

i-views 5.3

i-views 5.3

2/534

Contents

1 Knowledge-Builder 7

1.1 Basics . 7

1.1.1 Building blocks . 7

1.1.2 Type hierarchy - Inheritance . 10

1.1.3 Create and edit objects . 12

1.1.4 Graph editor . 15

1.2 Definition of schema / model . 24

1.2.1 Define types . 24

1.2.2 Relation types and attribute types . 31

1.2.3 Model changes . 43

1.2.4 Representation of schema in the graph editor 46

1.2.5 Metamodeling and advanced constructs 48

1.2.6 Indexing . 57

1.3 Searches / Queries . 68

1.3.1 Structured queries . 69

1.3.2 Simple Search / Fulltext search . 85

1.3.3 Search pipeline . 90

1.3.4 Model "hit" . 103

1.3.5 The search in the knowledge builder . 105

1.3.6 Special cases . 105

1.4 Folder and registration . 108

1.5 Import and export . 110

1.5.1 Mapping of data sources . 110

1.5.2 Attribute types and formats . 150

1.5.3 Configuration of the export . 152

1.5.4 RDF-import/export . 154

1.5.5 Restore deleted individuals from a back up 164

1.5.6 Transport selected schema . 167

1.6 Access rights and triggers . 167

1.6.1 Check of access right . 167

1.6.2 Trigger . 177

1.6.3 Filter types . 185

1.6.4 Operation parameters . 194

1.6.5 Operations . 201

i-views 5.3

3/534

1.6.6 Test surrounding . 207

1.7 View Configuration . 210

1.7.1 Concept . 212

1.7.2 Menus . 218

1.7.3 Actions . 221

1.7.4 View configuration elements . 244

1.7.5 Panels . 283

1.7.6 Sessions . 290

1.7.7 Knowledge Builder configuration . 290

1.7.8 Style . 296

1.7.9 Detector system for determining the view configuration 298

1.8 JavaScript API . 301

1.8.1 Introduction . 301

1.8.2 Examples . 304

1.8.3 Modules . 317

1.8.4 Debugger . 319

1.8.5 API extensions . 320

1.9 REST services . 322

1.9.1 Configuration . 323

1.9.2 Services . 323

1.9.3 Resources . 323

1.9.4 CORS . 332

1.9.5 OpenAPI documentation . 332

1.10 Reports and printing . 337

1.10.1 Create print templates . 337

1.10.2 Create print templates for lists . 344

1.10.3 Document format conversion with Open / LibreOffice 346

1.11 Tagging . 347

1.11.1 Configuration . 348

1.11.2 View configuration . 355

1.11.3 Tagging by Script . 356

1.11.4 Required software . 357

1.12 Development support . 357

1.12.1 Dev tools . 357

1.12.2 Dev service . 357

1.13 Rule engine . 357

i-views 5.3

4/534

1.13.1 What are rules? . 357

1.13.2 Where can rules be configured? . 358

1.13.3 How can rules be configured? . 358

1.13.4 Testing rules . 366

1.13.5 Executing rules . 368

2 Admin Tool 368

2.1 Admin tool configuration . 368

2.2 Launch window . 369

2.2.1 Server . 369

2.2.2 Knowledge network . 369

2.2.3 Information . 369

2.2.4 Manage, New and Next . 371

2.2.5 End . 371

2.3 Create a new knowledge network . 371

2.3.1 Server . 371

2.3.2 New knowledge network . 372

2.3.3 Password (mediator) . 372

2.3.4 License . 372

2.3.5 User name . 372

2.3.6 Password (user) . 373

2.3.7 Ok and abort . 373

2.4 Server administration . 373

2.4.1 Network overview . 374

2.4.2 Message field . 374

2.4.3 Menu line . 374

2.5 Individual network administration . 376

2.5.1 User authentication . 376

2.5.2 Individual network administration window 377

3 View Configuration Mapper 405

3.1 Introduction . 405

3.2 Configuration . 405

3.2.1 View configurations for the View Configuration Mapper 406

3.2.2 Login configuration . 416

3.2.3 The View Configuration Mapper component 416

3.2.4 Create a project with the View Configuration Mapper 419

i-views 5.3

5/534

3.2.5 Modify templates . 419

3.2.6 Operate the frontend . 420

3.3 Actions . 420

3.4 Viewconfig elements . 422

3.4.1 General . 422

3.4.2 Alternative . 422

3.4.3 Group . 423

3.4.4 Hierarchy . 425

3.4.5 Properties . 429

3.4.6 Property . 431

3.4.7 Edit . 435

3.4.8 Table . 437

3.4.9 Search . 445

3.4.10 Graph configuration . 461

3.4.11 Text . 463

3.4.12 Image . 464

3.4.13 Script generated HTML . 464

3.4.14 Scriptgenerated view . 465

3.5 Bookmarks and history . 466

3.5.1 Bookmark Resource . 466

3.5.2 Link to Panels . 469

3.5.3 In-app navigation with bookmarks . 472

3.6 Plugins . 472

3.6.1 vcm-plugin-calendar . 473

3.6.2 vcm-plugin-chart . 473

3.6.3 vcm-plugin-html-editor . 476

3.6.4 vcm-plugin-maps . 478

3.6.5 vcm-plugin-markdown . 479

3.6.6 vcm-plugin-timeline . 481

3.6.7 vcm-plugin-net-navigator . 483

3.7 Special configuration . 486

3.7.1 Display change history in a web frontend 486

3.8 Installation . 489

3.9 Extension project . 489

3.9.1 Development environment . 490

3.9.2 Technical details . 490

i-views 5.3

6/534

4 i-views services 490

4.1 General . 490

4.1.1 Command line parameter . 490

4.1.2 Configuration file . 490

4.2 Mediator . 495

4.2.1 General . 496

4.2.2 System requirements . 496

4.2.3 Operating modes . 497

4.2.4 Installation . 500

4.2.5 Operation . 506

4.3 Bridge . 510

4.3.1 General . 510

4.3.2 Common command line parameters . 511

4.3.3 Configurationfile "bridge.ini" . 512

4.3.4 REST bridge . 513

4.3.5 KEM bridge . 518

4.3.6 KLoadBalancer . 519

4.4 Jobclient . 520

4.4.1 General . 520

4.4.2 Configuration of the Jobclient . 521

4.5 Blob service . 531

4.5.1 Introduction . 531

4.5.2 Configuration . 532

4.5.3 SSL certificates . 533

4.6 Install as an OS service . 534

i-views 5.3

7/534

1 Knowledge-Builder

1.1 Basics

When using i-views, databases work the way people think: simple, agile and flexible. That

is why in i-views many things are different than relational databases: we do not work with

tables and keys, but with objects and the relationships between them. Modelling of the data

is visual and oriented towards examples so that we can also share it with users from the spe-

cialist departments.

With i-views we do not set-up pure data storage but intelligent data networks which already

contain a lot of business logic and with which the behaviour of our application may, to a large

extent, be defined. To this end we use inheritance, mechanisms for conclusions and for the

definition of views, along with a multitude of search processes which i-views has to offer.

Our central tool is the knowledge builder, one of the core components of i-views. Using the

knowledge builder we can:

• define the scheme but also establish examples and, above all, visualise
• define imports and mappings from a data source
• phrase requests, traverse networked data, process strings and calculate proximities
• define rights, triggers and views

All these functions are the subject of this documentation. One continuous example is a se-

mantic network surrounding music, bands, songs, etc.

1.1.1 Building blocks

The basic components of modelling within i-views are:

• specific objects

• relationships

• attributes

• types of objects

• types of relationships

• types of attributes

Examples for specific objects are John Lennon, the Beatles, Liverpool, the concert in Lither-

land Town Hall, the football world cup in Mexico in 1970, the leaning tower of Pisa, etc.:

i-views 5.3

8/534

We can link these specific objects together through relationships: "John Lennon is a member

of the Beatles", "The Beatles perform a concert in Litherland Town Hall".

Additionally, we have introduced four types here: specific objects always have a type, e.g.

the type of persons, type of the cities, the events or the bands - types which you may freely

define in your data model.

i-views 5.3

9/534

The main window of i-views: on the left-hand side the types of objects, on the right-hand side the

respective, specific objects - here we can also see that the types of the i-views networks are within

a hierarchy. You will find out more about the type of hierarchy in the next paragraph.

Even the relationships have different types: between John Lennon and the Beatles there is

the relationship "is member of"; between the Beatles and their concert the relationship could

be called "performed at" - if we want to generalise more, "participates in" is perhaps a more

practical type of relationship.

The same applies for attributes: in the case of a person thesemay be the name or the date of

birth. Specific persons (objects of the type ’person’) may then have name, date of birth, place

of birth, address, colour of eyes, etc. Events may have a location and a time span. Attributes

and relations are always defined with the object itself.

i-views 5.3

10/534

1.1.2 Type hierarchy - Inheritance

We can finely or less finely divide types of objects: we can put the football world cup in 1970

into the same basket as all the other events (the book fair in 2015, the Woodstock festival,

etc.), then we only have one type called "event" or we differentiate between sport events,

fairs, exhibitions, music events, etc. Of course, we can divide all these types of events even

finer: sport events may, for example, be differentiated by the types of sports (a football

match, a basket ball match, a bike race, a boxing match).

In this manner we obtain a hierarchy of supertypes and subtypes:

The hierarchy is transitive: when we ask i-views about all events, not only all specific ob-

jects are shown which are of type event, but also all sports events and all bike races, boxing

matches and football matches. Hence, since the type "boxing match" is not only a subtype of

"sport event", i-views will reject a direct supertype / subtype relationship between event and

boxing match - with a note that this connection is already known.

The hierarchical structure does not necessarily have to have the structure of a tree - a type

of object may also have several upper types. However, an object may only have one type of

object.

If we then wish to join the aspects of a concert and major event we cannot do this in the

specific concert with Paul McCartney because we need the type of object "stadium concert"

in order to do this:

i-views 5.3

11/534

Type hierarchy with multiple inheritance

The affiliation of specific objects with a type of object is also expressed as a relation in i-views

and may as such be queried:

When do we differentiate between types at all? Types do not only differ in icon and colour -

their properties are also defined in the types and when queried, the types can also easily be

filtered. The inheritance plays a major role in all these questions: properties are inherited,

icons and colours are inherited and when, in a query, we say that we wish to see events, all

objects of the subtypes are also shown in the results.

i-views 5.3

12/534

Inheritance makes it possible to define types of relations (and types of attributes) further up in the

hierarchy of the object type and hence use them for different types of objects (e.g. for bands and

other organisations.

1.1.3 Create and edit objects

Creating specific objects

Specific objects (in the knowledge builder they are called "instances") may be created every-

where within the knowledge builder where types of objects can be seen. Based on the types

of objects, objects can be newly created via the context menus.

i-views 5.3

13/534

An object can be created by means of the button "new" and using the named entered

In the main window below the header there is the list of specific objects already available.

In order that objects cannot inadvertently be created twice, the name of the object can be

keyed into the search button in the header. The search does not, by default, differentiate

between upper and lower case and the search termmay be cut off left and right (supplement

by placeholders "*" and "?"):

Editing objects

After entering and confirming the name of the object, further details for the object created

may be keyed into the editor. The objectmay be assigned attributes, relations and extensions

by using the respective buttons.

i-views 5.3

14/534

When editing an object we can, in addition to linking it to another object, also generate the

target of the link if the object does not already exist.

For example, members of a music band are documented completely. Via the relation, we

want to link themember Ringo Starr with the object "The Beatles". If it is not yet clear whether

the object Ringo Starr is already documented in i-views you can use the search button to

ascertain this,

or via the icon button, select ’Choose relation target’ from a searchable list with all

feasible targets of relation.

i-views 5.3

15/534

Deleting the relation has a member may be accomplished in two different ways:

1. Delete in the context menu using the button further actions and the option ’delete’.

2. With the cursor over the button further actions and holding down the Ctrl key.

The target object of the relation itself will not be deleted as a result of this however. If an ob-

ject has to be deleted this is done via the button in the main window or via the context

menu directly on this object.

Objects may also be created using the graph editor. This process is described in the following

paragraphs.

1.1.4 Graph editor

1.1.4.1 Introduction graph editor

By using the graph editor, knowledge networks with their objects and links can be depicted

graphically. The graph editor may be opened on a selected object using the graph button:

i-views 5.3

16/534

The graph always shows a section of the network. Objects from the graph may be displayed

and hidden and you can navigate through the graph.

In the graph editor not only a section of the network may be displayed: objects and relations

may be edited as well.

On the left-hand side of a node there is a drag point for interaction with the object. By

double-clicking on the drag point all user relations of the object will be displayed or hidden.

Linking objects via a relation is carried out in the graph editor as follows:

i-views 5.3

17/534

1. Position the cursor over the drag point to the left of the object with the left mouse

button.

2. Drag the cursor in a held down position to another object (drag & drop). If several

relations are available for selection, a list will appear with all feasible relations. If there

is only one feasible relation between the two objects, this will be selected and no list will

be shown.

In order to display objects in the graph editor there are different options:

• Objects may be dragged from the hit list in the main window to the graph editor window
using drag & drop.

• If the name of the object is known it can be selected via the context menu using the
function "show individual".

If an object is to be hidden from the graph editor, it may be removed from there by clicking it

and dragging it from the graph editor holding down the Ctrl key. In doing so, there will be no

changes in the data: the object will exist unchanged within the semantic network but it will

not be displayed anymore in the current graph editor section.

New objects may also be created in the graph editor. To do this we drag & drop the type of

object from the legend on the left-hand side of the graph editor to the drawing area:

i-views 5.3

18/534

If there are no types of objects to be seen in the legend you can search for them using a right

mouse click in the legend area. Following this, the name of the object will be given.

The editor will re-appear in which the possible relations, attributes and enhancements for

the object can be edited.

1.1.4.2 Operations on objects in the graph editor

The name can be changed later on in the Admin tool or the Knowledge Builder. The user

created in this way automatically has graph administrator rights. Right-clicking the object in

the context menu allows other operations to be executed. For the most part, this context

menu provides the same functions as the form editor, however also includes other graph

editor-specific components.

i-views 5.3

19/534

The following graph editor-specific functions are available in this context menu:

• Hide node: The node can be hidden here.
• Navigation - Extensions: Opens the extensions for an object.
• Navigation - Calculated relations: Opens the calculated relations for an object.
• Navigation - Fix: Fixes the position of a node in the graph editor, so that it is not repo-
sitioned even when the layout is restructured. The fixed node can be undone using the

Release option.

• Navigation - Shortest path

1.1.4.3 View

The menu "View" provides many more functions for the graphic illustration of objects and

types of objects:

i-views 5.3

20/534

Default settings: Opens the menu with the default settings for the graph editor. This

menu is also available in: global setting window -> register card "personal" -> graph.

There you can set whether attributes, relations and enhancements should appear in a small

mouse-over-window above the object and how many nodes at a maximum will be visible in

one step:

• Show bubble help with details: if the mouse pointer stops on one node the details of
the first ten attributes and relations will be displayed in a yellow window if bubble help

was previously activated. (check "show bubble help with details" in the global setting

window register card "personal" graph)

• Max nodes: if a node/object has a lot of adjacent objects it often doesn’t make sense to
show them all by clicking on the drag point.

Change Background: The background color can be changed or a picture can be set as back-

ground.

Auto hide nodes: automatically hides surplus nodes as soon as the number of desired

nodes is exceeded and shown. The number can be set in the input field "max. nodes" in

the toolbar:

Auto layout nodes: automatically implements the layout function for newly displayed

nodes.

Fix all labels: using this option the names of all relations are always visible, not only when

rolled over with the mouse. Alternatively, the description may be fixed directly in the context

menu of a relation.

Show internal names: displays the internal name of types of in brackets

recover hidden edges: all edges hidden by means of the context menu are shown again

The window of the graph editor and the main window of the knowledge builder provide even

more menu items which may offer support when modelling the knowledge network.

On the left-hand side of the graph editor window there is the legend of the types of objects.

i-views 5.3

21/534

This legend shows the types of objects for the specific objects on the right-hand side.

By dragging & dropping an entry from the legend into the drawing area you can create a new

specific object of the corresponding type.

Via the context menu for the legend entries all specific objects can be hidden from the image.

Here you can also "hold" legend entries and add new types of objects to the legend (regard-

less of whether specific objects of this kind are represented in the image).

If the drag point has been clicked to show the adjacent objects a selection list will appear

instead of the objects.

i-views 5.3

22/534

1.1.4.4 Bookmarks and history

The menu graph contains more functions for the graph editor:

Bookmarks: parts of the knowledge network or "sub-networks" can be saved as bookmarks.

The objects are saved in the same position as they are placed in the graph editor.

i-views 5.3

23/534

When a bookmark is created it may be given a name. All nodes contained in the bookmark

are listed in the description of the bookmark.

Bookmarks, however, are not data backups: objects and relations which were deleted after

a bookmark was saved are also no longer available when the bookmark is shown.

History: using the buttons "reverse navigation" and "restore navigation" elements of a (sec-

tion of) a knowledge network may be hidden again in the order of sequence in which they

were shown (and vice versa). Furthermore, these buttons reverse the auto layout. The but-

tons can be found in the header of the graph editor window or in the menu "graph".

Layout: the layout function enables you to position nodes automatically when many

nodes are not allowed to be positioned manually. When more nodes are displayed they will

also be automatically positioned in the graph via the layout function.

i-views 5.3

24/534

Copy into the clipboard: this function creates a screenshot of the current contents of the

graph editor. This image may then be inserted into a drawing or picture processing pro-

gramme, for example.

Print: opens the dialogue window for printing or for generating a pdf file from the displayed

graph.

Cooperative work: this function enables other users to work on the graph mutually and

simultaneously. All changes and selections of a user on the graph (layout, showing/hiding

nodes, etc.) will then be shown to all other users synchronously.

1.2 Definition of schema / model

1.2.1 Define types

The principle of the type hierarchy was already presented in Chapter 1.2. If new types are to

be created this is always done as a subtype of a type which already exists. Creating subtypes

can be carried out either via the context menu Create -> Subtype

or in the main window using the tab "Subtypes" above the search field and the tab "new":

i-views 5.3

25/534

Changing the type hierarchy

In order to change the type hierarchy we have the tree of object types in the main window

and the graph editor.

