
for access via REST.

REST call per curl

Requesting status of garbage collection:

curl -netrc-file .iviews_auth http://localhost:45678/volumes/my-volume-name/garbageCollection
Status with json-prettyprint:

curl -s -netrc-file .iviews_auth http://localhost:45678/volumes/my-volume-name/garbageCollection
Starting garbage collection:

curl -netrc-file .iviews_auth -g -d "action=start" http://localhost:45678/volumes/my-volume-name/g
Stopping garbage collection:

curl -netrc-file .iviews_auth -g -d "action=stop" http://localhost:45678/volumes/my-volume-name/gz

4.2.5.4 Operation in Unix

Under UNIX the server reacts to the following signals:
SIGTERM/SIGHUP

Shuts down the server

SIGUSR2

The server immediately begins to back up all semantic networks that are specified for backup
in the jobs.ini file (see also the section on backups).

4.2.5.5 Operation in Cluster

The mediator can be operated in a cluster. A cluster environment usually mirrors the direc-
tories and therefore the semantic network constantly. If the part of the cluster on which the
mediator is running fails, a new mediator that then manages access to the semantic network
is started automatically

If the first mediator fails, it is possible that the mediator no longer has time to make the se-

mantic network consistent and that the network thus has an inconsistency and the “lock” file
of the old mediator remains in the corresponding directory. To ensure that the new mediator
is able to delete the “lock” file, the following parameter must be added to the mediator.ini
file.

host=NameOfCluster

In this case, all mediators with this ini entry can also unlock locked volumes of other medi-
ators that read the same value in the mediator.ini when started. “NameOfCluster" can be
selected freely but must comply with the rules that apply to host names (no spaces, colon, or
the like)

A consistency check of the volume is executed automatically when the mediator is started.
To the extent possible, the semantic network is made consistent and operation continues as
normal.

4.2.5.6 Troubleshooting

If the i-views server was not shut down properly during operation (e.g. computer crash), then
the locks remain in opened semantic networks. When a locked semantic network is opened,
this lock is detected and removed, if possible.

If the mediator detects an inconsistency, then the semantic network can be checked and in-
consistencies can be repaired to the extent possible by calling the mediator in the command
line using the parameters -quickRecover / -recover.

If resolving the inconsistencies is, contrary to expectation, not possible, then a backup copy
will need to be used.

4.2.5.7 Commands of the BlockFileSystem

The commands behind -bfscommand enable operations on the BlockFileSystem and are de-
signed for support cases. Such a command could look as follows, for example:

-bfscommand quickCheck {target volume}

The database addressed with {target volume} is subjected to a quick structural analysis. Sim-
ilarly, deepCheck can be used to perform a complete analysis.

4.3 Bridge
4.3.1 General

The bridge enables access to semantic networks on three types/operating modes:
e Via a RESTful services architecture (REST-Bridge). The interface is available as an HTTP
or HTTPS version (KHTTPRestBridge)

e Via KEM-RPC (KEMBridge): Access via KEM If binary data is supposed to be stored in the
semantic network, a REST bridge is required, which provides a REST service with a blob

resource handler.
e Operating mode “Load distributor for other bridges” (KLoadBalancer).
PLEASE NOTE: KLoadBalancer and KEMBridge/KHTTPRestBridge may not be activated in one
bridge at the same time because they interfere with each other.

The bridge and all of the accesses to be activated in it can be configured via an ini file. Settings
for accesses are bundled in sections. The most important of these parameters can also be
specified via a command line. If that is the case, the values of the command line call take
precedence over those in the ini file. The individual parameters are explained next.

4.3.2 Common command line parameters
If the bridge is started without any parameters, the required parameters are read from the
ini file bridge.ini and the error messages are written to the file bridge.log.

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher
priority.

-inifile <File name>, -ini < File name >

Name of the ini file that is used instead of the standard ini file. The default is bridge.ini

-host <hostname:port>, -hostname <hostname:port>

Name of the mediator that acts as the data server. This applies to all activated bridge clients

-port |<ClientName> <portnumber>

Parameter -port should usually be set for every client in the ini file. However, if you want to
already do this in the command line, you can specify different clients by specifying the client
name in front of the port number. The line above applies to one client; hence, the -port
parameter must be repeated until several clients are configured.

Examples of calling the bridge:

bridge -host server01:30000 -port KEMBridge 4713 -port KEMStreamingBridge 4714

bridge -ini bridge2.ini -port KMultiBridge 3030

Command line parameter for logging:
-nolog

Disables logging

-loglevel <Integer>

Configures the messages that should appear in the log:

e 0: All messages including debug outputs

10 (default value): All messages excluding debug outputs

20: Warnings and error messages only

30: Error messages only

Q00O

—

o I

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this
parameter when several clients are being started in the same working directory.

-debug
Switches logging to debug mode
-log <logname>

Sets the log file to <logname>.
-stop <hostname>

If you call the bridge with the parameter above, the current bridge is prompted to terminate
on the specified host. All clients started in it are shut down and the bridge is terminated.