In the hierarchy tree of the object editor we will find the option "Removing supertype x from

y" in the context menu.

i-views 5.3

26/534

Using this option we can remove the currently selected object type from its position in the

hierarchy of the object types and with drag & drop we can move an object type to another

branch of the hierarchy. If we hold down the Ctrl key when using the drag & drop function

the object type will not be moved but additionally assigned to another object type. What still

applies is: the hierarchy of the object type allows multiple assignments and inheritance.

i-views 5.3

27/534

Configuring object types with properties

In the simplest case we define relations and attributes with an object type such as "band" or

"person" and thus make them available for the specific objects of this type. (For example the

year and location the band was established, date of birth and gender of people, location and

date of events.)

If the object type for which the properties are defined has more subtypes the principle of

inheritance will take effect: properties are now also available for the specific objects of the

subtypes. Example: as a subtype of an organisation, a band inherits the possibility of having

people as members. As a subtype of "person or band" the band inherits the possibility of

taking part in events:

i-views 5.3

28/534

The editor for the object type "band" with directly defined and inherited relations there.

i-views 5.3

29/534

With a specific object the inherited properties are available without further ado and the dif-

ference goes without notice.

Defining relations

When dealing with relations, the following basic principle governs at i-views: a relation cannot

only be unidirectional. If we know of a relation for the specific person "John Lennon" to be

"is a member of the band The Beatles" it then implies for the Beatles the contents "it has a

member called John Lennon". These two directions cannot be separated. Therefore, i-views

demands from us the types of source and target of the relations when creating new relation

types - in our example that would be person and band as well as differing names: "is member

of" and "has member".

i-views 5.3

30/534

Hence the relation is defined and can now be moved between objects using drag & drop.

Defining attributes

When defining new attribute types, i-views needs, above all, the technical data type as well

as the name. The following technical data types are available:

Type of data What do the values look

like?

Example (music network)

Attribute abstract attribute, without

an attribute rating

Selection freely definable selection

list

design of a music instru-

ment (hollowbody, fretless,

etc.)

Boolean »yes« or »no« music band still active?

Data file random external data file

which will be imported into

the knowledge network as a

»blob«

WAV file of a music title

Date date dd.mm.yyyy (in the

German language setting)

publication date of a record-

ing medium

Date and time date and time dd.mm.yyyy

hh:mm:ss

start of an event, e.g. con-

cert

Colour value colour selection from a

colour palette

Flexible time month, month + day, year,

time, time stamp

approximate date when a

member joined a band

i-views 5.3

31/534

Floating point number numerical value with a ran-

dom number of decimal

places

price of an entrance ticket to

an event

Integer numerical value without

decimal places

runtime of a music title in

seconds

Geographical position geographical coordinates in

WGS84 format

location of an event

Band without attribute rating,

serves as a medium for

meta attributes to be

grouped

Internet link link on a URL website of a band

Interval date interval: interval of

numbers, character string,

time or date

period of time between the

production of an album and

its publication

Password per attribute entity and

password a clearly hashed

value (Chaum-van Heijst-

Pfitzmann) which is only

used to validate the pass-

word

Reference to [...] reference to parts of the

network configuration:

search, diagram of a data

source, scripts and files -

is used for example in the

REST configuration

Character string random sequence of al-

phanumeric characters

review text to a recording

medium

Time time hh:mm:ss duration of an event

The intention of using these data types is not to define everything as character strings. Tech-

nical data types in a defined format later offer special feasibilities of inquiring and compar-

ing. For example, numerical values may be compared to larger or smaller values within the

structured queries and a proximity search can be defined for geographic coordinates, etc.

1.2.2 Relation types and attribute types

Relation types and attribute types (in brief property types) are always properties of specific

objects.

i-views 5.3

32/534

1.2.2.1 Create a new relation type

Via the button "add relation" in the object editor the editor starts to create a new relation

type.

Editor for creating a new relation type (see also Chapter 2.1 Defining types)

Name of new relation: names for relation types may be chosen freely within i-views but

should be selected under the premise of a comprehensible data model. The following con-

vention may be of help for this: the name of the relation is phrased in such a manner that

the structure [name of the source object] [relation name] [name of the target object] results

in a comprehensible sentence:

[John Lennon] [is a member of] [The Beatles]

Furthermore it is helpful when the opposite direction (inverse relation) takes on the word

selection of the main direction: "has a member / is a member of".

Domain: here we define by which object types the relation has to be created: one object type

forms the source of the relation and another object type the target. The tareget object type,

in turn, forms the definition area of the inverse relation. To simplify matters, when creating

you may only enter one object type at this stage. Afterwards, further object types may be

defined in the editor for the relation type (see below).

1.2.2.2 Create a new attribute type

Via the button "define new attribute" in the object editor the editor starts to create a new

attribute type:

i-views 5.3

33/534

Two-stage dialogue for creating a new attribute type

In the left-hand window the format of the attribute type is defined (date, floating point num-

ber, character string, etc.)

The following technical data types are available:

Type of data What do the values look

like?

Example (music graph)

Attribute abstract attribute, without

an attribute rating

Boolean »yes« or »no« music band still active?

Choice string values which can be

selected from a drop-down

menu

role; design of a music in-

strument (hollowbody, fret-

less, etc.)

Colour value colour selection from a

colour palette

Date date dd.mm.yyyy (in the

German language setting)

publication date of a record-

ing medium

Date and time date and time dd.mm.yyyy

hh:mm:ss

start of an event, e.g. con-

cert

i-views 5.3

34/534

File random external data file

which will be imported into

the Knowledge Graph as a

»blob«

WAV file of a music title

Flexible time month, month + day, year,

time, time stamp

approximate date when a

member joined a band

Float (floating point num-

ber)

numerical value with a ran-

dom number of decimal

places

price of an entrance ticket to

an event

geo position (geographical

position)

geographical coordinates in

WGS84 format

location of an event

Group without attribute rating,

serves as a medium for

meta attributes to be

grouped

Integer numerical value without

decimal places

runtime of a music title in

seconds

Internet shortcut link on a URL website of a band

Interval date interval: interval of

numbers, character string,

time or date

period of time between the

production of an album and

its publication

Password per attribute entity and

password a clearly hashed

value (Chaum-van Heijst-

Pfitzmann) which is only

used to validate the pass-

word

Reference to [...] reference to parts of the

Knowledge Graph configu-

ration: search, diagram of a

data source, scripts and files

- is used for example in the

REST configuration

String (character string) random sequence of al-

phanumeric characters

review text to a recording

medium

Time time hh:mm:ss duration of an event

After selecting and confirming the attribute type it can be further specified with the name of

the attribute in the subsequent dialogue.

Supertype: here it is defined at what level in the hierarchy the attribute type should be

placed.

i-views 5.3

35/534

May have multiple occurences: attributes may occur once or more than once, depending

on the attribute type: a person only has one date of birth but may, for example, have several

academic titles at the same time (e.g. doctor, professor and honorary consul).

1.2.2.3 Edit details

The dialogs for creating new attribute and relation types are limited views of the attribute

and relation type editors. To edit details of relations and attributes, editors must receive and

enhanced scope of functions.

You get to these two editors via the listing of relations and attributes on the “Schema” tab of

the object editor:

Alternatively, you can use the hierarchy tree on the left side of the main window for access.

The hierarchies for relation and attribute types are located underneath the object types. The

editors are started by right-clicking on the relation or attribute to be edited in the context

menu and choosing “Edit” .

i-views 5.3

36/534

Next, we will look at the details of the definition of properties by using the relation type editor

as the example (the attribute type definition is a subset thereof):

Defined for: Here we can subsequently check for which object types the relation can be

created. Relations can be defined between several objects and thus have several sources

and targets.

In this way, we can allow persons and bands to be authors of a song in the schema or as-

signed a location - even if they do not have a super-type in common.

We can use the “Add” button to add additional objects. We can use “Remove” to prevent this

object type and all its objects from entering into this relation.

“Change” makes it possible to replace an object type. Already existing relations are then

deleted by the system. If there are relations to be deleted, a confirmation prompt appears

before the change is made.

Target: Here you can change retrospectively for which types of objects the relation can

be used. To change the target object type you have to switch to the inverse relation type:

The button for changing bears the label of the inverse relation type. After clicking on the

i-views 5.3

37/534

button, the inverse relation appears in the editor and can be edited in the same way as the

previous relation.

Abstract: If we want to define a relation which is only used for grouping but is not supposed

to define concrete properties, we define it as “abstract.”

Example: If the relation “Writes song” is defined as abstract, this means: if we create songs

and their relation to artists and bands, we can now enter specific information (who wrote the

lyrics, who wrote the music). The unspecified relation “Writes song” cannot be created in the

actual data but can only be used for queries.

May have multiple occurrences: One characteristic of relations is whether they may have

several occurrences. For example: the relation “Has place of birth” can only occur once for

each person whereas e.g. the relation “is member of” can occur several times for a person.

Hence, logical matters can be modeled precisely. For example, musicians as persons can

only have one place of birth but (at the same time) can also be members of several bands.

Whether the relation can occur multiple times is specified independently for each direction

of the relation: A person can only have one place of birth but the place can be the place of

birth of several persons.

The option can only be deactivated if the relation does not occur several times in the actual

data set. If it occurs several times, the system cannot decide automatically which of the rela-

tions is to be removed.

Mix-in: Mix-ins are described in the Extension chapter.

Main direction: Every relation has an opposite direction. In the core, the two directions are

equivalent, but there are two places where it makes sense to determine a main direction:

• In the Graph editor: Here the relations always present themselves in the main direction
in relation to the direction of the arrow and labeling; irrespective of the direction in

which they were created.

• For single-sided relations (without inverse relation)

Additional setting options for relations and attributes are located in the “Definition” sub-item

on the “Details” tab. The setting options under Definition are often used and that is why they

are already available on the Overview tab. Under “Definition (advanced)” in contrast, there

are setting options that are not required as frequently.

i-views 5.3

38/534

Counter: If a number is entered in the counter, this is the number with which objects of

this type are counted up. The JavaScript functions getCounter(), increaseCounter() and set-

Counter() can be used to access the counter.

Name attribute for objects: (Note: can only be set on object types, not relation or attribute

types)

Typically many views in i-views only represent an object via its name (e.g. in object lists,

hierarchies, in the Graph editor, the relation target search, etc.). Instead of the name you can

use any other attribute of the objects here with which it can be represented. A prominent

example for products: The article number.

Name attribute for types: This can be used also to select an alternative attribute for a more

descriptive display for types.

Property can be iterated:

Selection options: Active / Write only / Inactive.

Default: Active.

Sometimes the maintenance of the index for iterating properties severely affects perfor-

mance. This typically happens with meta properties such as “changed by” or “changed on”

which do not necessarily have to be taken into account all the time. In such cases we rec-

ommend setting the properties to cannot be iterated by using the “Inactive” selection option.

The purpose of “Write only” is to deny read access but still allow write access. This makes it

possible to test for inadvertent side effects.

Reference value for minimum occurrence: This reference value relates to the user inter-

face in Knowledge Builder and as of Version 5.3 it also affects the user interface in the web

front-end and specifies the minimum number of times a property is supposed to occur on an

object. If the number falls below the specified number, the property is displayed in red in the

user interface but the object can continue to exist. An import ignores the reference value.

Reference value for maximum occurrence: As of Version 5.3, this reference value relates

to the user interface in Knowledge Builder and the user interface in the web front-end. It

specifies the maximum number of times the property should occur on an object. If the spec-

ified number is reached, no additional properties can be created. An import ignores the ref-

erence value.

i-views 5.3

39/534

1.2.2.4 Single-sided relations

Application of single-sided relations - basic principles

When an object is called up for import purposes or displaying in view configuration, all of

its properties will be loaded (especially when not indexed sufficiently). This in turn means

that besides of the attribute values, all existing relations will be loaded including their target

objects as well, leading to an overhead which slows down performance.

Especially for catalog objects, the loading of all properties can lead to long loading duration. A

catalog object is an object which serves as central reference for other objects and therefore

is interrelated with them.

Example: A semantic network has objects of the type "city" which are connected by relations

to its citizens. When a detailed view of a city has to be loaded for indicating the number of

citizens only (and not their names, addresses and hobbies etc.), single sided relations serve

for this purpose.

In this case, the single-sided relations direct from the individual satellite objects towards the

catalogue object. This results into the relation "is citizen of" being visible on the citizen side

only, but the relation "has citizen" from the city towards the citizens will be suppressed. Nev-

ertheless, the ’virtual’ relation "has citizen" can be used for structured queries and it can be

found within the schema.

Defining single-sided relations

In order to define a single-sided relation, we must specify in the dialog which relation half

(original or inverse orientation) has to be kept virtual, in other words "invisible". Here fore

we choose the checkbox "virtual" on the affected half. The other relation half automatically

becomes the real relation half which builds up the relationship between start domain and

target domain.

i-views 5.3

40/534

Supplementary declaration of a conventional relation as a single-sided relation

When a preliminary declared conventional relation type is going to be converted into a single-

sided relation type, the instances of the virtual relation half will be deleted. This process can

be inverted when redefining the relation form. Then the particular relation halves are going

to be determined again.

The conversion to single-sided relations will show its effect as follows: For a catalog object, all

the virtual relation halves including their relation targets are not going to be displayed any-

more. But the virtual relation instances are still represented as an instance in the knowledge

network and therefore can be called up in structured queries.

In the best case, when defining import mappings for large amounts of objects that relate to

a catalog object, always use the real, single-sided relation type half. This can lead to perfor-

mance improvement when importing.

i-views 5.3

41/534

As a result, the checkbox "Single-sided relation" indicates that the respective relation half is

used as a single-sided relation.

Hint: The checkbox of the Boolean attribute "Single-sided relation" only serves for indication

purpose. A redefinition only can be executed via the context menu in the detail editor.

i-views 5.3

42/534

Hint: After conversion to single-sided relation, the performance for indicating virtual rela-

tions can be improved by means of indexing.

Supplementary conversion of a single-sided relation into a conventional relation

If we realize afterwards that a relation type actually should be declared as a conventional

relation type, a correction can be made without further consequences. In the detail editor of

the relation type, we therefore click onto the contextmenu and choose Reengineer> Convert
to normal relation.

Immediately, the Knowledge-Builder changes all existing virtual and single-sided relations

into normal relations.

Supplementary swapping of the orientation of a single-sided relation type

The supplementary change of orientation of the single-sided relation type is done analogous

i-views 5.3

43/534

via the "Reengineer" command in the context menu of the detail editor. In order to do this,

we change to the opposite relation type half which has to be converted from virtual to single-

sided and choose Reengineer > Convert to one-way relation.

1.2.3 Model changes

In i-views you can make changes to the runtime of the model:

• implement new types
• make random changes to the type hierarchy (without creating tables and giving any
thought to primary and secondary keys).

The system ensures consistency. When creating objects and properties the opposite direc-

tion of a relation is always included. Attribute values are checked as to whether they match

the defined technical data type (for example, in a date field we cannot enter any random

character string).

Consistency is also important when deleting: dependent elements always have to be deleted

with them so that no remaining data of deleted elements stays in the network.

• Thus, when an object is deleted all its properties will be deleted along with it. If, for
example, we delete the object "John Lennon" we also delete his date of birth and his

biography text which we can have as a free text attribute for each person, etc. Likewise,

his relation "is member of" to the Beatles and "is together with" to Yoko Ono. The

objects "The Beatles" and "Yoko Ono" will not be deleted; they only lose their link to

John Lennon.

• When deleting a relation the opposite direction is automatically deleted with it.

Since i-views always ensures that the objects and properties are in accordance with the

model, deleting an object type or, where necessary, an operation has far-reaching conse-

quences: when an object type is deleted, all its specific objects are also deleted - analogue to

the relation and attribute types.

In this process, i-views always provides information on the consequences of an operation.

If an object has to be deleted, i-views lists all properties which will thus be removed in the

confirmation dialogue of the delete operation:

i-views 5.3

44/534

i-views controls where, by the change, objects, relations or attributes become lost. The user

is made aware of the consequences of the deletion.

Not only the deletion, but also conversion or change of the hierarchy type may have its con-

sequences. For example, when objects have properties which no longer comply with the

model after a change in type or change in the inheritance.

Let us assume that we delete the relation "is supertype of" between "event" and "concert"

and thus remove the object type "concert" and all its subtypes from the inheritance hierarchy

of event to add them to "work", for example. In this case, i-views draws our attention to

the fact that the "has participants" relations of the specific concerts would be omitted. This

relation is defined in "event" and would thus no longer apply to the concerts.

There are possibilities for preventing the omission of relations as a result of model changes.

If an object type has to move within the type hierarchy, for example, the model of the af-

fected relation has to be adapted prior to this.

For example, if "concert" is to be located under "work" within the hierarchy and no longer un-

der "event". To this end, the relation "has participants" will be assigned to a second source:

that can be either the object type concert itself or the new item "work". The relation will

i-views 5.3

45/534

hence not be lost.

i-views pays particular attention to the type hierarchy. If we delete a type from the middle

of the hierarchy or remove a super/sub relation type, i-views then closes the gap which has

ensued and puts back the types which have lost their supertypes into the type hierarchy to

the extent that they keep its properties as far as possible.

Special functions

Changing type: objects already in the knowledge network may be moved to objects of an-

other type. For example, if the object type "event" differentiates to "sports event" and "con-

cert". If there are already objects of the type sports event or concert in the knowledge net-

work, they may be selected from the list in the main window and quite simply moved to a

new, more suitable object type using drag & drop.

Alternatively, we can find more information in the context menu under the item "edit".

Select type: using this operation we can assign a property to an object.

Reselect relation target: in relations this does not only apply to the source, but also the

relation target.

Convert subtypes to specific objects (and vice versa): the border between object types

and specific objects is, in many cases, obvious but not always. Instead of setting up only one

object type called "musical direction" as in the case of our sample project, we could have

set up an entire type hierarchy of musical directions (we decided against this in this network

i-views 5.3

46/534

because the musical directions classify so many different things such as bands, albums and

songs and therefore they do not provide any good types). It may happen, however, that we

change our minds in the middle of the modelling. For this reason, there is the possibility

of changing subtypes into specific objects and specific objects into subtypes. Any relations

which may already exist will be lost in the process if they do not match the new model.

Converting the relation: source and target of the relation will remain the same, only the

relation type will be converted.

Converting the attribute: source/object will remain the same but it will be assigned to

another attribute type:

When converting the individual relations we are usually quicker when we delete these and

replace them with another one. However, it may happen that meta properties are attached

to the properties which we do not want to lose. On the other hand, the converting opera-

tions are also available for all properties of a type or a selection thereof. A prerequisite is,

of course, that the new relation or attribute type is also defined for the source and target

objects.

If changes are made to the model, consideration should always be given to the fact that

restoring a previous condition may only be carried out by installing a backup. Analogue to

the related databases there is no "reverse" function.

1.2.4 Representation of schema in the graph editor

Until now we have mainly been dealing with linking of specific objects within the graph ed-

itor. Presenting such specific examples, discussing them with others and, where necessary,

editing them is also the main function of the graph editor. We can, however, also present the

model of the semantic network directly using the graph editor, e.g. the type of hierarchy of a

network.

Types of objects will then be displayed as nodes with a coloured background and types of

relations as a dotted line:

i-views 5.3

47/534

Relation types in the graph editor

If until now we have been referring to relations in the graph editor, this concerned relation

objects between specific objects of the knowledge network. Moreover, the general types of

relations (hence the diagrams of the relations) may also be presented in the graph editor. A

relation is depicted in the graph editor as two semi-circles which represent the two directions

(main direction and inverse direction). Therefore, between these two nodes there is the rela-

tion "inverse type of relation":

The presentation of a type of relation and the hierarchy within the graph editormay be shown

analogue to the object editor with all supertypes and subtypes:

i-views 5.3

48/534

Attribute typesmay also be depicted in the graph editor - they are shown as triangular nodes.

Analogue to the type of object hierarchy the hierarchy of the relations and attributes within

the graph editor may be changed by deleting and dragging the supertype relation.

1.2.5 Metamodeling and advanced constructs

i-views 5.3

49/534

1.2.5.1 Enhancements

As a further means of modelling, i-views offers the possibility of enhancing objects.

For example, if a person performs the role of a guitarist in a band but plays another kind of

instrument in another band. In addition, the person exercises the role of the composer.

The fact that one person can play different roles in a knowledge network may be regulated

via a special form of a object type. This may not contain any objects, but enhance objects

from another object type (e.g. in this case "person"). For this purpose, the object type "role"

is implemented into the knowledge network, for example and the different roles created for

persons as subtypes: guitarist, composer, singer, bassist, etc. In order that these "role object

types" may enhance objects this function will be defined in the editor for the object type by

checking the box "type can extend objects":

i-views 5.3

50/534

Enhancements are displayed in the graph editor as a blue dotted line:

As a result of this enhancement we have achieved several things simultaneously:

i-views 5.3

51/534

• We have formed sub objects for the persons (we can also imagine these as sections or -
with persons - as roles). These sub objects may be viewed and queried individually. They

are not independent, when the person is deleted the enhancement "guitarist" along

with the relations to the bands or titles are gone.

• We have expressed a multi-digit content. We cannot express anything on separate rela-
tions between persons, instruments, title/band - in this case the assignment would no

longer succeed.

For this purpose the relation "plays in the band" for the enhancement "guitarist" has to be

defined. This effect that persons inherit an additional model via the enhancement may be

helpful regardless of multi-digital contents.

From a technical point of view, the enhancement is an independent object which is linked to

the core individual bymeans of the system relation "has enhancement" or inverse "enhanced

individual". Its type (system relation "has a type") forms the enhancement type.

i-views 5.3

52/534

When defining a new enhancement, two object types play a role: in our example we want to

give persons an enhancement and we have to provide this information to your type "person".

The enhancement itself again has an object type (usually even quite a lot of object types); in

our case "guitarist". With the type "guitarist" (and with all others with which we want to en-

hance the persons) his specific objects will be dependent.

When querying enhancements in the structure search we have to traverse individual rela-

tions. From the specific person via the relation "has extension" via the enhancement object

"Guitarist". From there you can reach the band via the relation "plays in band".

Mix-in

The essence of this example with the role "guitarist" is that the relation "plays in a band" is

linked to the enhancement but not with the person. Hence, a consistent assignment is pos-

sible with several instruments and several bands.

If the option mix-in is selected the relation, on the other hand, is created with the core object

(person) itself. The reason for this is that enhancements are sometimes not used to express

more complex contents but to assign an object polyhierarchically to different types. This ob-

ject inherits in this manner relations and attributes of several types.

When we setup an extensive type hierarchy of events, for example, with the subdivision into

large and small events, outdoor and indoor events, sports and cultural events, we can either

characterise all combinations (large outdoor concert, small indoor football tournament, etc.)

or create the different types of events as possible enhancements of the objects of the type

"event". Then we can assign an event via its enhancements as a football tournament and, at

the same time, as an outdoor event as well as a large event. Via the enhancement "football

tournament" the relation "participating team" may then be inherited, via the enhancement

i-views 5.3

53/534

"outdoor event", for example, still the property "floodlight available". When we have placed

these properties in mix-in they may be queried like direct properties in the events.

If a mix-in enhancement is deleted it acts like a "normal" enhancement: there has to be at

least one enhancement available which entails the mix-in property. When the last of these

enhancements is deleted the relation or the attribute in the core object is also deleted.

1.2.5.2 Shortcut relations

A special form of the relation is the shortcut relation. Hidden behind this is the possibility to

shorten several relations already available and defined and which are present in the seman-

tic graph database in a connected row by means of a suitable relation. In this manner the

system can, to a certain extent, draw a direct conclusion from A to B from an object A in the

semantic graph database which is connected to an object B via several nodes.

For example, a band publishes a recording media in a certain style of music, ergo this style

of music can likewise be assigned to this band:

In the form editor the inferred relation path is defined via the relations "is author of" and

"has style".

In the queries the shortcut relation can be used like any other relation as well.

In the current version of i-views it is recommended that several nodes and edges be queried

via search modules as a result of the improved overview in the structured queries.

i-views 5.3

54/534

1.2.5.3 Meta properties

In Chapter 2.1 properties of a lesser complexity in object types for objects were defined. For

example, users can add or edit contents to the music knowledge network which we are treat-

ing here as an example via a web application. It should, however, be noted which information

was changed from whom and when. To do this, attributes and relations and, in turn, for at-

tributes and relations are required in all combinations.

Attributes to attributes: for example, discussions and reviews are listed in the music knowl-

edge network as text attributes for music albums. If it is to be noted when discussions and

reviews were added or when they were last changed we can define a date attribute which is

assigned to the discussion and review attributes:

Attributes to relations:

This date attribute may also be located at a relation between albums and personal senti-

ments such as "moods" if the users are given the possibility of tagging:

Relations may be used on attributes and on relations. For example, those users should be

documented who have created or changed an attribute (e.g. review of an album) or a relation

between an album and a mood at certain times:

i-views 5.3

55/534

These examples together with the editing information form a clearly demarcated meta level.

Properties of properties are, however, usable for complex "primary information":

If, for example, the assignment of bands or titles to the genres be weighted, a rating as

"weight" may be given to the relation as an attribute.

An attribute of a relation may also be the sum of a transfer or the duration of participation

or membership.

Relations to relations may also be expressed as "multi-digit contents". For example, the fact

that a band performs at a festival (that is a relation) and in doing so takes a guest musician

with them. He doesn’t always play with the band and hence doesn’t have a direct relation

to it. Likewise, he cannot be generally assigned to the festival but is assigned to the perfor-

mance relation.

Modelling of meta properties may, of course, also be realised by implementing additional

objects. In the last example the fact that the band performed at a festival enabled an object

of the type "performance" to be modelled. A significant difference is that in the meta model

the primary information can simply be separated from the meta level: the graph editor does

not show the meta information until it is requested and in queries, also in the definition of

views the meta information can simply be left out. The second difference lies in the delete

behaviour: objects are viable independently. Properties, even meta properties, are not on

i-views 5.3

56/534

the other hand; when primary objects and their properties are deleted the meta properties

are deleted with them.

Incidentally: properties can not only be defined for specific objects but also for the types

themselves. A typical example of this is an extensive written definition with a object type, e.g.

"what do we understand by a company?" That is why we are always asked whether we want

to create them for concrete objects or subtypes when creating new properties.

1.2.5.4 Multilingualism

The attributes "character string", "data file attribute" and" selection" may be created multi-

lingually. In the case of the character string attribute and data files, several character strings

may then be entered for an attribute:

With data file attributes several images (e.g. with labels in other languages) may be uploaded

analogically. In the case of selection attributes all selection options are deposited in the at-

tribute definition; here it doesn’t matter in which language the selection for the specific object

is made.

All other attributes are depicted in the samemanner in all languages, e.g. Boolean attributes,

integers or URLs.

If the image deviates in other languages attributes adapt their image automatically, depend-

ing on the language: for example, dates according to European spelling day|month|year are
shown in US format month|day|year.

In i-views separate attributes are not simply deposited for values in other languages, instead

they remain as a separate layer for an attribute with language variations. You don’t have to

bother about the management of different languages when developing an application, but

only the desired language for the respective query:

i-views 5.3

57/534

In i-views preferred alternative languages can be defined: if there is no attribute value, e.g.

a descriptive text in the queried language the missing text can be shown in other languages

if they are available. The order of sequence of the alternative languages may also be defined.

Multilingual settings are, for example, used in search.

1.2.6 Indexing

Indexing forms part of the internal data management of databases. Used correctly, the set-

ting of indexes can improve performance significantly.

Background: In i-views, all semantic elements (types or objects) are generally stored in a

cluster with their properties (attributes or relation halves). For certain transactions or uses,

however, it can be better to only load part of the information. Instead of having to load the

entire elements or clusters to read a few properties for queries, a corresponding index is

used to refer exclusively to the required properties. Metaphorically, these indexes are both

signposts and shortcuts to the required partial information.

The requirement for indexing in structured queries or during import mapping becomes ap-

parent through various notes: In import mapping, if an object is not identified using the

primary name, as expected, but through a different attribute, the note appears: “No usable

index for [...].”

Import mapping with message regarding missing index

Structured query with message regarding missing index

Indexing can improve performance in particular when it comes to writing data (= importing).

Indexing is required for:

• Transaction:
Read transactions: Search/structured query; view configuration

Write transactions: Imports (import mapping)

• Checking rights

i-views 5.3

58/534

Depending on the intended use, suitable indexes must be selected for certain attributes or

relations.

The indexes are defined in the Knowledge Builder settings. The assignment of the indexes

can take place either in the settings of the KB or in the Detail editor of a type (Details >
Indexing > Assign index).

1.2.6.1 Manage and apply available indexes

Available indexes (Settings > Index configuration)

All indexes created in the Knowledge Builder can be managed centrally in the settings.

Category “Indexes”

This setting option can be used to manage the index structures. All available index types are

listed under “Available indexes”. Each index type can be used for specific types of attributes

or relations.

If an index is shown in grey, then the index is currently deactivated; if it is highlighted in red,

then the index is currently not synchronous.

There are buttons to generate, delete, configure, assign and synchronize on the right-hand

side.

Index Use

Lucene full text index

(JNI)

Full text query

Metrics Performance improvement in structured queries

i-views 5.3

59/534

System System relations (predefined, cannot be changed) This is used for

“extends object” / “has extension” / “is super-type of” / “is subtype

of” relations

topic -> value To list attribute values/relation targets in object lists

topic -> value (domain
segmented)

To list attribute values/relation targets in object lists

value -> topic
topic -> value

For single-sided relations, results in a speed-up for weighted in-

verse single-sided relations

value -> topic Attribute values for an object

value -> topic (unique) Attribute values that may only occur once per attribute type for

an object (write rights check for imports)

value -> topic

(word)[string split-

ting]

CDP-specific: This is only used in i-views content

value -> topic for sub-
ject keys (word)[string

splitting]

CDP-specific: This is only used in i-views content

Full text index for

terms [string splitting]

CDP-specific: This is only used in i-views content

Category “Index for relations"/ “Index for attribute value”

Indexes can be divided up using different aspects. First of all, a distinction can be made

between forward and reverse indexes. In the case of the reverse indexes, it may make sense

to refer to the property from target/value to resolve the metaconditions on the property.

Ultimately, an index can optionally perform a segmentation by each type of source object

in order resolve structured queries that are limited to objects of subordinate types more

efficiently.

Some properties may not require an index depending on the specific application. (They can

then be marked with “Ignore”. They are not examined further in this optimization step.)

• Relations can use a reverse index instead of a forward index on the inverses - and vice-
versa.

• Attributes can also be indexed with modified/standardized values (e.g. full text with
basic word forms). A corresponding operator can then be used for search for these.

Applicable indexes (detailed configuration)

The indexes that can be used for a relation type or attribute type can be assigned using the

detailed configuration.

i-views 5.3

60/534

Assigning indexes in the detailed configuration of type

Attribute types Relation types

topic -> value topic -> value

topic -> value (domain segmented) topic -> value (domain segmented)

value -> property value -> property

value -> topic value -> topic

value -> topic (unique)

1.2.6.2 Create a new index

In the settings of Knowledge Builder, a new index can be created under:

Settings > Index configuration > Indexes > Create new

The following selection is available at the start:

Index Use

Lucene full text in-

dex (JNI)

Full text query

i-views 5.3

61/534

Redundant stor-

age for relation

attributes

To display meta properties of symmetric relations more quickly; this

is used without additional filters

Pluggable indexer Combined use of distributor and index modules for adapted index-

ing; specific configuration by means of index filters is possible

The following section describes the configuration of the pluggable indexers because these

can be used most flexibly and cover almost all use cases.

Addable index modules

Pluggable indexers enable the administrator to create an indexer from prefabricated mod-

ules in order to achieve the corresponding indexer behavior.

A pluggable indexer consists of distribution levels that are closed by an index level that regu-

lates data storage. Hence, an indexer can index both attributes and relations.

If the indexer is assigned an optional index filter, the indexer behavior can be influenced

further; only suitable property types can then be assigned to the indexer.

Since properties include attributes and relations, the following section refers to an attribute

value or relation target as a value of the property.

i-views 5.3

62/534

Pluggable indexer

i-views 5.3

63/534

T = Topic = object/element/instance

P = Property = attribute/relation

"V" = Value = attribute value/relation target

Distributor/index Use

Distributor by domain

(after that, all other dis-

tributors can be selected)

To search for a subset of object types that jointly use a prop-

erty

Distributor for each

property type

(index can be selected

afterwards:)

Distinction between attribute and relation

Index property on

value/target

Attribute -> Attribute value,
Relation -> Target object/target type

To find relation targets in structured queries with a restriction

on the meta property

Index object on

value/target

= topic -> value
= topic -> value (domain
segmented)

Object -> Attribute,
Abject -> Target object of relation

To list attribute values/relation targets in object lists

i-views 5.3

64/534

Index value/target on

property

= value -> property

Attribute value -> attribute
Meta-relation target -> Attribute
Relation target -> relation
Meta-attribute (value) -> Relation

For single-sided relations, results in a speed-up for weighted

inverse one-way relations

Index value/target on

property (uniqueness

check)

Attribute value -> Attribute

To search for meta properties

Index value to seman-

tic element

= value -> topic

Attribute value -> Attribute
Relation target -> Relation

To support structured queries on objects with specified val-

ues/targets on attributes/relations

Index value to seman-

tic element

(uniqueness check)

= value -> topic (unique)

Attribute value -> Object (e.g.: email address)

Distributor for each

property value

Together with “Index property”:

For compact storage of many identical values/targets; same

response as for “Index value/target on property”

Distributor for each ob-

ject

For single-sided inverse relations

Index redundant storage

for relation properties

(Might not be used in combination with pluggable indexes)

Faster display of meta properties on relations when using

symmetric relational properties

Filter

Filter type Use

Latitude For indexing an attribute type of the value type “geographical posi-

tion”

Longitude For indexing an attribute type of the value type “geographical posi-

tion”

Interval start value For indexing an attribute type of the value type “interval”

Interval stop value For indexing an attribute type of the value type “interval”

String filtering .

Strings to words fil-

ter

.

i-views 5.3

65/534

1.2.6.3 Details about indexer blocks

A distinction is made between the breakdown indexer modules and the indexing indexer

modules. A breakdown indexer module partitions the index according to different aspects.

Following that, there is either another breakdown or an indexing index module that stores

the index entries.

The figure shows an example of how a stackable indexer consisting of three modules (with-

out value filter) groups the index entries. This index can now efficiently provide answers to

questions such as

• Which animals start with S
• Which plants either other organisms
• Which animals eat zebras (T03)
• etc.

Questions such as

• Which organisms start with S
• Which organisms eat flies (T05)

could also be answered. To do so, an indexer configuration without “Distributor by domain”

would suffice (and might be more efficient depending on the data situation).

1.2.6.3.1 Distributor by property type

The most important module, without which most indexing modules cannot be added. It

generally appears in first place and partitions the entries according to their property type.

i-views 5.3

66/534

1.2.6.3.2 Distributor by domain

Enables partitioning according to the relevant terms of the property-carrying objects. The

module is only useful for properties of individuals.

If a property can occur in multiple object types and a search only searches for a subset of

these object types, this module accelerates the search through corresponding index access.

1.2.6.3.3 Distributor by object

This module can be used for indexing to summarize the relation targets on the source object.

As the previousmodule, it is used formapping older indexers and its K-Infinity 3.1 only makes

sense for single-sided inverse relations.

1.2.6.3.4 Distributor by property value

Used to partition according to relation target or attribute value. In this case, only the property

can still be indexed (see Index property).

1.2.6.3.5 Index value / target to object

This index module is used to store an attribute value on an object or a relation target on

the source of a relation in the index. This type of indexing makes sense if expert queries

for objects with specified values on indexed attributes (e.g. with specified target on indexed

relations) are supposed to be supported.