4.3.3 Configurationfile "bridge.ini"

All of the following entries are found below the ini file section [Default]. The entries for the in-
dividual clients follow these. Adding client-specific configuration sections also defines which
clients are activated in the bridge to be configured and started. At the moment, potential
clients include:

e KEMBridge

e KHTTPRestBridge

In addition, the KLoadBalancer can be started as a client of the bridge, in which case the ini
file only includes the section

e KLoadBalancer

host = <hostname:portnumber>

see command line parameter -host

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You
may specify values either in megabytes or actual bytes, whereby it is assumed that values
under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base
memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Base memory usage after which efforts to free up memory increase. By default 0.6 * maxMem-
ory (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use
again.

minAge=<integer> [30]

Minimum duration (in seconds) in which a cluster remains in the memory. A cluster is a
set of objects that are always loaded together as one (e.g. an individual with all its (meta)
properties. Clusters that have not been used for an extended period are unloaded when
necessary.

unloadInterval=<integer> [10]

Minimum duration (in seconds) between two clusters being unloaded
unloadSize=<integer> [4000]

Minimum number of loaded clusters after which unloading occurs
keepSize=<integer> [3500]

Number of clusters that are kept when unloading
useProxyValueHolder=true/false

The option useProxyValueHolder=false can be used to reduce the mediator workload during
searches. The client then loads indexes in the base memory instead of querying the mediator
by means of RPCs. The drawback of this option is that only read access is permitted.

loadIndexes=true/false

This option is also used to load indexes to the memory. However, it continues to allow write
access. The option can be activated for all clients, including Knowledge Builder.

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-
ration file.

4.3.4 REST bridge

4.3.4.1 Introduction

The REST-Bridge application enables read and write access to i-views via a RESTful services
architecture. The interface is available as an HTTP or HTTPS version.

The REST bridge runs inside the standard bridge of i-views (bridge.exe).

The interface is fully configured by configuration individuals in the semantic network. The
return value of a REST call is any string, usually in a format that the calling client can process
easily (e.g. XML or JSON).

4.3.4.2 Installation
4.3.4.2.1 Prepare volume
I. Creating a system account for the bridge service

To allow a bridge service to access a knowledge network that is managed by a mediator ser-
vice, a system account must be created for the bridge service in the knowledge network. This
can be done with the Admin tool (under System configuration > System accounts) or with
the Knowledge Builder (Settings/Cogwheel > System tab > System accounts). The example
shows how a system account can be created using the admin tool:

00O
000
o I J

=4
Step 1:
3 Server: - Volume: test Preview - (] X
test System accounts
P Database Name: Type Impersc” £ Create {
Developer

) Update token
» Information

» Maintenance Testtoken
4 System configuration
Access authorisation Rafrech
Audit lo
9] Show user accounts
Blob storage

Components

H
X

License

System accounts Create system account
User [rest-bridgel |

¥ XML import / export Cancel

Admin tool - Create system account and enter account name

Step 2:
-: y

Should the system account impersonate a user account?

Yes

Click 'No’

Step 3:

Enter token
| rest-bridge_8ADNOM2CSIM4BKIHHTUQBHCGK |

Automatically generated login token is displayed

Important: The login token (rest-bridge_...) displayed in the last step is required again when
configuring the bridge (next chapter). The Enter token window should therefore remain open
or the token should be saved in a safe place.

Il. Activating the REST component in the knowledge network

By adding the software component “REST” in the Admin tool, the required schema is created
in the semantic network.

00O
000
o I J

Server: localhost Vielume: RestServicesTest Preview

RestServicesTest
¥ Datenbestand
Developer

¥ Information

4 Systemkonfiguration
Audit-Log
Benutzer
Blob-Speicherung
Komponenten
Lizenz
System-Konten
Zugangsberechtigung

P Wartung

» XML-Import/-Export

Inspect

Komponenten

Software

MQTT 5.2.0

MNet-Mavigator 4.3.0

Release State: Preview

Release State: Release

Release State: Release Candidate
REST 5.1.0

Tagaging 5.2.0

Standardkomponente hinzuflgen
Wissensnetz

i-views Core 5.2
Knowledge-Builder 5.2
View-Konfiguration 5.2

Marmu

Generische Komponente hinzufiigen

Lizenztemplate schreiben

Version |0 .0

Alle aktualisieren

Aktualisieren

Zurick

Entfernen

Beenden

=

00O
000
o I J

System-Konten
Zugangsberechtigung
P Wartung
» XML-Import/-Export

Inspect

Wiszensnetz

i-views Core 5.2
Knowledge-Builder 5.2
REST 5.1
View-Konfiguration 5.2

Marmi | REST

Generische Komponente hinzufiigen

Lizenztemplate schreiben

Version | 5 .1

Erneuern

Zuriick

55 Server: localhost Volume: RestServicesTest Preview =AREN X
RestServicesTest [
» Datenbestand Software
Developer Attributversionierung 4.1.0 ~
¥ Information . .
. Boost Libraries 1.18.0
4 Systemkonfiguration
Audit-Log Dependent Test-Component 3.4.5
Benutzer Druckkomponente 5.1.0
Blob-Speicherung External Index 0.0.0
| Kompanenten i-views content 1.0
B -
Lizenz i-views privacytrack 1.1 9

Entfernen

Beenden

=

The schema is created as a subnet of the semantic network called “REST,” which can only be
edited by an administrator in the Technical section:

00O
oy I
ol I

?—555 (RestServicesTest @ localhost, Administrator) =ane X
REST Service REST Resource — ﬁ D
ORDNER o=
DOBEBRxc: <o
WISSENSNETZ -
Obyjekttypen é/
4 Relationstypen Service ID
O Attributtypen default
TECHNIK
L4 Rechte (deaktiviert)
< >
4 Registrierte Objekte
> +* ResT *H O ¢
» W View-Konfiguration
4 Gesamtwissensnetz 3 default "_'
3 .
4 Kerneigenschaften » 4" echofistring}
Konfiguration
4 Authentication = f" "
= |echo/{string}
SEmmLiY Resource Description = Cal: thosth{port}/{servicename)/echo/{string}
v
RestServicesTest REST Service: 1 Eintrag

4.3.4.2.2 Configure bridge

The REST interface is provided by the standard bridge component of i-views, provided the
corresponding configuration file bridge.ini contains an entry for the category KHTTPRest-
Bridge or KHTTPSRestBridge:

[KHTTPRestBridgel

volume=name of the semantic network

port=port at which the service is to be reachable, the default is 8815
authentication=token wvalue of the system account created for this bridge (see above)
services=1%st of REST service IDs to expose

For the HTTPS version, the file paths for the certificate and private key must also be specified
in the configuration file.

[KHTTPSRestBridge]

volume=name of the semantic network

port=port at which the service ts to be reachable, the default is 8815
authentication=token value of the system account created for this bridge (see above)
services=1l%ist of service IDs to exzpose

certificate=name of the .crt file

privateKey=name of the .key file

In the configuration section “KHTTPRestBridge” or “KHTTPSRestBridge” you can also enter
the following special configuration options:

Name Description

Q00O

—

ol I J

realm Name that is returned to the client as
the realm name if authentication is active.
Web browsers typically display the realm
name as the application name in dialog
boxes for authentication to ensure the user
knows who is requesting the authentica-
tion. Default value: REST

4.3.5 KEM bridge

KEMBridge

Section name:
[KEMBridge]

port = <portnumber>

Specifies the port under which the KEMBridge reacts. If no entry is made, the default value
of 4713 applies.

ldapHost = <hostname:portnumber>

Specifies the LDAP host to be contacted if authentication is to be performed via LDAP. If this
parameter is specified, authentication must be handled via LDAP.

maxLoginCount = <number>

Maximum number of failed attempts to log in before the relevant user is locked out of the
network. After that, login is only possible after they have been unlocked via the Knowledge
Builder. If the value is not set, a user can make as many failed attempts to log in as they wish.

In order to allow a user to be locked out of the semantic network, a Boolean attribute with the
internal name userlock and the default value false must have been defined for individuals of
the person concept.

KEMrestrictTolPAddress = <IP address>
If this parameter is set, connections are only accepted from the host specified here.
trustedLoginEnabled = <true/false>

Makes it possible to log in without a password by means of the request “newAuthenticate-
dUser(username).”

preventSessionReplay=<true/false>
[default=false]

This parameter specifies that each writing session receives its own protected semantic net-
work access, so that there is no longer any need for the usual mechanism of executing the
actions of a deactivated session again during reactivation in order to restore the most recent
editor state.

KEMStreamingBridge

Section name:

) (

oI I J
oI I J

[KEMStreamingBridge]
port = <portnumber>

Specifies the port under which the KEMStreamingBridge reacts. If no entry is made, the
default value of 4714 applies.

4.3.6 KLoadBalancer

The KLoadBalancer can be used to scale the services and availability of the KEMBridge and
KEMStreamingBridge.

The following specification must be entered in the [KLoadBalancer] section in order to obtain
the required operating mode:

e allowRemoteShutdown (default value false)

e autoRestart (default value true)

e directory (default value current working directory in which the KLoadBalancer was
started)

e executable (default value 'bridge.exe’)
e image (default value 'bridge.im’)
e vm (default value 'visual’)
e hostname (default value Localhost)
e configNames (required value, not optional)
e parameters (default value blank)
The parameter #configNames is used for continuing the configuration of the KEMBridges

and KEMStreamingBridges to be started, with one bridge type controlled by each individual
configuration. The configuration names must be separated by a comma.

Here is an example of a KLoadBalancer ini file:

[Default] [KLoadBalancer] hostname=ws0l port=30003 directory=C:\3.2\balancing executable=bridge.es

Upon starting, KEMBridges and KEMStreamingBridges are started in accordance with both
the configurations. Because the same software is used for operation as is used for oper-
ation of the KLoadBalancer, specifying the parameters #executable, #image and #vm (for
operation in Linux), #hostname, #directory and #parameters are required.

executable / image, vm; directory: Specifications for how the individual bridges can be
started. Specifying #executable and #directory is required under Windows, while specifying
#image, #vm and #directory is required under Linux.

hostname / port: The host name which is used to refer to the bridges to be started, and
the KLoadBalancer to be contacted for administration purposes. If nothing is specified here,
then the name of the computer is determined and used. The port indicates the port used by
the bridges to address the balancer, the default value is 4715.