1.2.6.3.6 Index object to value / target

The indexmodule indexes in the exact opposite way as the “Index value to semantic element”

and, for attributes, can be used to determine the column values of the indexed attributes for

object lists. For relations, it can be used in the same way as the “Index value to semantic ele-

ment” if either the inverse relation is indexed or the source object is already more restricted

by the search than the target object.

If you want to support expert queries with the indexed relation in both directions (source-

target and target-source), the relation can be indexed either with this value and the “Index

value to semantic element” or the relation and its inverse relation can both be indexed with

one of the two index types. Here, it can make a difference if the index module is combined

with a “Distributor by domain” because use of this distributor module for an index on the

inverse relation can be used for partitioning by means of the target domain.

1.2.6.3.7 Index value / target to property

This index module is used to store values on the attribute or target on a relation in the index.

This type of indexing makes sense if searches for additional meta properties are supposed to

be supported for the indexed attributes. To ensure this index can also be used in a search for

the objects of the property (analogous to “Index value to semantic element”), the respective

property must remain set to “Active” under “Property can be iterated” in the corresponding

term editor.

i-views 5.3

67/534

1.2.6.3.8 Index property to value / target

This indexmodule supports expert queries to search for targets of the relations. To do so, the

meta properties of the relation are used for a highly restricted process. Simple source-target

conditions are not, however, supported.

1.2.6.3.9 Index property

Together with the distributor for each property value, the same behavior can be achieved as

for an index value / target to property. If there are a great many identical values or targets,

this makes it possible to achieve more compact storage; otherwise, this combination has no

advantages.

1.2.6.3.10 Index property value

This index only stores the attribute values or relation targets. Using it makes sense if a “Dis-

tributor for each object” is used upstream and few objects have many values/targets.

1.2.6.3.11 Index redundant storage for relation properties

This module can only be used by itself and is used to display the meta properties on relations

more quickly if symmetric relational properties are used. No index structure is created at the

technical level but the indexer can be addressed via the same configuration and program-

ming interfaces.

1.2.6.3.12 Uniqueness check

The Index value to semantic element and Index value to property modules can be supple-

mented with a uniqueness check. The modules supplemented in this way are usually used

for the consistency check of unique identifiers. They are available in the selection list for the

addable index modules (e.g. Index value to semantic element (uniqueness check)).

If a new value is to be written and the same value is found in the index, this new value

cannot be adopted. Values are recognized as identical if they are also grouped identically

by all distributors of the index. If, for example, you want to perform a uniqueness check by

domain only (this, for example, makes it possible for “modern” to coexist as an individual of

verb and as an individual of adjective), the index must contain a Distributor by domain.

If a value filter is also configured, the uniqueness check is executed on the filtered values.

This makes it possible, for example, to identify “arm” and “Arm” as identical.

Note: a value filter that splits strings (for full text) can be combined with the uniqueness

check, but this is not usually sensible, because even a partial string can lead to duplicates

after splitting, for example “The house” and “house and home.”

The Index value to semantic element cannot recognize duplicate values of this property as

duplicates in an object if properties occur multiple times. It is therefore possible for two iden-

tical attributes with identical values to exist in the same object, but not in different objects. If

you want to prevent this, you must deactivate multiple occurrences in the attribute term or

instead use an Index value/target to property for the uniqueness check.

1.2.6.4 Details about value filter

i-views 5.3

68/534

1.2.6.4.1 Value decomposition

No atomic attribute value can be indexed for geocoordinates and interval attributes. Instead,

longitude and latitude or interval start value and interval stop value are used to index one

component of the value. For complete indexing, a corresponding indexer for the other com-

ponent of the value must be configured respectively.

1.2.6.4.2 String manipulations

Full text filters for strings can be configured in the Admin tool. These can be used to configure

which manipulation is possible on the strings, and how the strings should be split into indi-

vidual words. Additional operators are then offered in expert queries, to which the respective

filter label has been added, to allow a specific query to be executed using this filter.

Strings can be indexed in manipulated form by means of “string filtering,” and when a query

is executed, this results in all attribute values being interpreted as hits which the filter maps

to the same string as the search input.

By means of “string splitting,” several (manipulated) sub-strings (tokens) from a text can be

indexed. The related index then allows expert queries that execute a search within the string

by means of the operators “Contains words” and “Contains phrase.”

1.2.6.5 Metrics

An attribute “Average number (calculated)” can be created on all property types. The value

of the attribute specifies how many values of the corresponding property an object from the

property domain has on average.

This information enables structured queries to better decide how they determine their result

set. In addition, you can create an attribute “Average number (manual)” whose value over-

writes this value. (This makes sense if the domain is abstract but the property in enquiries is

supposed to be used only when it actually occurs.)

1.3 Searches / Queries

Querying of the semantic network has various subtasks for which we can configure different

search modules: often we would like to process the user’s entry in a search box (charac-

ter strings). Usually we would like to pursue the links for the queries within the semantic

network.

• Structured queries
• Simple/direct queries (simple search, full text search, trigram search, regular expres-
sions, parameterised hit quality)

• Search pipeline

i-views 5.3

69/534

1.3.1 Structured queries

Using structured queries you can search for objects which fulfilled certain conditions. A sim-

ple example for a structured query is as follows: all persons whomaster a certain instrument

should be filtered.

At first there is the type condition: objects of the type person are searched for. The second con-

dition: the persons have to master an instrument. Third condition: this instrument has to be the

violin.

In the structured query the relation "plays an instrument", the type of the target of the rela-

tion and the value of the target "violin" form three different lines and thus also three search

modes. The third condition that the instrument has to be a violin may also optionally be

omitted. In the hit list you would then find all persons who play any random instrument.

Often conditions (in this case the instrument) should not be determined previously but be ap-

proved completely. Depending on the situation, an instrument may be given as a parameter

in the application:

The conditions may thereby be randomly complex and the network traversed as far as pos-

sible:

Slightly more complex example: persons or bands who deal with a certain issue in their songs (to

be more exact in at least one). In this case you do not search for the name but the ID of the issue

as the parameter - typical for searches, for example, which are queried via a REST service from the

i-views 5.3

70/534

application [Figure - "ID" instead of "name"]

The type hierarchies are automatically included in the structured queries: The type condi-

tion "work" in the search box above includes its subtypes albums and songs. Even the rela-

tion hierarchy is included: if there is a differentiation below "is author of" (e.g. "writes text"

or "writes music") the two sub-relations will be included in the search. The same applies for

the attribute type hierarchy.

Interaction

If a new structured query is created, the topmost of all types is entered at first per default.

In order to limit the query even more you can simply overwrite the name or select "Choose

type" by clicking on the icon.

The button allows you to add more conditions to the structured query. Deleting con-

ditions takes place at the beginning of each line where the type condition is listed (relation,

attribute, target, etc.). When you click on the button the following menu will appear which

may vary slightly depending on the context.

From all possible conditions, focus has, until now, been on the very first item in the menu. A

complete explanation of all conditions and options of the structured queries can be found in

the next chapters.

1.3.1.1 Use of structured queries

One of themain purposes of structured queries is to provide information on a certain context

in applications. The structured query from the last section, for example, can enable end

users in a music portal to generate a list of all artists or bands who cover subjects such as

love, drugs, violence etc. in their songs.

To do so, the structured query is usually integrated into a REST service via the query s reg-

istration key. We include the subject in which the user is interested as a parameter in the

query with the user s ID.

Example scenario: A user enters a search string to search for their topic. Hence, there is

i-views 5.3

71/534

no ID but only a string that is to be used to identify the topic. However, the query result

is supposed to show immediately which bands have written songs on the subject. For this

purpose, a structured query can be integrated into a search pipeline as a component - after

the query that processes the search string.

One of the reasons why structured queries are such a central tool for i-views is that the

conditions for rights and triggers are defined with structured queries. Let s assume the

only people allowed to leave comments in a music portal are artists and bands. In the rights

system, you can thus specify that only artists and bands that have written at least one song

on a topic may leave comments on this topic. Structured queries can also be used in exports

to determine which objects are to be exported.

All these uses have one thing in common: we are only interested in qualitative, not weighted

statements. This is the domain of structured queries in contrast to search pipelines.

Last but not least, structured queries are also important tools for us as knowledge engineers.

We can use them to get an overview of the network and compile reports and to-do lists.

Here are some examples of questions that can be answered using structured queries:

• Which topic is featured by many artists/bands?
• Do specific topics have to be removed because too many relations have amassed or
conversely should rarely used topics be merged or closed?

For ease of use, it makes sense to be able to organize structured queries in folders.

One main purpose of the structured queries lies in the applications for a certain context to

provide information. The structured query in the last paragraph may generate, for the user,

a list of all artists or bands in a music portal who deal with the topics of love, drugs, violence,

etc. in their songs.

For this purpose, a REST service is usually implemented via their registration key. The topic

in which the user is interested just now is the one we enter into the query with his ID as a

parameter.

The following is an example of this scenario: a user searches for a topic by entering a search

string according to a topic. There is therefore no ID, but only a string on the basis of which

the topic should be identified. Thereby, the search results should show which bands wrote

songs on this topic. For this purpose, a structured query can be installed in a search pipeline

as a component - behind the query which processes the search string.

Therefore, structured queries are, among other things, a central tool within i-views because

the conditions for rights and trigger are also phrased using the structured queries: assuming

only artists and bands are allowed to leave comments within a music portal. With the rights

management it may be stated that only artists and bands who have written at least one song

on a certain topic are allowed to leave their comments on this topic. Structured queries may

also be used in exports in order to determine which objects are to be exported.

All these applications have one thing in common: we are only interested in qualitative, not

weighted statements. That is the domain of the structured queries in comparison to the

search pipelines.

Last but not least, structured queries are also tools for us knowledge engineers. With them

we can obtain an overview of the network and compile reports as well as to-do lists:

i-views 5.3

72/534

• To what topics there are how many artists/bands?
• Do certain topics have to be removed because they have collected too many relations
or should, on the other hand, sparse topics be compiled or closed?

For this application it makes sense to be able to organise structured queries into folders.

Implement

The structured queries are implemented on the results tab with the button search.

The search results can then be further processed (e.g. copied into a new folder) but they are

not kept there permanently.

The path which the structured query has taken may only be viewed in the graph editor to

backtrack it. To this end, one or more hits are selected and displayed using the button graph.

A structured query may be copied in order to create different versions, for example. Like-

wise there is the possibility of saving them in XML format, regardless of the network. The

structured query may therefore be imported into another network. However, this is limited

to versions of the same network, e.g. to backup copies, because the structured query refer-

ences types of objects, relations and attributes via their internal IDs.

1.3.1.2 Structure of structured queries

Very indirect conditions can be expressed within structured queries: you may randomly tra-

verse between the elements throughout the structure of the knowledge network. Artists and

bands may be found who wrote songs on certain topics but which we cannot name specifi-

cally using their titles.

1.3.1.2.1 Serveral conditions

Condition chains may either be randomly deep or several parallel conditions may be ex-

pressed: additional conditions are added to any random condition element as a further

branch:

i-views 5.3

73/534

Several conditions: English bands with songs on a certain subject

1.3.1.2.2 Alternative Conditions

In the example mentioned above only artists or bands can be found who created songs on a

defined subject and who come from England. If, instead, we want to find all artists and bands

which fulfil one of the two conditions they will be expressed as ’alternative’. You can create

an alternative via the menu of ’Band’.

By clicking the symbol you can add a further alternative condition for ’Band’:

i-views 5.3

74/534

Alternative conditions - the band either has to be English or have songs on a certain subject

If there are further conditions outside the alternative bracket there are objects in the hit list

which fulfil one of the alternatives and all other conditions.

1.3.1.2.3 Transitivity / Repetitions

Let’s assume the bands are assigned to either cities or countries within the network. Of these,

in turn, it is known which cities are in which countries. In order to document these contents

in the search it was possible to very simply expand the condition string: we were able, for

example, to search for bands which are assigned to a city which, on the other hand is in Eng-

land. However, in this manner those bands will not be found which are directly assigned to

England. In order to avoid this we can state in the relation "is located in" that it is optional

and therefore does not have to be available.

Simultaneously, we can also include hierarchies which are several levels deep using the func-

tion "Repetitions". For example, is known from the band ZZ Top that they come from the city

of Houston which is in Texas. In order to also retain the band as a result when bands from

the USA are queried we can state in the relation "is located in" that this relation has to be

followed up until repetitions are reached:

i-views 5.3

75/534

1.3.1.2.4 Negated conditions

Conditions can likewise be purposefully negated. For example, if punk bands are searched

for, which do not come from England. To this end, the negative condition is setup as a so-

called "Utility query".

The utility query delivers bands from England - from themain search a reference can be established

and thereby noted that the search results are not at all allowed to comply with the criteria of the

search help - in this manner we remove the results of the search help from those of the main search

and only obtain bands which do not come from England.

Interaction takes place as follows: the utility query is compiled in the type condition and can,

after conclusion of the main search above, be linked with the menu item "reference". At this

stage you can then select which type the reference should be (in this case negative).

1.3.1.2.5 Corresponds to condition

The reference allows references to be made to other conditions of the same query within a

structured query:

i-views 5.3

76/534

Here the last condition references the first one, i.e. the band who writes the cover version also

has to be the author of the original. Without a reference the search would read as follows: bands

which have written songs which cover other songs which were written by any (random) bands.

Incidentally, the result is, for example, the band "Radiohead" (they covered their own song "Like

Spinning Plates").

1.3.1.2.6 Other options in building the structured queries

Search macros: other structured queries but also other searches can be integrated into

structured queries as macros. In doing so, there is the possibility of outsourcing repeating,

partial queries into your own macros and thus adapting the behaviour at a central location

when changing the model. A macro can be integrated into each condition line.

An example from our music network: from bands to all their achievements, no matter

whether they are albums, songs which are directly assigned to the band or songs on the

albums of the bands. We need these partial queries more frequently, for example in a struc-

tured query which returns the bands to a certain mood. We start this query with a type

condition - we are looking for bands - and integrate the pre-defined module as a condition

for these bands:

The objects which return those which are integrated into the structured query as macros

have, of course, to match the condition with which they are linked from the point of view of

their type. With the aid of the identifier function, the query (from the "invoking" query) can

still be continued with additional conditions. In our case the albums and songs from where

the macro query originates are defined by the invoking query: namely albums and songs

with the mood "aggressive". Integrating the search macro into the structured query is car-

ried out through the menu "Query structure". Under structured query macro (registered) there

i-views 5.3

77/534

is a selection list with all the registered macros.

Simple search: using the search mode "simple search" the results of a simple search or a

search pipeline may serve as input for a structured query. Each respective simple search can

be selected by means of the selection symbol. The input box contains the search entry for

the simple search. Further conditions can enable a simple search to be filtered further, for

example.

Cardinality condition: a search for attributes or relations without its own conditions may

be carried out with a cardinality operator (characterised by a hash tag #). You may use the

cardinality greater than or equal to, less than or equal to and equal. The normal equal oper-

ator of the relation or attribute condition corresponds to greater than or equal to 1.

We have thus covered everything we can find within the menu "Query structure":

1.3.1.3 Details of the conditions

The type condition

The beginning of the structured query determines which objects should appear as the re-

sults. To do this you click on the type icon for the first condition and select "Choose type" in

the menu, the input mask then starts in which the name of the object can be entered.

Alternatively, you can simply overwrite the text behind the type icon with the name of the

object.

In the second step the relation condition is added. For example, a search is made for the

place of origin of a band and "has location" is set as a relation condition. The target type of

the relation is added automatically which, however, can also be changed (if, for example, the

"has location" relation for countries, cities and regions applies but we only wish to have the

cities).

There are further functions available for a type condition. In the item for this there is the

item "Schema" in the general condition menu which we can reach via the button : several

types of conditions are defined consecutively what is interpreted by "or" in the query. For

i-views 5.3

78/534

example, we search for works or events on a particular style of music as follows:

We can just search for types of objects instead of specific objects or both at the same time

by checking the boxes "Subtypes" and "Instances" in the menu "Schema".

This is what the condition looks like when a search is made for both specific works as well as

subtypes of the work (albums and songs).

Without inheritance: normally, the inheritance starts automatically with all types of condi-

tions of the structured query. If a search is made for events in which bands play a certain

style of music, all subtypes of events are then incorporated into the search and then we are

provided with indoor concerts, club concerts, festivals, etc. In the vast majority of cases this is

exactly what is desired. For exceptions there is the possibility of switching off the inheritance

and restrict the search to direct objects of the type event, i.e. by excluding the subtypes of

objects.

Operators for the comparison of attribute values

Attributes may also play a role as conditions for structured queries. For example, if it does

not suffice to only identify objects which show an exact predefined value or the value entered

as a parameter. For instance, bands which were founded after 2005 or songs which are more

or less 3 minutes long or songs which contain the word "planet" in their title. These require

comparison operators. The type of comparison operators which i-views offers us depends

on the technical data type of the attribute:

Comparison operators for dates and quantities

The comparison operator Exactly equal constitutes a special case: the index filter is switched

off and a search can be made after the special character * which is normally used as a

wildcard.

The comparison operator Between requires spelling of the parameter value with a hyphen,

e.g. "10.1.2005 - 20.1.2005".

i-views 5.3

79/534

The comparison operator Distance requires spelling of the parameter value with a tilde, e.g.

"15.1.2005 ∼ 5" - i.e. on 15.1.2005 plus/minus 5 days.

Comparison operators for character strings

Operator Beschreibung

Abstand

Enthält

Enthält Phrase

Enthält Zeichenkette

Enthält Zeichenkette (Regulärer Ausdruck)

Entspricht

Exakt gleich

Gleich

Gleich (Geo)

Gleich jetzt (Gegenwart)

Grösser als

Grösser/Gleich

Ist enthalten in

Kleiner als

Kleiner/Gleich

Nach jetzt (Zukunft)

Regulärer Ausdruck

i-views 5.3

80/534

Überschneidet

Überschneidet von oben

Überschneidet von unten

Ungleich

Vor jetzt (Vergangenheit)

Zwischen

Comparative value results from the script: attribute value conditions may be removed

from partial searches and replaced by a script and attribute condition. The results of the

script are then used as a comparative value for the attribute value condition, e.g. if the

comparison operators do not suffice for a specific query.

Identifying objects

The structured query provides several options for identifying objects within the knowledge

network. To simplify matters, the previous examples often defined the objects. This type of

manual determination may, in practice, be of help in testing structured queries or determin-

ing a (replaceable) default for a parameter entry.

At this point we have already become familiar with the combination with the name attribute

which can, of course, be any random attribute. In the menu item "Identify" we will find some

more options for defining starting points for the structured query:

Access right parameter: the results of the query may be made dependent on the appli-

cation context. This particularly applies in connection with the configuration of rights and

triggers when, generally speaking, only "user" is usable.

Script: the objects to be entered at this point are defined by the results of the script.

Semantic element with ID: you may also determine an object via its internal ID. This condi-

tion is normally only used in connection with parameters and the use of the REST interface.

In folder: using the search mode "in folder" the contents of a collection of semantic objects

can be entered into a structured query as input. The selection symbol will enable you to

i-views 5.3

81/534

select a folder within the work folder hierarchy. The objects of a collection are filtered with

respect to all other conditions (including conditions for terms).

1.3.1.4 Parameter conditions

Parameters

In structured queries, input can be passed on by means of a parameter. This allows handing

over query input within JavaScript code in forms of:

$k.Registry.query(’<registryKeyOfQuery>’).findElements({<parameterNameInQuery>: <input>})

The parametrized input can be in forms of:

• semantic element

• attribute value

• element id

i-views 5.3

82/534

There are two possibilities to test structured queries using parameters:

1. Using the test environment of the structured query

2. Invoking the structured query by script (executing or debugging)

In general, there are four conditions a parameter can have:

• Parameter is set
• Parameter is not set
• Parameter is deactivated
• (Parameter contains empty string)

Optional parameters

The structured query has a feature that allows using optional parameters: for a certain

branch of the query, the context menu offers the condition "Disable condition when no pa-

rameters set".

If the optional parameter condition has been set, it has the following effect: From this point

on, the rest of the branch (to the right) will not be encountered as condition for the query

result when the respective parameter has been deactivated.

Note: When the parameter is not set, the test environment will nevertheless throw an error

despite the optional parameter condition. If testing of optional parameters is needed, the

parameter needs to be disabled in order to test an unset parameter condition.

Important rules about setting parameters

Pa-

ram-

e-

ter

con-

di-

tion

Setting

in struc-

tured

query

Setting in JavaScript Result

Pa-

ram-

eter

is

set

Parame-

ter value

has been

entered

Variable containing

parameter value is

defined

Parameter condition is encountered in query

result

i-views 5.3

83/534

Pa-

ram-

eter

is

not

set

No pa-

rameter

value has

been en-

tered (just

executing

query)

Handing over no pa-

rameter

Using

findElements()
or

findHits()

without arguments or

setting parameter to

undefined.

Error: "Parameter xy is missing"

Pa-

ram-

eter

is

dis-

abled

Click-

ing on x

besides

parameter

Setting parameter to

null.
• With conventional parameter: as if the
parameter requirement would not

exist within the structured query

• With optional parameter: the branch
from the optional condition until end

of query branch will be ignored

Pa-

ram-

eter

con-

tains

empty

string

Entering

” or "",

rejecting

search

dialog if

occurring

Variable for param-

eter set to empty

string ” or ""

Query branch will return no result; if no alter-

natives exist, the whole query might return

no results

Caution: Risk of search results containing false positives.

For predictability and reliability of query results in scripts, make sure to avoid parameter

values from being null inadvertently, since no errors are thrown system wise. Use control

structures to catch unattended conditions of parameter input.

When an optional parameter is passed on to the structured query by means of a script in

a search view or a search result view, the value type of the parameter also needs to be set

to "optional". If the value type is set to "obligatory", the structured query will not deliver

any search result when the script sets the parameter value to "null" (with the intention to

deactivate the optional parameter).

1.3.1.5 Comments in structured queries

Adding comments

Every condition in a structured query can be commented. For adding a comment, choose

the option "add comment" in the context menu. At the condition in the structured query, an

existing comment causes a blue indicator flag which shows up a text in case of mouseover.

i-views 5.3

84/534

By means of the dialog "Edit comment", the corresponding comment can be changed or

removed:

The indicator flag for comments is not shown when the condition has a warning or a fault. In

this case you only can see the yellow warning indicator or the red fault indicator. Additionally,

all warnings, faults or comments will be listed in their order on the right side below the

parameters editor.

Warnings and cautions can be suppressed in the indicator indication if you want to ignore

them at this point (of course, this is not recommended). To do so, click on the indicator

symbol in the listed view or choose the function "Suppress warnings" in the context menu of

the condition. The indication can be reactivated on the same way or by choosing the context

function "Show all warnings" of the root finder.

i-views 5.3

85/534

1.3.2 Simple Search / Fulltext search

Processing the search queries of users may be carried out with or without interaction (e.g.

with type-ahead suggestions). The starting point is, in any case, the character string en-

tered. In configuring the simple search we can now define with which objects and in which

attributes we search according to the user input and how far we differ from the character

string entered. Here is an example:

How do we have to design and organise the search in order to receive the below feedback on

objects from the entry "white"? In all cases we will have had to configure the query to show

that we only want to have persons and bands as the results. How is it, however, if there are

any deviations from the user input?

• When is the (completely unknown) Chinese experimental band called "WHITE" a hit? If
we state that upper case and lower case doesn’t matter

• When will we receive "Whitesnake" as a hit? If we understand the entry to be a substring
and attach a wildcard

• When "Barry Eugene Carter"? If we not only search through the object names but in-

clude other attributes as well - his stage name is namely "Barry White".

These options can be found again in the search configuration as follows:

i-views 5.3

86/534

Configuration of the simple search with (1) details as to which types of objects are to be browsed

through, (2) in which attributes the search has to be made, (3) upper case and lower case and (4)

placeholders.

1.3.2.1 Simple search - details of the options

Placeholder/wildcard

The entry is often incomplete or we want to retrieve the entry in longer attribute boxes. To

do this, we can use placeholders in the simple search. The following settings for placeholders

i-views 5.3

87/534

can be found in simple search:

• Placeholder behind (prefix) finds the [White Lies] for the entry "white"
• Placeholder in front (suffix) finds [Jack White]
• Placeholder behind and in front (substring) finds [The White Stripes]
• Caution! Placeholder in front is slow.

The option "Always wildcards" works as if we had actually attached an asterisk in front and/or

behind. Behind automatic wildcards there is an escalation strategy: in the case of automatic

placeholders, a search is made first with the exact user entry. If this does not deliver any re-

sults a search will be made with a placeholders, depending on which placeholders have been

set. With the option prefix or substring there is once again a chronological order: in this case

you look for the prefix first (by attaching a wildcard) and, if you still can’t find anything, you

make a search for a substring (by means of a prefix and attaching a wildcard).

If you are allowed to attach placeholders in your search you can state in the box minimal

number of characters how many characters the search entry must show to actually add the

placeholders. By entering 0 this condition is deactivated. This is particularly important if we

set up a type ahead search.

With the weighting factor for wildcards you can adapt the hit quality to the extent that the

use of placeholders will result in a lower quality. In this manner we can, if we want to give

the hits a ranking, express the uncertainty contained in the placeholders with a lower ranking.

If the option "No wildcards" is selected the search entry will not be changed. The individual

placeholder settings will then not be available.

The user can, of course, him/herself use placeholders in the search entry and these can be

included in the search.

Apply query syntax: when the box for the option "Apply query syntax" has been checked a

simplified form of the analysis of the search input is used in which, for example, the words

"and" and "or" and "not" no longer have a steering effect. Nevertheless, in order to be able to

define how the hits for the tokens should be compiled, the default operator can be switched

to "#and" or "#or". What applies to all linking operators is the fact that they do not refer to

values of individual attributes, but to the result objects (depending on whether "hits only for

attributes" has been set). A hit for online AND system thus delivers semantic objects which

have a matching attribute for both online and the system (which is not necessarily the same).

Filtering: simple searches, full-text searches and also some of the specialised searches may

i-views 5.3

88/534

be filtered according to the types of objects. In the example described in the last paragraph

we made sure that the search results only included persons and bands. Attributes which do

not match a possible filtering are depicted in red bold print within the search configuration

dialogue. In our case this could be an attribute "review", for example, which is only defined

for albums.

Translated attributes: in the case of translated attributes we can neither select a transla-

tion, nor have the language dynamically defined. Search for multilingual attributes, then in

the active language or in all languages, depending on whether the option "in all languages"

is checked.

Query output: a maximum query output may be defined by entering the maximum number

in the "results" box. This checkbox will then limit the query output and the mechanism can

be activated or deactivated. By entering the number in the output the checkbox will auto-

matically be activated. Caution: if the number is exceeded no output will be shown!

Server-based search: generally speaking, each search can also be carried out as a server-

based search. The prerequisite for this is that an associated job client is running. This option

can be used when it can foreseen that very many users will make search queries. By out-

sourcing certain searches to external servers, the i-views server will be disburdened.

1.3.2.2 Multi word search inputs

In our examples for queries the users have, until now, only entered one search term. How-

ever, what would happen if the user entered "Abba Reunion News", for example, and thus

would like to find a news article which is categorised by the keywords "Abba" and "reunion"?

We have to disassemble this entry because none of our objects would match the entire string

or at least not the article being searched for:

i-views 5.3

89/534

Our examples so far do not, however, fall short only due tomulti word search inputs. We also

often have search situations in which it does not make sense to regard the names or other

character strings from the network, with which we compare the input, as blocks , e.g. because

we would like to retrieve input in a longer text. In this case the wildcards will eventually no

longer be an adequate means: if we also want to disassemble the input on the page of the

object and the text attributes which have been searched through it would be better to use

the full-text search.

1.3.2.3 Fulltext search and indexation

If we want to view or search through longer texts word by word, e.g. description attributes

we recommended the use of full-text index. What does something like that look like?

The full-text index records all terms/words which occur within a portfolio of texts so that i-views

can quickly and easily look up where a particular word can be found in which texts (and in which

part of the text).

"Texts", however, are not usually separate documents within i-views, but the character string

attributes which have to be searched through. Their full-text indexing is a prerequisite for

the fact that these attributes are offered in the search configuration.

Even full-text indexing concerns the deviations between the exact sequence of characters

within the text and the text which is entered in the index and which can hence be retrieved

accordingly. An example of this: a message from the German music scene:

i-views 5.3

90/534

In this example we find a small part of the filter and word demarcation operations which are

typically used for setting up a full-text index:

Word demarcation / tokenizing: often in punctuation such as exclamationmarks are placed

directly on the last word of the sentence without a space in between. In the full-text index,

however, we want to include the entry {tour}, not {tour!} - hardly anyone will search for the

latter. For this purpose, when setting up the full-text index we have to be able to specify

that certain characters do not belong to the word. The decision is not always so easy: In a

character string such as "Cuddle-Classic" which occurs in a text we have to decide whether

we want to include it as an entry in the full-text index or as {cuddle} and {classic}. In the first

instance our message will then only be found if an exact search is made for "Cuddle-Classic"

or, for example, "*uddle-c*", in the second instance for all "classic" searches.

What we will probably keep together in spite of the occurrence of punctuation, i.e. exclude

from tokenizing, are abbreviations: when AC/DC come to Germany o.i.t. (only in transit) it is

probably better to have the abbreviation in the index instead of the individual letters.

Filter: by using filter operations we can bothmodify words when they are included in the full-

text index and also completely suppress their inclusion. Known: stop words, at this point we

can maintain a list. Moreover, we probably do not want individual words (Bela B.) to be in

the index like this - the likelihood of confusion is too great. Using other filters we can restore

words to their basic forms or define replacement lists for individual characters (e.g. in

order to eliminate accents). Other filters, in turn, clear the text of XML tags.

We can set all this in the admin tool under "index configuration". We can then assign these

configurations (in the knowledge builder or in the admin tool) to the character string at-

tributes. The index configuration is organised in such a manner that filtering can take place

before the word demarcation and after the word demarcation.

The full-text search does not affect the wildcard automatism of the other queries but the

user may, of course, provide his input with wildcards.

1.3.3 Search pipeline

Search pipelines enable individual components to be combined to complex queries. Single

components perform operations in the process, e.g.:

i-views 5.3

91/534

• traversing the network and thus determining the weighting
• performing structured queries and simple queries
• compiling hit lists

Every query step produces a query output (usually a number of objects). This query output

may, in turn, be used as input for the following components in the pipeline.

Example

Let us assume that songs and artists from our musical network are characterised with tags

named ’moods’. Based on a certain ’mood’ we now want to find which bands best represent

this mood.

Step 1 of our search pipeline goes from a starting mood (in this case "aggressive") via the

relation is mood of to the songs which are assigned to the mood ’aggressive’:

i-views 5.3

92/534

In the second step we go from the number of songs detected in the ’mood’ searched for to

the corresponding bands via the relation has author:

i-views 5.3

93/534

Now we would like to pursue a second path: from the starting point ’mood’ "aggressive" to

the musical directions which are characterised by aggressiveness.

Based on this number of relevant musical directions we have to go to bands which are as-

signed to this mood. We go down this alternative path in one step using a structured query:

From the last two steps we give the indicator "musical direction" a somewhat lower weighting

and compile the outputs at the end:

i-views 5.3

94/534

The steps are processed in sequence: the input and output define which step will continue

to work with which hit list. For instance, in this manner we would be able to begin again with

’mood’ on our alternative path.

The principle of weightings

It was the goal to give the bands we obtained as outputs a ranking which shows how great

their semantic "proximity" is to the mood aggressive. In particular, we influence ranking in

this search at two positions: right at the end we weight bands higher in the summary which

are found both via their musical direction and their songs. In this case this applies to Linkin

Park and the Sex Pistols. The higher ranking of Linkin Park results from the fact that again and

again different songs lead to Linkin Park with the mood aggressive. Since more aggressive

songs from Linkin Park are in the database, Linkin Park should be ’rewarded’ with a higher

ranking.

1.3.3.1 Configuration of search pipelines

The individual components of a search pipeline are depicted in the main window in the box

components in the order of sequence in which they are implemented.

Using the button add we can insert a new component at the end of the existing components.

Grouping with blocks serves only to provide an overview, e.g. for the compilation of several

components in a functional area of the search pipeline.

The order of sequence of the steps can be changed using the button upwards and downwards

or with drag & drop.

Using the button remove the component selected will be removed, to include all possible sub

components. The configuration for the component selected is displayed on the right-hand

side of the main window.

i-views 5.3

95/534

Configuration of a component

A selected component may be configured on the right-hand side of the main window using

the tab "configuration": most components need input. This usually comes from a previous

step. In this way, the first components in our example pass on the output under the variable

"songs" to the next component, this then goes from there to the bands and, in turn, gives the

output to the next steps as "bandsThroughSongs":

Using the input and output variable we can also, in later steps, re-set to the initial output

which we saw in the last paragraph.

We define the input parameters as global settings for the search. Under the name which we

assign here we can then access these inputs in our search pipeline during each step. In our

example the input parameter for identifying typical bands is the mood.

Some components enable a deviation from the standard processing sequence:

Individual processing: elements of a quantity, e.g. hits from a search may be processed

individually. This is practical if you want to assemble an individual environment of adjacent

objects for search hits. In individual processing each element of the configured variable in

the single hit is saved and implemented in the sub components.

Condition for set parameters: this component only carries out further sub components if

predefined parameters have been set, whereby the value is insignificant. New sub compo-

nents may be added by using the ’add’ tab.

KPath condition: By using a KPath condition we can determine that the sub components may

only then be implemented if a condition expressed in KPath is fulfilled. If the condition is not

fulfilled the input will be adopted. KPath is described in the manual for KScript.

Output: we can stop the search at any stage and return the input. This component is also

useful for testing the search pipeline.

The block components which we have also used in our example group a lot of individual

steps. In order to maintain an overview in extensive configurations we can also change the

name of the component using the tab "description" and add a comment as well. Neither the

block components nor the description have any functional effects. Both of them only serve

i-views 5.3

96/534

the ’legibility’ of the search pipeline.

Test environment

Using the test environment in the menu we can analyse the functioning of the search. The

upper section contains the search input and the lower section the output. The input may be

a search text or an element from the knowledge network, depending on which required and

optional input parameters we have globally defined in the search pipeline. If we wish to enter

an element from the knowledge network as a starting point we select the corresponding

parameter line and add an attribute value or a (knowledge network) element, depending on

the type.

On the tab Trace search a report of the search will be displayed. This primarily consists of

the configuration of the output variables and the duration of the implementation of each

component. The log begins with the pre-configured variables (search string) as well as active

users.

Calculation possibilities

i-views 5.3

97/534

In the case of some components it is possible to summarise several quality values into one

single quality value - e.g. in "summarise hits" but also when traversing the relations (see ex-

ample above). For this purpose the following methods of calculation are available:

• addition / multiplication
• arithmetic average / median
• minimum / maximum
• ranking

The option "ranking" is then always suitable when we want to assemble an overall picture

from individual references, e.g. if we want to calculate many paths, at least partially inde-

pendent paths - at the end still with differing lengths - to an "overall proximity". Using the

ranking calculation we ensure that all positive references (all independent paths) keep in-

creasing their similarity without exceeding 100%.

In the search pipeline quality values are always specified as floating point numbers. The

value 1 thereby corresponds to a quality of 100%.

1.3.3.2 The single components

Weighted relations and attributes

Starting with semantic objects, we can traverse the graph in this step and collect relation

targets or attributes. To do so, we have to specify the type of relation or attribute.

Please note: Only collected targets are output, rather than the initial set. If this is to be

displayed, we then have to summarize the input and output hits.

When traversing a relation, the weighting of hits can be influenced. Let s assume we want

to semantically enhance the “initial mood” of our example search with “sub-moods”. But this

indirection is to be reflected in a ranking: Connections to bands that run via sub-moods are

not supposed to count as much as connections via an initial mood. For this purpose, we can

assign a fixed value - e.g. 0.5 - for moving along the relation and then merge input quality,

e.g. multiply it. In this case the sub-moods added in this step count only half as much as

direct moods.