Careful: The name of the respective mediator that the bridges contact to retrieve data must
be entered in the respective ini files in accordance with the configuration section.

parameters: A field that is used to add additional specifications in the command line of the
bridges to be started, and is the same for all bridges to be started.

allowRemoteShutdown: A parameter that specifies whether the KLoadBalancer can be
ended by means of a shutdown request using remote access.

autoRestart: Parameter that specifies whether a stopped KEMBridge should be restarted
after the shutdown, with a new ID.

Additional specifications must be entered in each configuration section:

e bridgeClientClassName (not optional, only one specification possible per section. Please
observe the syntax described above!)

e inifile (ini file with settings for this type of bridge to be started)

e bridgelogfile (sample of a log file name in which a placeholder is added, <id>, which
is used to distinguish the log files for the individual bridges, and is replaced with the
consecutive number of the bridge that was started)

e maxBridges (maximum number of bridges of the specified type to be started, not op-
tional)

e sslEnabled (specifies whether the bridges of this type should use SSL to establish a con-
nection, default value false)

Please note: The parameter #directory specifies the working directory in which the files
specified in the configuration sections are searched for and, when applicable, created. Soft-
ware and ini file for starting the KLoadBalancer may be located elsewhere.

The ini files for the respective bridges must have the usual structure. An example of the
KEM-referenced ini file in the configuration section above is provided here:

[Default] host=mediator-hostname:30053 [KEMBridge] trustedLoginEnabled=true preventSessionReplay=t

For details, please refer to chapter 5, “Configuration file bridge.ini".

4.4 Jobclient

4.41 General

On the one hand, the Job-Client provides services for other i-views clients to relieve them of
time-consuming and data-hungry tasks. On the other hand, it is used as the bridge between
i-views clients and external systems.

One of its most important tasks is to execute all types of queries and deliver the search
results to the clients (sorting, text formatting, rights filtering).

Normally, the client waits until a job is complete (synchronous operation).

To execute complex searches, generate statistics, batch reconciliations, data formatting, data
clearing etc. the client does not have to wait for completion (asynchronous operation). The
result is made available by the server and the client is notified. The result can be viewed
some time later. Since the result is also made persistent, it is still available if the system is
restarted or in case of a fail-over.

Operation:

In the shared object space provided by the i-views mediator, the tasks of the clients for the
services are stored in pools. All i-views Job-Clients are notified of new jobs and apply to
process the new job, provided they are currently free. Once the job has been processed,
the result is made available in the shared object space, the requesting client is informed
and the result can be retrieved and displayed. Hence, the client logically commissions a
Job-Client but the physical communication always goes through the i-views server. To the
client it is transparent which Job-Client is executing its job just as the source of the job and
how many parallel Job-Clients are currently active is transparent to the Job-Client. Hence

Q00O

o] 1 J

&

o] 1 J

&

installation and maintenance of Job-Clients is very easy and flexible for administrators. Job-
Clients can be scaled as designed, distributed across different computers and be connected
and disconnected dynamically. External clustering or other orchestration is not necessary.

Technical data:

Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (jobclient.exe
or jobclient.im)

Requires a TCP/IP connection to the i-views server

Automatic load distribution between services

Job-Clients can be connected or shut down at any time

Standby mode in case required resources are temporarily unavailable

4.4.2 Configuration of the Jobclient

4.4.2.1 Configuration file "jobclient.ini"

The Job-Client is configured directly in the ini file. If this file is not specified by the call pa-
rameter “-inifile” when the Job-Client is started, "jobclient.ini” is used as the configuration
file.

4.4.21.1 General parameters

The following parameters can be configured:

Parameter: Description: Syntax:

host Name / IP address and
port of the server.
host=<host name:port number>

volume The name of the seman-
tic network for working
on. volume=<volume name>

jobPools Specifies which jobs the
Job-Client is supposed to
process. The names | jobPools=<job namel>
of the job pools to be | [,<job name2>, ...]
started are to be speci- | Example:

fied in comma-separated
form. Alternatively, you | jobPools=KScriptJob, query
can also specify the cate-
gory (e.g. “index”). In that
case, all job pools of this
category are selected.
The possible types are
presented in the sub-
chapters.

OO

&

O

o] 1 J

&

o] 1 J

&

cacheDir The description of the
location at which the
cache for the Job-Clientis | cacheDir=<directory>

stored.
volumeAcces- Description of the | Example:
sor storage type of the

cache. Unless specified
otherwise, CatBSBlock- | volumeAccessor=CatBSBlockFileVolumeAccessor
FileVolumeAccessor s
used. This storage type | or
is recommended espe-
cially for large networks | volumeAccessor=CatCSVolumeFileStorageAc¢essor
as CatCSVolumefFileStor-

ageAccessor would
create a large number of
files.

maxCacheSize | Target size of the cache

maxCacheSize=<size in MB>

shutDown- Wait period for termi-
Timeout nation of the active job
when shutting down the | shutDownTimeout=<seconds>
Job-Client. The jobs are
terminated at the end of

this period.
The default value is 10
seconds.
enableLows- This option activates the
paceHandler LowSpaceHandler. This

should always be acti- | enableLowSpaceHandler=true/false
vated for large networks.