Instead of assigning a fixed weight for moving along the relation, we could also read the value

from a meta-property of the basic type float of the selected relation. If the attribute is not

available or no attribute has been configured, the default value is used. The value should be

between 0 and 1. The hit generation can be configured in detail: For relations, you have the

option to also generate a new hit for the source of the relation (rather than for the relation

target).

If a relation has been selected as a property and hits are generated for relation targets, we

can also transitively trace the relation. The quality value is reduced with each step until the

value falls below the specified threshold. If an object has more relations than specified under

maximum fan-out, these relations are not traced. The higher the damping factor, the more

the quality value is reduced.

Structured query

We can use structured query components to either search for semantic objects/go from an

i-views 5.3

98/534

existing set to other objects (as with the weighted relation) or filter a set.

If we search for objects, we forward our initial set of hits from a preceding step into the

search via the parameter name. (In general: Within the expert query, variables of the search

pipeline, e.g. search string, can be referenced via parameters.) In this case, the input stays

blank.

For filtering, in contrast, we specify a set of objects as the input. The output contains all

objects that meet the search condition. Objects that do not meet the search condition can

optionally be stored in an additional variable (Rest).

We can either define the structured query ad hoc directly in the component or we can use

an existing structured query.

Please note: If an existing search is selected, no copy is created. Any changes to the struc-

tured query that we make for search pipeline purposes also modify the query for all other

uses.

Query

You can use the “Query” component to execute simple queries, full text queries and other

search pipelines. Simple queries and full text queries receive a string here, e.g. the search

string: This is a parameter that is available for processing user input in all search pipelines.

The hit list of the called search fills the output of this component.

By integrating search pipelines into other search pipelines, we can factorize sub-steps that

occur more frequently. Several parameters and entire sets of hits (“hit collections”) can be

transferred to other search pipelines. With integrated search pipelines we can also replace

several parameters, that is, we can access of every sub-step output in the integrated search

and vice versa. If we go to selected parameters, we can also rename them, for example, if

we want to use a set of hits from the integrated search but have already used the name.

i-views 5.3

99/534

Alternatively, we can also apply only some of the parameters from the integrated search in

order to avoid such conflicts.

Summarize hits

We can use this component to summarize different sets of hits (“hit collections”) from previ-

ous steps. The following methods are available for summarizing:

Join: All hits that occur in at least one of the sets are output as a result

Intersect: Only hits that occur in all sets are output as the result.

With joins and intersects, a semantic object can occur in several sets of hits (“hit collections”)

and has to be computed as one total hit with a new hit quality. The aforementioned calcula-

tion options are also available here.

Difference: One of the sets of hits (“hit collections”) must also be defined as the initial set.

The other sets are deducted from this set.

Symmetric difference: The result set consists of objects that are included in exactly one

subset (= everything except for the intersection, when there are two sets).

Three different types of total hits can be generated. The selection is particularly relevant if

partial hits include additional information.

• To generate uniform hits, remember the original hits as the cause: New hits are gener-
ated that contain the original hit as the cause.

• Extend original hits: The original hit is copied and receives a new quality value. If there
are several hits for the same semantic object, a random hit is selected.

• Generate uniform hits: A new hit is generated. The properties of the original hit are lost.

Summarize partial hits

During individual processing you frequently have to general a total set from partial hits. The

component “Summarize partial hits” enables you to do so. This summarizes all hits of one or

more partial sets of hits (“hit collections”). The difference to Summarize hits is that summariz-

ing only take parts at the end, not for every partial hit set. This is relevant in particular when

calculating the quality because summarizing hits would return incorrect values, in particular

for the median.

Script

A search pipeline can contain a script (JavaScript or KScript). This can access the variables

of the search pipeline. Furthermore, a script can transfer several parameters to the search

pipeline. The result of the script is used as the result of the component.

JavaScript API and KScript are described in separate manuals.

Copy quality from attribute value

For hits, we can copy the quality value from an attribute of the semantic object. If the ob-

ject does not have exactly such an attribute, the default value is used. The value should be

between 0 and 1.

i-views 5.3

100/534

Compute total quality from weighted qualities

To adapt the quality of a search hit, it can be useful to compute a total value from individual

partial qualities. The qualities must be available as numeric values. These values are used to

calculate a new total quality.

Compute overall quality of hits

You can use the individual quality values of a set of hits to compute a total quality.

Restrict quality

We can restrict sets of hits (“hit collections”) to hits whose quality value falls within specified

limits (minimum or maximum). Normally, we want to filter out hits that fall below a certain

quality threshold.

Restrict number of hits

If the total number of a set of hits is to be restricted, we can add the component “restrict

number of hits”. We can use the option “Do not split hits of the same quality” to prevent a

random selection in case of several hits of the same quality in order to comply with the total

number. We then get more hits than specified.

If some very specific cases, we can also randomly select the hits, e.g. if we have a large

number of hits with the same quality and want to generate a preview.

Scale quality

Die quality values of a set of hits can be scaled. A new set of hits with scaled quality values is

calculated. The calculation takes place in two steps:

1. Die quality value of the hits are limited. The threshold values can either be specified or

calculated. The calculation determines the minimum and maximum value of the hits. If

thresholds are specified and a hit has a quality value that falls outside of the thresholds,

the value is limited to the threshold value. If you want to remove such hits, you have

to execute the restrict quality component first. Example: Mapping percentage values to

school grades. 30% is average, over 90% is high score. The values can be scaled linearly

from 30% to 90%.

2. Following that, the quality values are scaled linearly. Hits with the minimum/maximum

input value receive the minimum/maximum scaled value.

Compute hit quality

You can use a KPath expression to generate a new hit with calculated quality for a hit. The

KPath expression is calculated on the basis of the input.

1.3.3.3 KPath

KPath allows addressing of objects within the Knowledge Graph. The notation is similar to

XPath but differs in some respects.

i-views 5.3

101/534

The individual elements of the expression normally are separated by a slash "/". If a KPath

expression begins with "/", then the evaluation starts at the root type, else it starts at the

current object (depends on the context of the evaluation). If an element does not correspond

to one of the listed elements of the table, it will be interpreted as a name of a sub type. Simple

names can be specified without quotation marks.

When specifying a language, it must be stated according its ISO 639-2 code ("eng" for English,

"ger" for German, ...).

Examples:

• @Name
Attribute "Name"

• //book\Faust/∼author
Relation "author" of the book "Faust"

• //$artifact$/book{eng}
Sub type "book" (English name) of the type "artifact" (internal name)

• //book*[∼author/target()/@Name = "Goethe"]
All books which had been written by Goethe

1.3.3.3.1 Names

In combination with@, /, //, \ and \\, following kinds of names can be used:

Name Description

name Name in standard language. Without quotationmarks the name

needs to be begin with a letter, an asterisk or with an underscore

sign. Whitespaces or special characters which are used in other

expressions are not allowed. The name must comply with fol-

lowing regular expression:

[a-zA-Z_*][∧/(){}$%{}[],∼@§#+-’"s|∧&]*
(For better reading, the escape character "\" has been left out)

"name"

’name’

If the name doesn’t meet the above-mentioned requirements,

it needs to be surrounded by single quotes or double quotes.

Here, the backslash sign "\" serves as escape character for pos-
sibly used apostrophes, e. g. ’Wendy\’s’.

name{lang} Name in the specified language "lang"

$name$, $"name"$ Internal name

§name§, §"name"§ System name

#ID42_1013 ID of the object

Names are not replaceable by variables and must therefore be a part of the script.

i-views 5.3

102/534

1.3.3.3.2 Operators

Numeric values can be linked by the operators +, -, * or /.

When using "*", "-" and "/", at least one white space character must surround the operator

on both sides each.

Parenthesis are supported, e. g. "(5 + 3) * 4" equals the value 32.

Example: Sum of all relations between Goethe and Schiller:

\\Goethe/∼*/size() + \\Schiller/∼*/size()

The operator "+" also can be used to append strings:

//person\Goethe + " wrote " + //book\Faust

leads to:

Goethe wrote Faust

By means of the unary operator "!", a Boolean expression can be negated, e. g.:

!1=2

For some operators, an alternative notation only consisting of alphabetical characters is pos-

sible, e. g. "eq" for equality. Applying this notation, at least one white space character needs

to be used between operator and operand. The expressions are case-sensitive, so operators

are only recognized if written in small letters.

Possible operators are (in descending precedence):

Opera-

tor

Alternative

notation

Meaning

! not Negation (unary operator)

* Multiplication

/ Division

+ Addition, linking (only character strings)

- Subtraction

< lt Smaller than

> gt Greater than

<= le Smaller than or equal to

>= ge Greater than or equal to

= eq Equal to

!= ne Not equal to

∧∧ xor Exclusive or (logical operator)

i-views 5.3

103/534

&& and And (logical operator)

|| or Or (logical operator)

Due to KScript basing on XML, operators like ’&&’, ’<’ or ’<=’ need to be written using entities
like ’<’ or ’&’ instead of the character signs ’<’ and ’&’ or alternative notation needs to
be used.

Example for "and":

<Path path="var(left) && var(right)"/>
<Path path="var(left) and var(right)"/>

Example for "smaller than":

<Path path="var(left) < var(right)"/>
<Path path="var(left) lt var(right)"/>

1.3.3.3.3 Conditions

Conditions can be specified using the following notation:

path1[path2]path3

On all elements out of path1 for which the condition path2 applies, path3 will be executed.

To express the condition path2, comparative operators can be used (see preceding section).

Boolean expressions can be linked with Boolean operators.

Example: Name of all books which had been written by Goethe:

//book*[∼author/target()/@Name = "Goethe"]/@Name/value()

1.3.4 Model "hit"

The “Hit” type content model is available to ensure that search queries can be processed and

transported both as quality and causes. A “Hit” can be seen as a container that summarizes

the element including several properties and makes it temporarily available to the context.

The contained properties can be, for example, calculated hit quality, hit cause, change log

entry etc.

In search pipelines, the content models “Hit” and “Hits” are available. The “Hits” type is an

array of several “Hit” elements:

i-views 5.3

104/534

Meta-attributes of hits

In addition to the semantic element, the following meta-attributes are transported in a hit:

• Hit quality: Can have a value between 0 and 1 by setting a quality in a search pipeline;
the hits of a structured query receive the value 1 by default

• Hit cause: Refers to the input element that has led to the hit and its type
• Hit cause (snippet): Refers to the content or the search term that has led to the hit

For detailed information on the meta-attributes, refer to the JavaScript API.

Using hits in search pipelines

If a hit list is to be processed in a search pipeline by means of a simple query, individual

processing is required because the hit list is in the form of an array: Queries can process an

individual “hit” in the form of a string but not “hits” (= array). Converting a “hit” into string, in

turn, can be done using a script that precedes the simple query.

Example script for converting a hit into a string:

function search(input, inputVariables, outputVariables) { return input.element().name(); }

Using hits in tables

The “Use hits” option is available in the column element configuration of a table. This option

determines whether the entire hit element (semantic element + meta-attributes) or only the

semantic element is to be forwarded to display query results.

Processing hits in tables via a script

If the query results are to be processed further using a script, the “Use hits” option deter-

mines whether the query result is supposed to be treated as a hit: The script is forwarded

either $k.SemanticElement or $k.Hit as a JavaScript object.

i-views 5.3

105/534

1.3.5 The search in the knowledge builder

With the exception of the structured queries which are created in the folders and also im-

plemented there, all searches in the header of the knowledge builder are made available for

internal usage.

For this purpose we have to drag & drop a pre-configured search only into the search box of

the header of the knowledge builder. If this contains several searches to be selected from

you can select the desired search from the pull-down menu by clicking on the magnifier icon.

The search input box always contains the search mode which was last carried out.

We can remove the search using the global settings where we can also change the sequence

of the various searches in the menu.

1.3.6 Special cases

1.3.6.1 Volltext search Lucene

The full-text search may also alternatively be carried out via the external indexer Lucene. The

search configuration is then analogue to the standard full-text search, i.e. attributes may, in

turn, be configured in the search which are also connected to the Lucene index; the search

process is also analogue. In order to configure the Lucene indexer connection we hereby

refer you to the corresponding chapter in the admin manual.

1.3.6.2 Search with regular expressions

Regular expressions are a powerful means of searching through databases for complex

search expressions, depending on the task concerned.

Search with regular expressions hit

The [CF]all the call, the fall

Car. cars

Car.* cars, caravans, Carmen, etc.

[∧R]oom doom, loom, etc. (but not room)

i-views 5.3

106/534

As search inputs, i-views supports the standard also known from the standard known from

Perl which, for example, is described in the Wikipedia article for regular expression.

1.3.6.3 Search in folders

The search in folders is carried out in names of folders and their contents:

• folders whose name matches the search input
• fodlers which contain objects which match the search input
• expert searches which contains elements which match the search input
• scripts in which the search input appears
• rights and trigger definitions which contain elements which match the search input

Using the search input #obsolete, you can target your search for deleted objects (e.g. search-

ing in rights and triggers). When configuring the search the number of folders to be searched

through can be limited. Furthermore, the option "search for object names in folders" may be

deactivated. This is helpful if you do not want to search for semantic objects in folders be-

cause in the case of extensive fodlers (e.g. saved search results) the search for object names

may take a very long time.

1.3.6.4 Query for duplicates

After imports or due to other reasons such as quality assurance it can be necessary to check

for duplicates semantic elements. To do so, a specially configured structured query can be

used.

Note: Because the structured query shown in the following example refers to elements of the

whole Knowledge Graph without further type restrictions (objects of top level type), executing

the query can take an unusually amount of time. It therefore is adviced to restrict the query

to the most exactly subtype as possible.

In principle, the structured query searches for different objects that have identical values

for their identifying attributes (here: objects with identical names).

The query for duplicates can be configured as follows:

1. Create a query for objects of the subtype in question. Add the identifying attribute as

condition (here: primary name).

2. Depending on the object, create a utility query. Use a negative reference (comparison

operator "is not") to make sure that only different objects will be found:

i-views 5.3

107/534

3. For comparing the attribute values against each other, the value fields need to be removed

first:

4. After having removed the value fields, the context menu offers the option "compare val-

ues". Add this condition and select the identifying attribute of the utility query to compare

against:

Result: Structured query for searching duplicates.

i-views 5.3

108/534

1.3.6.5 Query for identical translations

Similar to the query for duplicates, the query for objects with identical translations makes

use of references and attribute value comparisons.

Note: Because the structured query shown in the following example refers to elements of the

whole Knowledge Graph without further type restrictions (objects of top level type), executing

the query can take an unusually amount of time. It therefore is adviced to restrict the query

to the most exactly subtype as possible.

The difference between this query and the query for duplicates is that it is all about one

and the same object this time, with the additional condition of identical attribute values in

different translation layers of one and the same attribute:

1.4 Folder and registration

Along with the objects and their properties, we also build a variety of other elements in

a typical project: we define, for example, queries and imports/exports, or write scripts for

specific functions. Everything that we build and configure can be organized in folders.

The folders are shared with everyone else working on the project. If we do not wish to do so,

we can file things in the private folder, for example for test purposes. This is only visible for

the respective user.

A special form of the folder is the collection of semantic objects, in which we can file objects

manually, for example for processing at a later date. To do so, we simply move them to the

folders using Drag&Drop, and there are also operations to, for example, define result lists in

folders.

In the moment we delete one of these objects within the Knowledge Graph, it is also deleted

from the collection. If a semantic element is removed by clicking on "Remove from folder", it

is only removed from the collection but still exists within the Knowledge Graph. If the actions

"Delete" or "Delete selected elements" or "Delete all elements inside the folder" is used, the

semantic element actually is deleted and from the Knowledge Graph and therefore is not

accessible anymore within the collection.

i-views 5.3

109/534

Caution: The action "Remove from folder" has different functionalities, depending on the

context of use: In the case of folders containing import mappings, the action "Remove from

folder" actually means completely deleting the respective import mapping!

In the case of collections of semantic objects with more than 100 entries, for reasons of per-

formance, no determination of the table configuration that best suits the content occurs. We

can, however, request this by means of the context menu function “Determine configuration

of the object list” when necessary.

Registration

Queries, scripts, etc. can call each other (a query can be integrated into another query or into

a script, while, in turn, a script can be called from a search pipeline). There are registration

keys for this purpose, with which we can equip queries, import/export mappings, scripts

and even collections of semantic objects and organizing folders to ensure they provide other

configurations with a functionality. The registration key must be distinct. Everything that

has a registration key is automatically added to the “Registered objects” folder, or in the

subfolder that corresponds to its type

Shift, copy, delete

Let us assume we have a folder called “Playlist functions” in our project. This might contain

an export, some scripts and a structured query “similar songs”, which we would like to use

in a REST service. The moment we give the structured query a registration key, it is added to

the folder “Registered objects” (“Technical” section). This means the structured query “similar

songs” appears in the folder “Registered object” under “Query”. It also remains there when

we remove it from our project subfolder “Playlist functions”. If we remove the registration

key, the query will automatically disappear from the registry.

The basic principle when deleting or removing: Queries, imports, scripts can be in one or

several folders at the same time, and at least one folder must contain them. Only when we,

for example, remove our query from the last folder will it actually be deleted. Only then does

i-views also request a confirmation of the delete action. The same applies for removal of the

registration key.

If we wish to delete the query in one step, regardless of the number of folders that contain

it, we can only do this from the registry.

Folder settings

We can define quantitative limits for query results, folders and object lists (lists of the specific

objects in the main window of the Knowledge Builder when an object type is selected on the

left-hand side) in the folder settings. Automatic query up to the number of objects speci-

fies up to which number of objects the contents of the folders or the object lists are shown

without any further interaction by the user. If the limit set there is exceeded, the list initially

remains empty, and the message “Query not executed” appears in the status bar. Executing

a search without an input in the input line shows all objects. This, at least, until the second

limit has been reached: Maximum number of query outputs, maximum number of outputs

in object lists - in this instance high values - there is actually no result when these values are

exceeded, queries must be restricted, e.g. in object lists in which we also have the beginning

of the name in the input box.

i-views 5.3

110/534

1.5 Import and export

By mapping data sources we can import data to i-views from structured sources and ex-

port objects and their properties in structured form. The sources can be Excel/CSV tables,

databases or XML structures.

The functions for import and export overlap to the most part and are therefore all available

in a single editor. In order to access functions for import and export, it is first necessary to

select a folder (e.g. the working folder). There the “New mapping of a data source” button

can be used to select a data source for the import or export.

Alternatively, you can find the button on the “TECHNICAL” tab under “Registered objects” ->
“Mappings of data sources”.

The following interfaces and file formats are available for import and export:

• CSV/Excel file
• XML file
• MySQL interface
• ODBC interface
• Oracle interface
• PostgreSQL interface
• For the exchange of user IDs, a standard LDAP interface has been implemented.

The following section uses a CSV file to describe how to create a table-oriented import/export.

As all imports/exports apart from XML imports/exports are table-oriented and the individual

data sources differ only in terms of their configuration, the example for the mapping of the

CSV file can also be applied to the mapping of other databases and file formats.

1.5.1 Mapping of data sources

CSV files are the default exchange format for spreadsheet applications such as Excel. CSV files

consist of individual rows of plain text in which columns are separated by a fixed, predefined

character such as a semicolon.

1.5.1.1 Principle of operation

Let s use a table with songs as a first example: When the table is imported, we would like to

create a new, specific object of the type song for each line. The contents of columns B to G

become attributes of the song, or relations to other objects:

i-views 5.3

111/534

Using the song as a basis, we build up the structure of attributes, relations and target objects

that should be created by the import (left-hand side). An object of type song is created this

way for row 18, for example, with the following attributes and relations:

We can, however, also decide to distribute the information from the table in a different way,

for example allocate the year of release and artist to the album, and in turn the genre to the

artist. A row still forms a context, however this does not mean it must belong to exactly one

object:

i-views 5.3

112/534

Everywhere that we build up new, specific objects and relation targets in our example, we

must always specify at least one attribute for this object, in this case the respective name

attribute that allows us to identify the corresponding object.

1.5.1.2 Data source - selection and options

Once we have selected the “New mapping of a data source” button, a dialog opens which

we must use to specify the type of data source and the mapping name. If we have already

registered the data source in the semantic graph database, then we will now find it in the

selection menu at the bottom.

i-views 5.3

113/534

By pressing “OK” as confirmation, the editor for the import and export opens. We can specify

the path of the file we wish to import under “Import file”. Alternatively, we can also select

the file using the button to the right of it. As soon as the file has been selected, the column

headings and their positions in the table are exported and shown in the field at the bottom

right. The “Read from data source” button can read out the columns again in the event of

any changes to the data source. The column “Mappings” shows us the respective attribute to

which the respective column of the table is mapped later on.

i-views 5.3

114/534

The structure of our example table corresponds to the full default settings, so that there is

nothing else to factor in under the menu item Options. CSV files can, however, exhibit struc-

tures that are very different, which must be factored in using the following setting options:

Encoding: The character encoding of the import file is defined here. This provides ascii, ISO-

8859-1, ISO-8859-15, UCS-2, UTF-16, UTF-8 and Windows-1252 for selection. If nothing has

been selected, the default setting that corresponds to the operating system in use is applied.

Line separator: In most cases, the setting “detect automatically”, which is also selected by de-

fault, is sufficient. However, should the user establish that line breaks are not being identified

correctly, then the corresponding, correct setting should be selected manually. This provides

CR (carriage return), LF (line feed), CR-LF and None for selection. The standard used to encode

the line break in a text file is LF for Unix, Linux, Android, Mac OS X, AmigaOS, BSD and others,

CR-LF for Windows, DOS, OS/2, CP/M and TOS (Atari), and CR for Mac OS up to Version 9,

Apple II and C64.

1st line is heading: It may the case that the first line does not include a heading, and the

system must be notified of this by removing the checkmark set by default next to “1st line is

heading”.

Values in cells are surrounded by quotation marks is selected so that the quotation marks are

not included in the import when this is not wanted.

Identify columns: Whether the columns are identified using their heading, the position or the

character position must be specified, as otherwise the table cannot be captured correctly.

i-views 5.3

115/534

Separator: If a different separator than the default semicolon is used, this must also be spec-

ified when the column is not identified using the character position.

Moreover, the following rules apply: If a value in the table contains the separator or a line

break, the value must be placed in double quotation marks. If the value contains one quota-

tion mark, this must be doubled (»“”«).

1.5.1.3 Definition of target structure and mappings

1.5.1.3.1 The object mapping

We will now start setting up the target structure that should be produced in the semantic

graph database. In our example, we are starting with object mapping of the songs. In order

to map a new object, we must press the “New object mapping” button.

The next step is to specify the type of object for import.

There are further specific settings in the options tab of the object mapping.

With objects of all subtypes: If the checkbox is set to "With objects of all subtypes", the

import also includes objects from all subtypes of "Song". Since this is usually desired, the

checkmark is set here by default.

Exact type is specified by the followingmapping: If the exact type to which the object is to

be created is identified in the import source, this can bemapped here via the "New..." button.

It must be a subtype of the type specified in the tab "Mapping".

Allow multiple objects: It is possible that the knowledge network already contains sev-

eral objects with correspondent identifying properties (correspondent names). If the import

mapping needs to be referred to these objects, an ambiguity conflict occurs. If you set the

checkmark here, the import for all these objects is going to be performed disregarding the

ambiguity.

If you do not set the checkmark, the import will not be carried out for the multiple occuring

objects and instead the user will be informed that the importer cannot uniquely identify the

object.

1.5.1.3.2 The attribute mapping / Identifying objects

Now we want to link the information in the table to the object mapping of the songs. At-

tributes for individual songs are represented along with relations. In order to first create the

track name for a song in the mapping, we add an attribute to the object mapping for song.

Clicking on the “New attribute mapping“ button opens a dialog, which must be used to select

the relevant column from the table to be imported.

i-views 5.3

116/534

As this attribute is the first one we created for the object mapping of songs, it is then auto-

matically mapped to the name of the object, as the name is usually the most commonly used

attribute.

Note: The first attribute created for an object is also used automatically in the identification

of the object.

i-views 5.3

117/534

An object must be identified by at least one attribute - by its name or its ID, or by a combina-

tion of multiple attributes (as with the first and last name and date of birth of a person) - it

should already exist so that it can be unambiguously found in the semantic graph database.

This prevents unwanted duplicates from being created during import.

Note: Meta-Attributes at relations can also be imported. Here it is ensured that both the

relation source and the relation target are specified and identified, otherwise the relation is

ignored by the importer.

In the “Identify“ tab it is possible to subsequently change the attribute identifying the object,

or to add multiple attributes. In addition, it is possible to specify whether the values should

be matched in a case-sensitive fashion, and the query should return identical values (with-

out index filter / wildcards). The latter is relevant if filters or wildcards are defined in the

index that specify, for example, that a hyphen should be omitted from the index. The term

would not be found with a hyphen if the search took place only via the index; in this case, a

checkmark would be needed here so the search only finds the exactly identical value.

Now we can add further attributes to object mapping that do not need to contribute towards

identification, e.g. the length of a song - and this is once again done via the “New attribute

mapping” button. (Please note: first the object mapping “objects of song” must be selected

again.) Now we select the “Length” column from the table to be imported. This time we

have to manually select the attribute to be mapped to the “Length” column. The field on

the bottom right contains the list of all possible attributes defined in the schema that are

available to us for objects of the “song” type, among them also the “length” attribute.

i-views 5.3

118/534

Mapping of translations

For string attritbutes with translations, e.g. the primary name of objects, we can define in

which language the value needs to be imported.

If an attribute mapping is created for a translated attribute, the import language automat-

ically is set to the "Current language". The current language equals the language in which

the Knowledge Builder has been started (which at the same time is the language of the user

interface).

If the import needs to be done in another language than the current language, this can be

specified by selecting the tab "Language" and then by selecting a language of the list, which

then becomes the chosen language for the attribute mapping.

In case of an import source containing several translations of one and the same attribute

(within the same line), these values can be imported within one import mapping simultane-

ously.

The simultaneous import of translations for an attribute is done as follows:

i-views 5.3

119/534

For each language, create a separate attribute mapping for the same attribute, but specify a

different import language

In the "Language" tab for one of the attributemappings, add the relevant attributemappings

of the other languages to the field "Mappings of other translations of the same attribute"

This prevents from separate attributes being created for each translation and ensures that

corresponding translations are imported altogether at the same attribute.

1.5.1.3.3 The relation mapping

Next, we want to map the album on which the song is located. Since albums are concreate

objects in the semantic graph database, we need the relation that connects the song and the

album to do this. To map a relation, we first select the object for which the relation is defined

and then click on the button “Map new relation.”

Following that, just like for attributes, we get a list of all possible relations; and the required

relation “is included in” is naturally included.

i-views 5.3

120/534

In the next step, we now have to define where in this table the target objects come from. A

new object mapping is required for the target; this is created using the “New” button. If the

type of the target object is uniquely identified in the schema, it is copied automatically. If not,

a list of possible object types appears.

i-views 5.3

121/534

For new object mappings, we then once again have to select the attribute that identifies the

target object etc. This creates the target structure of the import.

1.5.1.3.4 The type mapping

Types can also be imported and exported. Let s assume we want to import the genres of

songs as types.

i-views 5.3

122/534

To map a new type, we choose the “New type mapping” button.

Following this, we have to specify the super-type of the new types to be created, in our ex-

ample, the super-type would be “Song:”

Following that, we have to specify from which column of the imported table the name of our

new types is to be taken:

Following that, we still have to specify on the “Import” tab that our new types are not sup-

posed to be abstract:

i-views 5.3

123/534

If we now want to assign the corresponding songs to their new types, we have to use the

system relation “has object.” In older versions of i-views this relation is called “has individual.”

As the target we chose all objects of song (incl. subtypes), which are defined via the Name

attributes in accordance with the Song title column.

If we now import this mapping, we get the desired result. The songs that already exist in the

semantic graph database are taken into account by the import setting “Update or create if not

found” and moved under their respective type so that no object is created twice (see chapter

Import behavior settings). A quick reminder: A specific object cannot belong to several types

at once.

There is another special case. If we have a table in which different types occur in one column,

we can also map this in our import settings.

To do this, we count the mappings of objects to which we want to assign subtypes (in this

case “objects of location”) and then select the corresponding super-type on the “Options”

tab.

i-views 5.3

124/534

It is also important not to forget to specify on the “Import” tab that the type is not supposed

to be abstract so that concrete objects can be created.

Careful: Assuming Liverpool already exists in the semantic network but is assigned to the

type “Location” because it did not have subtypes such as “City” and “Country” at that time.

In this case, Liverpool is not created anew under the type City. Reason: The objects of the

Location type are only identified via the name attribute and not via the subtype.

1.5.1.3.5 Mapping of extensions

Extensions can also be imported and exported. Let s assume we have a table that shows the

role of a band member in a band:

Ron Wood is a guitarist with the Faces and the Rolling Stones, but a bassist with the Jeff Beck

Group. In order to map this, we must select the object for which an extension was defined in

the schema and then press the “New extension mapping” button.

Like an object mapping, an extension mapping queries the corresponding type. In the

schema of the music network, the “Role” type is an abstract type. So it is necessary to de-

fine in the mapping that the role is to be mapped to subtypes of the “Role” type (see Type

mapping chapter).

As with objects and types, the relation can be mapped to the extension (or to the subtypes

of an extension).

i-views 5.3

125/534

1.5.1.3.6 The script mapping

The script mapping can only be used upon export. The script can be written in either

JavaScript or KScript.

The script mapping is, for example, used when we wish to combine three attributes from

the semantic graph database to form an ID. However, this may make the export slower. (In

the case of an import, this could be mapped using a virtual property more easily. The use of

virtual properties is explained the chapter Table Columns.)

The following case is another example of the use of a script in the case of an export. It shows

how several properties can be written into a cell with a separator. In this case, we wish to

generate a table which lists the song names in the first column and all moods for the songs

separated by commas:

To generate the second column, we require the following script:

function exportValueOf(element)
{

var mood = "";
var relTargets = $k.Registry.query(“moodsForSongs").findElements({songName: element.attributeValue(“objectName")});
if(relTargets && relTargets.length > 0){

for(var i = 0; i < (relTargets.length-1); i++){
mood += relTargets[i].attributeValue(“objectName") + ", ";

}
mood += relTargets[relTargets.length-1].attributeValue(“objectName");

}
return mood;

i-views 5.3

126/534

}

The script contains the following structured query (registration key: “mood ForSongs"):

The expression “findElements” allows us to access a parameter (in this case “songName”)

within the query. The “objectName” is the internal name of the name attribute in this seman-

tic model.

Within the if-instruction we state that when an element has several relation targets, these

should be shown separated by a comma. After the last relation target that runs through

the loop, there should no longer be a comma. Even when an element only has one relation

target, this is shown without a comma accordingly.

The result is a list of songs with all their moods, which appear separated by a comma in the

second column in the table:

1.5.1.4 Mapping of several values for an object type at an object

If several values are specified for an object type when there is an object (in our example,

there are several “Moods” for each song), then there are three possible ways the table will

look. For two of the three possible ways, the import must be modified, which is described in

the following.

Option 1 - Values separated by separators: The individual values are found in a cell and are

separated by a separator (e.g. a comma).

i-views 5.3

127/534

In this case, we go to the mapping of the data source, where the general settings are found,

and to the “Options” tab found there. The setting used to specify separators within a cell is

found here in the lower section. We now only have to locate the corresponding column of the

table to be imported (“Mood”) and enter the separator used (“,”) in the column “Separator”.

Option 2 - Several columns: The individual values are located in their own respective column,

whereby not every field must be filled in. As many columns are required as the maximum

number of moods there are per song.

In this case, the corresponding relation must be created the same number of times as there

are columns. In this case, the first relation must, accordingly, be mapped to “Mood1”, the

second relation to “Mood2” and the third relation to “Mood3”.

i-views 5.3

128/534

Option 3 - Several rows: The individual values are located in their own respective row. Please

note: In this case, it is essential that the attributes that are required for identification of the

object (in this case the track name) appear in every row, as otherwise the rows would be

interpreted as their own respective object without a name, making a correct import impossi-

ble.

In this case, no special import settings are required, as the system identifies the object using

the identifying attribute and creates the relations correctly.

1.5.1.5 Settings of the import behaviour

During the import process, a check is always performed to determine whether an attribute

already exists. “Identify“ infers concrete objects from attributes. When we refer below to “ex-

isting attributes“, these are attributes whose value precisely matches the value in the column

to which they are mapped. When we refer to existing objects, we mean concrete objects that

have been identified through an existing attribute.

Example: If our network already contains a song called “Eleanor Rigby“, the name attribute

(mapped to the “track name“ column in our import table) is an existing attribute, so the song

is an existing song as long as the song is identified only via the name attribute.

i-views 5.3

129/534

The settings for import behavior allow us to control how the import should react to existing

and new semantic elements. The following table shows a brief description of the individual

settings, while the sub-chapters of this chapter contain detailed and descriptive explanations.

Setting Brief description

Update Existing elements are overwritten (updated), no new elements

are created.

Update or create if not

found

Existing elements are overwritten; if none exist, they are cre-

ated.

Delete all with same

value (only available for

properties)

All attribute values that match the imported value are deleted

for the respective objects.

Delete all with same type All attribute values of the selected type are deleted for the rel-

evant objects, regardless of the values match or not.

Delete Is used to delete that exact element.

Create Creates a new property/object irrespective of whether the at-

tribute value or the object already exists.

Create if type not found

(only available for at-

tributes)

An attribute of the required type is only created if none of this

type exists.

Create if value not found

(only available for at-

tributes)

An attribute with this value is only created, if none with this

value exists.

Do not import No import.

Synchronize In order to synchronize the contents for import with the con-

tents in the database, this action creates all elements that do

not yet exist, updates all elements that have changed, and

delete all elements that no longer exist.

During an import, we have to decide individually for every mapped object, every mapped

relation and every mapped attribute which import settings we want to use.

Note: Unlike in other editors of the Knowledge Builder, a setting is neither “inherited” by

the subordinate mapping elements, nor is the import setting for an object “inherited” by its

attributes.

1.5.1.5.1 Update

If this setting is applied to an attribute, it ensures that the value from the table overwrites

the attribute value of exactly one existing attribute. No new attributes are created with this

setting. If the object has more than one attribute value of the selected type, no value is

imported.

If you use the “Update” setting for an identifying attribute while using the “Update or create

if not available” setting for a corresponding object, the error message “Attribute not found”

i-views 5.3

130/534

appears, if the identifying object is not available in i-views.

If “Update” is applied to an object, this setting ensures that all properties of the object can

be added or changed by the import. New objects are not created.

Example: Let s assume we keep a database of our favorite songs. We have just received a list

with songs that contain new information. We want to get this information into our database

but prevent songs that are not our favorite songs from being imported. We use the “Update”

setting to do this.

The song "About A Girl" is already available in the Knowledge Builder.

The import table contains information on the length, rating and creator of the song.

For Song objects we specify that they are supposed to be updated. All attributes, relations and

relational targets receive the import setting “Update or create if not available yet.”

i-views 5.3

131/534

The result: The song has been updated and has received new attributes and relations. Already

existing properties have been updated (value).

1.5.1.5.2 Update or create if not found

This import setting is required in most cases and is therefore set as the default setting. If

elements already exist they will be updated. If elements do not exist yet they are created in

the database.

1.5.1.5.3 Delete all with same value

This import setting is only available for properties (relations and attributes) and is only used

when the import setting “Delete” cannot be used for deleting. “Delete” does not function

for deleting when a relation or an attribute occurs on an object several times with the same

value. If an attempt is made nonetheless, an error message appears. For example, the song

“About A Girl” may have been linked to the band “Nirvana” using the relation “has author” by

mistake.

i-views 5.3

132/534

In cases like this, the import setting “Delete” does not have an affect, because due to multiple

occurrences, it does not know which relations it is supposed to delete. In this case, “Delete

all with the same value” must be used.