Q00O

o] 1 J

&

o] 1 J

&

useProxyValue- | This option can be used
Holder to control whether the
Job-Client executes index | useProxyValueHolder=true/false
access via RPC (true) or
loads indexes to mem-
ory (false). This op-
tion should be deacti-
vated to ease the medi-
ator load. In doing so,
however, you should en-
sure that the Job-Client
has enough memory. If
the Job-Client has been
configured for write jobs,
this option has no effect
as index access is always
executed via RPC then. If
you set the value to false,
a message is output in
the log on start-up.

loadIndexes The loadIndexes=true
option has been avail-
able since version 4.2. | loadIndexes=true/false
In that case, indexes
are also always loaded
to memory. In contrast
to the useProxyVal-

ueHolder option, it
continues to allow write
access. The option

can be activated for
all clients, including
Knowledge Builder.

name This name is used to
identify the Job-Client in
the Admin tool in the | name=<Job-Client name>
overview list of all Job-
Clients.

scheduledjobs | A comma-separated list
of jobs that are to be
scheduled. scheduledJobs=<Job name 1>
[, <Job name 2>, ...]

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You
may specify values either in megabytes or actual bytes, whereby it is assumed that values
under 1048576 refer to megabytes.

OO

&

O

o] 1 J

&

o] 1 J

&

Parameter: Description: Syntax:

maxMemory Maximum base memory
usage permitted. A min- | maxMemory=<integer, in MB>
imum of 50 MB, the to-
tal physical base mem-
ory available (under Win-
dows) or 512 MB by de-
fault.

baseMemory Base memory usage
after which efforts to | baseMemory=<integer, in MB>
free up memory in-
crease. By default 0.6
* maxMemory. (alias:
“growthRegimeUpper-
Bound”)

freeMemory- If memory that is being
Bound used, but is no longer | freeMemoryBound=<integer, in MB> [10]
needed, exceeds this
limit, it is freed up for
use again.

minAge Minimum duration (in
seconds) in which a | minAge=<Integer> [30]
cluster remains in the
memory. A cluster is a
set of objects that are
always loaded together
as one (e.g. an individ-
ual with all its (meta)
properties. Clusters
that have not been used
for an extended period
are unloaded when
necessary.

unloadinterval Minimum duration (in
seconds) between two | unloadInterval=<Integer> [10]
clusters being unloaded

unloadSize Minimum number of
loaded clusters after | unloadSize=<Integer> [4000]
which unloading occurs

keepSize Number of clusters that
are kept when unload- | keepSize=<Integer> [3500]

ing.

Job configuration:

To configure individual jobs in the configuration file, a new section has to be created for each

OO

&

O

o 1

&

ol I _

&

one. These are each started with the name of the job in a pair of square brackets. This is
followed by the respective parameters of the job.

Example:

[Job-Name1]
<Parameter>=<value>

[Job-Name?2]

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-
ration file.

Lucene server configuration:

Lucene is integrated via a Job-Client whose jobclient.ini file has to be configured accordingly.
Below is an exemplary configuration:

[1ucene]

directory=lucene-index

port=5100

pageSize=100

; Wildcards at the start of a word are prohibited by default as they are very slow
; Allow in this configuration

allowLeadingWildcards=true

[JNI]
classPath=lucene-6.4.1\core\lucene-core-6.4.1.jar;lucene-6.4.1\analysis\common\lucene-analyzers-co

The directory lucene-6.4.1 contains the Lucene binary files. The index is stored in the directory
lucene-index.

4.4.2.1.2)ob specific parameters

In general:
Parameter: Description: Syntax:
jobPool JobPool for executing the job.

jobPool=<Job-Pool-Name>

OO

&

O

o 1

&

ol I _

&

scheduled)obs:

Parameter: Description: Syntax:
time Time at which the job
should be executed for
the first time. time=<Time>
Example:
time=22:15
interval Specifies how frequently

the job should be exe-
cuted. (d=days, h=hours, | interval=<Exact time>
m=minutes, s=seconds)

command For KExternalCom-
mandjob only. Name
of an external batch file | command=<File name.cmd>
that should be executed
by the job.

scriptName For KScriptjob only.
Registration key of an in-
ternal script that should | command=<Script resource>
be executed by the job.

unique (?)

unique=true/false

user (? only) Internal name
of a user instance under
which the job should be | user=<User name>
executed.

arguments (For KExternalCom-
mandjob only?). Argu-
ments that are trans- | arguments=<Argumentl [Argument2 ...]>
ferred when the script is
called.

4.4.2.2 JobPool types

The following types of job pools are available:

4.4.2.2.1 Index jobs

e Category (categories): index

If you specify index or the job classes displayed below, the indexing jobs are executed by the
Job-Client. The indexing jobs should be performed by a single Job-Client. Instead of listing all
the job classes individually in the job pool, you can also use the symbolic name index.

KAddAllToIndexjob

e Name: Add attributes to the index
KLightweightindexjob

e Name: Update external index

An external index is maintained via the KLightweightindexjob.

KLuceneAdminjob
e Name: Lucene admin job

The KLucenelndexjob maintains an externally set-up Lucene index.

KRemovelndexjob

e Name: Remove attributes from the index
KSyncindexjob

e Name: Synchronize index

KAddAllIToIndexJob, KRemovelndexjob and KSyncindexjob are required to maintain inter-
nal indexes.

4.4.2.2.2 KBrainbotjob
e Category/categories: <none>
e Name: KBrainbotjob

KBrainbotjob executes actions to maintain the Brainbot index.

Within the configuration in the Admin tool, if it is specified that maintenance actions are to
be executed by a Job-Client (“Use Job-Client”), a Job-Client must be started to maintain the
external index.

The KBrainbotJob has no additional configuration parameters the ini file because all the con-
figuration takes place in the Admin tool.

4.4.2.2.3 KExternalCommandjob

e Category/categories: <none>

e Name: External call

Using the KExternalCommand]obs it is possible to activate executable programs that are
concerned with processing or changing files, or that are simply to be called. No configuration
is necessary in the ini file of the Job-Client. The job is inserted by a script call using KScript.

The main element of the script call is the element ExternalCommandjob. The attribute Ex-
ecution allows the user to set whether the job should be executed locally without Job-Client
(value: local) or with Job-Client (value: remote). The default value is remote.

Note about remote execution:

Access to local programs is checked by calling a batch file. Before the Job-Client takes a
KExternalCommand]Job to execute, it checks whether it can execute this job. This is the case
if the batch file, which is specified in the element command, exists in the current directory of
the Job-Client. If the currently pending job is not accepted for processing by any Job-Client,
then the job queue is blocked for the user who inserted the job. This job must be deleted
manually.

The necessary first subelement in the script:

e Command: specifies which batch file should be called

<Command>convert .bat</Command >

The name of the batch file is specified in the command element. The directory and the actual
program to be executed are specified in the batch file. Important: The batch file must be located
on the same level as the program (e.g. Job-Client or KB). Directory specifications in the command
element are ignored.

The other subelements are worked through from top to bottom. If the order of parameters
plays a role in the external program, this should be factored in.

Script elements that form the parameters for the call:
e OptionString: can be used multiple times. Parameters of the external program to be

called are specified as strings. The parameters entries must be specified in full.
<OptionString>-size 100x100</OptionString>

e OptionPath: the path expression specified is evaluated and built up in the command
call as a string
<0OptionPath path="./topic()/concept()/@$size$"/>

Script elements that are concerned with the handling of attributes

e SourceBlob: This specifies the blob attribute that is used as a data source

<SourceBlob><Path path="‘$image$"/></SourceBlob> <SourceBlob path=‘‘$image$"/>

e ResultAttribute: This specifies the parameter for the generation of a new, or the
change of an existing, blob attribute with the content of the file, or the file itself, that
is the result of the program called externally.

Attribute values:

name: Name or internal name of the attribute

Topic to be created: Target individual of the attribute

modifyExisting to be created: change (true) or create new (false, default value)
filename: File name of the blob attribute to be created

<ResultAttribute name=*‘$image2$" topic="./topic()" modifyExisting="true"

file

Q00O

ol I _

&

o 1

&

<Path path="‘$image2$"></ResultAttribute>

Example 01:

Script:

<Script> <ExternalCommandJob execution="local">
Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert.exe" %*
exit /B %ERRORLEVELY

Content of the batch file under Linux:

#!/bin/bash
convert $x*

Example 02:

Script:

<Script> <ExternalCommandJob execution="local">
Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert" -size 100x100 %1
-geometry +5+10 %2 -geometry +35+30 -composite %3
exit /B %ERRORLEVELY,

Content of the batch file under Linux:

#!/bin/bash

convert -size 100x100 $1 -geometry +5+10 $2 -geometry +35+30 -composite $3

Note: The two examples deliver the same file as the result. The exit command is used in the
Windows batch files to return the exit code of “convert” to the call.

Here is another example of an advanced conversion script that can be called using the pa-
rameters “Source file", “Image width” and “Target file” and that only minimizes wider images
to the specified width. The script also writes a log file for the conversion, whereby error
messages from Image Magick are also written to the log file:

set MONTH_YEAR=}DATE:~-8,

echo Converting %1 to %3 (width: %2) >> convert}MONTH_YEARJ.log

convert.exe %1 -resize "%~2>" %3 2>> convert%MONTH_YEARY.log

echo Conversion finished with exit code %ERRORLEVEL), >> convert}MONTH_YEARJ,.log
exit /B %ERRORLEVELY

And here is the version for Linux (Bash):

#!/bin/bash

FULLDATE=‘date +/c¢
MONTH_YEAR=‘date +%m.%Y*
LOGFILE="convert.$MONTH_YEAR. log"

<Command>convert.bat</Command> <0

<Command>convert2.bat</Command> <

echo "$FULLDATE: Converting $1 to $3 (width: $2)">>$LOGFILE

convert "$1" -resize "$2>" "$3" 2>>$LOGFILE

EXITCODE="¢7"

echo $FULLDATE: Conversion finished with exit code $EXITCODE>>$LOGFILE
exit $EXITCODE

4.4.2.2.4 KExtractBlobTextjob
e Category/categories: <none>

e Name: Convert blob to a text attribute. Using the batch file specified on the “Index con-
figuration -> External full text filter” tab in the Admin tool, the text content is extracted
from the blob attribute and stored in a new attribute of the specified text attribute type.
The other parameters available for the job are the topic in which the extract is to be cre-
ated, and, if the specified text attribute is multilingual, the language of the attribute to
be displayed. This job is inserted by a trigger, which should be set up to react to the cre-
ation and modification of blob attributes. The KScript rule to be specified in this process
is “ExtractBlobText,” which permits the parameters described above to be specified.

4.4.2.2.5 KQueryjob

e Category(s): query
e Name: Search

Used to outsource the running of simple and expert queries to a Job-Client. Is equipped and
executed to suit the needs of the examined search.

4.4.2.2.6 KScriptjob
e Category (categories): script
e Name: KScriptJob

You can use the KScriptjob to call KScripts from KScript so that they are executed on the
Job-Client. Here, the job is generated by the KScript rule “Scriptjob” which is equipped with
the script and the start objects calculated at this time as the starting point and enters the
resulting KScriptJob into the job queue. In this way, work can be distributed asynchronously
to Job-Clients. This is used, for example, to externalize activities that would block the calling
client for too long in a sequential execution.

To do this, the parameter "scriptName" must refer to the registration key of a script stored in
the network. The script is automatically encapsulated in a transaction.

4.4.2.3 Example for an ini file

volume=MyNetwork
host=localhost

jobPools=query, index
cacheDir=jobcache
logfile=jobclientOl.log
maxMemory=400
name=jobclientO1

4.4.2.4 Performance optimizations
Pre-load

When starting up, Job-Clients can pre-load selectable structures if configured accordingly.
This operation increases the amount of memory that the Job-Client requires, but it also en-
ables the Job-Client to run more quickly.

The entry keepClusterIDs must be specified in the ini file of the Job-Client. Possible values
for this entry are:

e index - In the settings for pluggable indexers, there is an option to set the check-mark
for Job-Client to load index into base memory. For activated indexers, a part of their index
structure is loaded.

e protoOfSizes - The number of individuals for each concept is already determined at the
start.

e accessRights - The root object of the rights system is loaded into the memory.

Please note: For the entry useProxyValueHolder the value must be set to false. Otherwise,
the Job-Client will attempt to send RPCs (requests to which the mediator can respond) to the
mediator. The client however, should load the clusters itself and possibly retain them in its
memory.

Note: To improve performance, it also helps to activate the hard drive cache for the Job-
Client.

Example of entries in the ini file:

[Default]

useProxyValueHolder=false
keepClusterIDs=index,proto0fSizes,accessRights
cacheDir=jobcache

maxCacheSize=1000

4.5 Blob service

4.5.1 Introduction

The blob service is used to store the data of large files outside the semantic network but links
to the file attributes in which these file contents are supposed to be stored. This has several
advantages:

e It has the effect that the semantic network only receives the semantic information that
is based on files and remains easy to backup and transfer.

e Storage locations of the semantic network and file contents can be configured differ-
ently.

e Several blob services can be connected to one semantic network, so that one storage
location can be provided for each attribute definition.

The following chapter explains how to set up and operate blob services.

4.5.2 Configuration

To specify under which network address (host and port) the blob service is supposed to be
reachable, the “interfaces” option must be entered in the file “blobservice.ini.” There are two
options here:

1. The blob service is supposed to be reachable only from the computer on which the blob
service is installed.
2. The blob service is supposed to be reachable also by other computers via the network.

Here is an a configuration example for variant 1, whereby the blob service port (30000) can
be selected freely.

interfaces=http://localhost:30000

To configure variant 2, you need to enter the IP address of the network adapter via which the
blob service is supposed to be reachable from the network instead of “localhost.” If you want
the blob service to be reachable via all network adapters that are active on the computer,
you have to enter “0.0.0.0" as the IP address. Example:

interfaces=http://0.0.0.0:30000

If the blob service is address via the network, communication should be encrypted. En-
crypted communication using HTTPS can also be configured in the “interfaces” option by
replacing “http://" with “https://." Example:

interfaces=https://0.0.0.0:30000

In relation to encrypted communication, see also the next chapter called SSL certificates.

To ensure operation, the DLL of the SQLite framework "sqlite3.dll" must also be available
in the working directory. Without this DLL, the internally required administration structure
cannot be generated and maintained.

Following that, the blob service can be started to make it available immediately.

To link the blob service with a blob store in the semantic graph database, the Admin tool
offers the required tools under “System configuration - Blob storage:”

00O
000
o I J

neu3-copy1 Blob-5peicherung
Datenbestand Externe Speicher fir Dateiattribute:
Developer

Information Binary Store (khpbnnjnhbalbbkm+ID0_312221649)
Systemkonfiguration

Benutzer

Blob-5Speicherung

Komponenten

Lizenz | Anlegen l|| Laschen ©

Zugangsberechtigung
Wartung
XML-Import/-Export

URLs |2 | ¥l Intern 3

Loschbare Dateien | 0 | | Lgschen 8

3 Hinzufiigen

Externe Speicher im Blob-Service:

ékhpbnnjnhbalbbkm+lDD_31 22

4 Aktualisieren

Clicking on “Create” (1) creates a new logical store. After that, enter the URL (2) of the blob
service specified in the ini file and then click on “Add” (3). The newly created blob store for
external storage of file attributes is then linked to the blob service, which you can check by
clicking on “Update” (4) in the lower display area.

You can also specify a comma-separated list of alternative URLs in the “URLs" area (2). For
alternative URLs, i-views prefers a connection via a loop-back device where possible.

The “Deletable files” area (7) displays the number of files that are no longer required from
the semantic network perspective. Use “Delete" (8) to de-reference them in the blob service
and remove them if appropriate.

The indicator “Internal” (9) shows that this is a store that is integrated into a mediator. Inter-
nal stores are automatically transferred with the volume during a volume transfer (upload,
download, copy, backup, recover).

If you want to remove the link between a blob store and a blob service, select the desired
blob store in the list “External stores in the blob service” and click “Remove” (5). Following
that, you can select the blob store in the top section “External storage for file attributes” and
then click “Delete” (6) to remove it completely. Alternatively, you can specify a new URL to link
the blob store to another blob service.

PLEASE NOTE!

By removing a blob store s link to a blob service, all files stored therein are lost!

4.5.3 SSL certificates

To configure the HTTPS connection, the certificate and the private key must be stored.

The certificate must be stored under certificates/server.crt.

Q00O

—

o I

The private key must be stored under private/server.key. Make sure that server.key is avail-
able as an RSA key, i.e. the first line of the file must be

—-BEGIN RSA PRIVATE KEY—-

. If the key is in a different format, it has to be converted. Using OpenSSL, this is possible e.g.
by means of "openss/ rsa -in input.key -out private/server.key -outform PEM".

4.6 Install as an OS service

Itis possible to set up the service programs as OS services in the various supported operating
systems.

For Unix-type operating systems, it is necessary to use the mechanisms supported by the
relevant platform; you will find several examples in the version-independent manual for i-
views.

For MS-Windows, the services offer the parameters -installAsService NAME and -uninstallService

NAME , which can be used to set up or remove a Windows-managed service from an admin-
istrative shell. During the installation, all the parameters specified after the service name are
transferred to the installed service as command line parameters. Example:

bridge -installAsService iviews-bridge-rest -inifile bridge-rest.ini
sets up a service with the name “iviews-bridge-rest”, which is given
PFAD\bridge.exe bridge.exe -serviceName iviews-bridge-rest -ini bridge-rest.ini

as its call line.

	Knowledge-Builder
	Basics
	Building blocks
	Type hierarchy - Inheritance
	Create and edit objects
	Graph editor

	Definition of schema / model
	Define types
	Relation types and attribute types
	Model changes
	Representation of schema in the graph editor
	Metamodeling and advanced constructs
	Indexing

	Searches / Queries
	Structured queries
	Simple Search / Fulltext search
	Search pipeline
	Model "hit"
	The search in the knowledge builder
	Special cases

	Folder and registration
	Import and export
	Mapping of data sources
	Attribute types and formats
	Configuration of the export
	RDF-import/export
	Restore deleted individuals from a back up
	Transport selected schema

	Access rights and triggers
	Check of access right
	Trigger
	Filter types
	Operation parameters
	Operations
	Test surrounding

	View Configuration
	Concept
	Menus
	Actions
	View configuration elements
	Panels
	Sessions
	Knowledge Builder configuration
	Style
	Detector system for determining the view configuration

	JavaScript API
	Introduction
	Examples
	Modules
	Debugger
	API extensions

	REST services
	Configuration
	Services
	Resources
	CORS
	OpenAPI documentation

	Reports and printing
	Create print templates
	Create print templates for lists
	Document format conversion with Open / LibreOffice

	Tagging
	Configuration
	View configuration
	Tagging by Script
	Required software

	Development support
	Dev tools
	Dev service

	Rule engine
	What are rules?
	Where can rules be configured?
	How can rules be configured?
	Testing rules
	Executing rules

	Admin Tool
	Admin tool configuration
	Launch window
	Server
	Knowledge network
	Information
	Manage, New and Next
	End

	Create a new knowledge network
	Server
	New knowledge network
	Password (mediator)
	License
	User name
	Password (user)
	Ok and abort

	Server administration
	Network overview
	Message field
	Menu line

	Individual network administration
	User authentication
	Individual network administration window

	View Configuration Mapper
	Introduction
	Configuration
	View configurations for the View Configuration Mapper
	Login configuration
	The View Configuration Mapper component
	Create a project with the View Configuration Mapper
	Modify templates
	Operate the frontend

	Actions
	Viewconfig elements
	General
	Alternative
	Group
	Hierarchy
	Properties
	Property
	Edit
	Table
	Search
	Graph configuration
	Text
	Image
	Script generated HTML
	Scriptgenerated view

	Bookmarks and history
	Bookmark Resource
	Link to Panels
	In-app navigation with bookmarks

	Plugins
	vcm-plugin-calendar
	vcm-plugin-chart
	vcm-plugin-html-editor
	vcm-plugin-maps
	vcm-plugin-markdown
	vcm-plugin-timeline
	vcm-plugin-net-navigator

	Special configuration
	Display change history in a web frontend

	Installation
	Extension project
	Development environment
	Technical details

	i-views services
	General
	Command line parameter
	Configuration file

	Mediator
	General
	System requirements
	Operating modes
	Installation
	Operation

	Bridge
	General
	Common command line parameters
	Configurationfile "bridge.ini"
	REST bridge
	KEM bridge
	KLoadBalancer

	Jobclient
	General
	Configuration of the Jobclient

	Blob service
	Introduction
	Configuration
	SSL certificates

	Install as an OS service