1.5.1.5.4 Delete all of same kind

This import setting is used if all attributes, objects or relations of a type are supposed to be

deleted, irrespective of existing values. In contrast to this, the settings “Delete” and “Delete all

with identical value” take the existing values into account. Only the elements of those objects

that occur in the import table are deleted.

Example: We have an import table with songs and the duration of the songs. We see that

the duration differs in many cases and decide to delete the duration for these songs to make

sure we do not have any incorrect information.

For most songs, the duration in the import table differs...

... from the duration of the songs in the database.

i-views 5.3

133/534

For the attribute “Duration" we use the import setting “Delete all of the same type.”

After the import, all attribute values of the attribute type duration have been deleted for these 4

songs.

1.5.1.5.5 Delete

The import setting “Delete” is used to delete exactly the one object/ exactly the one rela-

tion/exactly the one attribute value. If none or several objects/relations/attribute values

match the elements for import, an error message about this appears and the elements con-

cerned is not deleted.

1.5.1.5.6 Create new

This import setting creates a new property/a new object irrespective of whether the attribute

value or the object already exists. Sole exception: If a property may only occur once (ob-

serve the setting “May have multiple occurrences” for the attribute definition), then the new

attribute is not created and an error message appears noting this.

1.5.1.5.7 Create if type not found

This import setting is only available for attributes. A new attribute value is only created when

the corresponding attribute does not yet have a value. The values do not have to be the

same; what matters is that one value or another exists, or does not exist, for the correspond-

ing attribute type. The simultaneous import of several attribute values to one attribute type

is not possible, as in this case it is not possible to decide which of the attribute values should

be used.

Example: Assuming that we have an import table that contains the musicians with their alias

names. A number of musicians also have several alias names. In this case, we cannot use the

i-views 5.3

134/534

setting “Create type if not found,” because then all musicians with several alias names would

not be given one.

1.5.1.5.8 Create if value not found

This import setting is only available for attributes. A new attribute value is only created if the

object does not yet have this value for the corresponding attribute.

Example: Let’s take again the import table that includes musicians wih their alias names.

Here we can use the setting "Create value if not found", because then the musicians with

several alias names can get all these alias names.

1.5.1.5.9 Do not import

The import setting “Do not import” allows us to specify that an object or a property should

not be imported. This is useful when a mapping has already been defined and we want to

use it again, however do not want to import specific objects and properties again.

1.5.1.5.10 Synchronize

The import setting “Synchronize” should be used with caution, because it is the only import

setting that not only affects the objects and properties in i-views that have values that match

those in the import table, but also extends to all elements of the same type in i-views. When

an import table is synchronized with i-views, in principle this means that after the import, the

result should look exactly the same as it does in the table.

If objects of one type are synchronized, all objects of this type that are not in the im-

port table are deleted. The objects that exist are updated and the objects that are not in

i-views are created as new objects.

Example: We would like to synchronize the music fairs in i-views (at the left) with a table with

the fairs and their date (at the right):

For objects of the “Fair” type, we select the import setting “Synchronize;” for the individual

attributes Name and Date of fair the import setting “Update or create if not found” is used:

The attribute name is the identifiable attribute of fair. There is no name for the object Music

fair 2015 in the import table. If we import the table this way, an error message is output:

i-views 5.3

135/534

After the import, we now see that the import caused two objects to be omitted that did not

have a counterpart in the import table. The date was updated for Music fair 2016:

When attributes are synchronized, the following applies: When an existing attribute is not

given a value by an import, it is deleted for the corresponding object of the import table. If

the existing attribute has a different value to the import table, it is updated, even when it is

allowed to occur several times. If the attribute does not yet exist, a new one is created.

When relations are synchronized, and they are not given a value, they are deleted for the

corresponding object. If the existing relation has a different value to the import table, it is

updated. If the target object does not yet exist in the database, a new one is created, provided

that a corresponding import setting has been assigned to the target object. If the target

object cannot be created as a new one, because, for example, the import setting “Update”

was assigned, an error message appears notifying us that the target object was not found

and will not be created.

1.5.1.6 Table columns

When it comes to mapping database queries, the columns that are available for import are

specified by the database tables and/or the Select statement. When mapping files, it is pos-

sible adopt the columns with the “Read from data source” button from the file. But you

can also specify them manually. In that case you can choose whether to create a standard

column or a virtual property.

If you want to export from the semantic graph database you have to enter the columns

manually. You can export only standard columns, not virtual columns.

Virtual table column / virtual property

Virtual columns are additional columns that allow you to use regular expressions to trans-

form the contents we find in a column of the table to be imported. Example: Let s assume

that “a.d.” is appended to all the years in our import table. We can correct this by creating a

virtual column that adopts only the first 4 characters from the year column.

We can also define virtual properties during export.

We simply write the regular expressions into the column header (into the name of the col-

umn). During the process, partial strings enclosed in pointy brackets <...> are replaced ac-
cording to the following rules, with n, n1, n2, ... representing the contents of other table

columns with the column number n.

Expression Description Example Input Output

<np> Print output of content

of column n

Hits: <1p> 1 (inte-

ger)

none

(string)

Hits: 1

Hits: none

i-views 5.3

136/534

<ns> Output of string in col-

umn n

Hello <1s>! ’Peter’ Hello Peter!

<nu> Output of string in col-

umn n in upper case

Hello <1u>! ’Peter’ Hello PETER!

<nl> Output of string in col-

umn n in lower case

Hello <1l>! ’Peter’ Hello peter!

<ncstart-stop> Partial string from posi-

tion start to stop from

column n

<1c3-6>

<1c3>

<1c3->

Columns olum

umn

lumns

<nmregex> Test whether the content

of column n matches

the regex regular expres-

sion. The following ex-

pressions are only eval-

uated if the regular ex-

pression applies.

<1m0[0-9]>hi

<1m$>test

01

123

(blank)

123

hi

(blank)

test

(blank)

<nxregex> Test whether the content

of column n matches

the regex regular expres-

sion. The following ex-

pressions are only eval-

uated if the regular ex-

pression does not apply.

<1x0[0-
9]>hello

01

123

(blank)

hello

<neregex> Selects all hits for regex

from the contents of col-

umn n. Individual hits

are separated by com-

mas in the result.

<1eL+>

<1e\d\d\d\d>

HELLO

WORLD

02.10.2001

LL,L

2001

<nrregex> Removes all hits for

regex from the contents

of column n

<1rL> HELLO

WORLD

HEO WORD

<ngregex> Transmits the contents

of all groups of the regu-

lar expression

<1g\+(\d+)\-> +42-13 42

<nfformat> Formats numbers, date

and time specifications

from column n accord-

ing to the format format

specification

<1f#,0.00>

<1fd/m/y>

<1fdd/mmm>

3.1412

1234.5

1 May

1935

1 May

1935

3.14

1234.50

1/5/1935

01/May

i-views 5.3

137/534

Table columns can also be referenced independently from their column number by using

specially defined identifiers. The advantage in this case is that the allocation is not lost if the

column order is changed in the import table.

The identifier for the relevant column of the import table is entered in the column with the

heading Identifier in the column definition table. These columns are referenced by creating a

virtual table column that is given the identifier as its table column heading (see example 2).

Ex-

pres-

sion

Description Ex-

am-

ple

In-

put

Out-

put

<$name$regex>Reference to a column by means of a unique column identifier name and

subsequent transformation by means of the regex regular expression.

The $ characters are a functional component of the identifier syntax.

<$Name$u>’Com-

pany #1’

COM-

PANY #1

Example 1: Use of regular expressions (reference via column number)

Let s assume we have an import table containing concrete objects without a name. However,

we want these objects to be modeled as separate objects in our data model. Example: for a

load point, column 88 contains its main value, which is torque. So we enter the expression

load point <88s> as the definition of our virtual column that will represent the name of this
load point. The resulting name for a load point with a torque of 850 would therefore be “load

point 850”.

We can also use the virtual property to create a username consisting of the first 4 letters

of the first name and the last name. If the person is named Maximilian Mustermann and

we define the virtual column with the relevant expression <1c1-4><2c1-4>, the result is
“MaxiMust”.

The virtual property can also be used to create an initial password for a user during import.

The expression could be Pass4<2s>. The resulting password for Maximilian Mustermann
would be “Pass4Mustermann”.

A rather extensive example shows how the virtual property can be used to assign objects to

the correct direct top-level group:

The three right columns are virtual columns.

<1mUG>: The number of the top-level group of the object is only written to the first of the

i-views 5.3

138/534

virtual columns if the term “UG” (for Untergruppe (sub-group)) occurs in the first column for

the object.

<2c1-3>000: The number to be written to the column consists of the first three characters of
the second column and three zeros.

<1m>: Only if the first column for the object is empty, i.e. contains no value, is the number
of the top-level group of the object written to the column.

<2c1-4>00: The number to be written to the column consists of the first four characters of
the second column.

Heimtextil 2016: This expression (the German term for home textiles) is written to the column

for all objects.

Example 2: Use of individual identifiers (in combination with regular expressions)

In the following example, the contents for the Company column are transformed into upper-

case letters by means of virtual columns: Column 5 uses one reference per column number,

column 6 uses one reference per column identifier.

Click on the preview to view the transformed column entries:

The following figure shows the effect of swapped columns in an import table: If only reg-

ular expressions (<1u>) are used, the wrong column is transformed; if an identifier with a

i-views 5.3

139/534

downstream regular expression (<$Comp$u>) is used, the content remains the same.

1.5.1.7 Configuration of further table oriented data sources

Databases

The database, user and password must be specified in the mapping for a PostgreSQL, Oracle

or ODBC interface.

Database specification

The database specification consists of the name of the host, the port, and the name of the

database. The syntax is:

Database system Database specification

PostgreSQL hostname:port_database

Oracle //hostname:[port][/databaseService]

ODBC Name of the configured data source

MySQL Separate configuration of database and host name

Configure user name and password

The user name and password are specified as stored in the database. Under the Table option

it is possible to specify the table to be imported. However, for import there is also the option

of going to the “Query” option and formulating a query that specifies which data are to be

imported.

Encoding

In case of PostgreSQL mapping, it is possible to specify the encoding on the “Encoding” tab.

Special requirements of the Oracle interface

The function for direct import from an Oracle database requires that certain runtime libraries

are installed on the computer performing the import.

What is required directly is the “Oracle Call Interface” (OCI), and it is required in a ver-

sion that, according to Oracle, matches the database server to be addressed. That means

that the OCI in version 11 must be installed on the importing computer in order to ad-

dress an Oracle 11i database. The easiest way to install the OCI is to install the “Or-

acle Database Instant Client”. The “Basic” package version is sufficient. The client can

be obtained from the company operating the server, or from Oracle after registering at

http://www.oracle.com/technology/tech/oci/index.html.

After the installation, it must be ensured that the library can be found by the importing client,

i-views 5.3

140/534

either by placing it in the same directory or by defining environment variables that match the

relevant operating system (documented for the OCI).

Depending on the operating system on which the import will be executed, further libraries

are necessary, and these are not always installed.

• MS Windows: next to the required “oci.dll”, two further libraries are required: ad-
vapi32.dll (extended Windows 32 Base-API) and mscvr71.dll (Microsoft C Runtime Li-

brary)

Apart from the XML import/export, all imports/exports are table-based and differ only in

terms of the configuration of the source.

1.5.1.8 Mapping of an XML file

The principle of XML files is to make the different details for a record explicit by means of tags

(<>) (and not by means of table columns). Accordingly, tags are also the basis for display
when XML structures are imported to i-views.

Example: Let s assume that our list of songs is available as an XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Contents>

<Album type="Oldie">
<Title>Revolver</Title>
<Song nr="1">

<Title>Eleanor Rigby</Title>
<lengthSec>127</lengthSec>
<Artist>The Beatles</Artist>
<Topic>Mental illness</Topic>
<Mood>Dreamy</Mood>
<Mood>Reflective</Mood>

</Song>
[...]

</Album>
[...]

</Contents>

If we want to import this XML file, we choose the “XML file” data source when selecting the

type, which causes the editor for the import and export of XML files to open. Even the spec-

ification of the file location is different than in the editor for CSV files. We can now choose

between a local file path and specification of a URI.

JSON preprocessingmakes it possible to convert a JSON file to XML before the actual import.

You can choose Transform with XSTL if you want to convert the XML data from the selected

XML file to different XML data before the import, for example in order to change the structure

or further separate individual values. Use the “Edit” button to open the XML file, where you

can then define the changes by means of XSLT.

Once the file has been selected, use the “Read from data source” button to read out the XML

structure, which is then displayed in the right-hand window.

i-views 5.3

141/534

We want to import the individual songs on our list. So we create a new object mapping and

use the “Map to” button to select the<Song> tag. In contrast to a CSV import, where only the
attribute values have an equivalent in the CSV table and where an individual row represents

an object, which means that only the attribute values need to be mapped, semantic objects

are here mapped by the XML structure. Therefore a corresponding tag of the XML file must

be specified for each of the objects to be mapped.

i-views 5.3

142/534

As our example shows, the tags are not always unambiguous without context: <Title> is used
for both album titles and song titles. The object type only becomes clear in combination with

the surrounding tag. Often the context of the XML structure and the context of the mapping

hierarchy are synchronous: As we have already specified that the objects should be mapped

to the <Song> tag, the XML structure makes clear which <Title> tag we actually mean when
we map <Title> with the name attribute of songs. Where the mapping hierarchy and the tag
structure are not parallel, we can use XPath to form strings in the XML import in addition to

the tags occurring in the XML file.

As with the CSV import, it is necessary to use the “Identify” tab to specify for object mapping

which attribute values should be used to identify the object in the semantic graph database.

The first created attribute for an object is once again used automatically as the identifying

i-views 5.3

143/534

attribute.

Options with XPath expressions

Let s assume we only want to import songs from albums with the “Oldie” music style. In

our XML document, the information for the music style is specified directly in the album

tag under type="...". That means we have to use the editor to define an XPath expression

describing the path in the XML document that contains only songs from oldie albums. The

right-hand lower section of the editor contains a field for adding XPath expressions.

The correct XPath expression is:

//Album[@type="Oldie"]/Song

Explanation in detail:

//Album Selects all albums; their position in the document is irrelevant.

Al-

bum[@type="Oldie"]

Selects all albums of the “Oldie” type

Album/Song Selects all songs that are sub-elements of albums.

We can now use this expression to define an equivalent for the object mapping of songs.

XPath also offersmany other useful selection functions. We can, for example, select elements

by their position in the document, use comparative operators, and specify alternative paths.

Alternative: XML import mapping for XML-based RDF files

If the schema in the semantic network is too specific for the existing RDF file or if the RDF

file is too specific or the rdf schema is missing so that it cannot be imported by the import

mechanism correctly, we can use the XML import mapping for specified import.

i-views 5.3

144/534

In most cases, we will need to use XPath expressions for dedicated value assignment. Pay at-

tention that for the XML import mapping, an interactive step-by-step import is not available.

Examples for XPath expressions

Note: For Xpath expressions, the namespace (built up on to the qualifier) is not considered

by the system for import mapping.

i-views 5.3

145/534

Input RDF-XML XPath Mean-

ing

// Top-

level

of the

RDF

../ One

level

above

../../xyz Two

levels

above,

from

there

the

node

below

called

“xyz”

<rdf:label> /label/ Tag

“label”

<rdf:prefLabel xml:lang="en">
Example

</rdf:prefLabel>

prefLabel[@lang=”en”] Node

with

at-

tribute

and

cer-

tain

at-

tribute

value.

Out-

put

= "Example".

i-views 5.3

146/534

ancestor::termEntry/attribute::id Su-

per-

ordi-

nate

node

on

any

level

with

name

(“ter-

mEn-

try”)

and

at-

tribute

(“id”)

/myparent/mychild[text()] Text

be-

tween

cer-

tain

tags

1.5.1.9 Further options, log and registry

1.5.1.9.1 Further options at the import

In the “Options” tab, the following functions are available for selection irrespective of the data

source:

Import in one transaction: This is slower than an import with several transactions and

should only be used if a conflict would occur during an import with several transactions

because many people are working in Knowledge Builder at the same time or because you

want to import data where it matters that individual pieces of data are not viewed separately

from each other. Example 1: Every hour, an import is executed with the machine load status.

The combined load values must not exceed a certain value as that could result in a power

failure. To ensure this rule can be taken into account (e.g. by means of a script), all values

must be viewed jointly and then imported. Example 2: An import is executed with persons of

which no more than one person may have a master key because only one master key exists.

The import must also be performed in one transaction here because several transactions

could result in missing the error that the attribute for the master key has been set for two

i-views 5.3

147/534

persons.

Use several transactions: Default setting for fast import.

Journaling: Journaling should be used if very large amounts of data are deleted or modified

in one import. The changes or deletions for these entries are only to be made to the index

after 4,096 entries (the figure is variable). This speeds up the import because the index does

not have to be used for every single change/deletion. Instead, these changes are copied to

the index after a maximum of 4,096 changes.

Update metrics: Metrics are supposed to be updated if the import significantly affects the

number of object types or property types, that is, if a large number of objects or properties

of a type are added to the semantic graph database. If the metrics were not updated, this

could negatively affect the performance of searches in which the corresponding types play a

role.

Trigger activated: You can use this checkmark to determine if the trigger is supposed to

be activated or not during import. If you wish to apply one trigger but not another one,

you have to define two different mappings with the corresponding semantic elements. For

information on triggers, refer to the Trigger chapter.

Automatic name generation for nameless objects: Enables the automatic name genera-

tion for nameless objects.

If there is a table-oriented source, we can make the following settings:

Import entire table: Even though it can take longer to import the entire table at once, it

makes sense to select this option if there are forward references, i.e. if relations are to be

drawn between the objects to be imported. In this case, both objects must already be avail-

able, which is not the case if the table is imported one row at a time. Furthermore, the

progress display is more precise than for importing one row at a time.

Import table row by row: A table should always be imported one row at time when the

table contains no source reference since this procedure speeds up the import.

Separators within a cell: Refer to the chapter Mapping several values for an object type for

an object.

If we have an XML-based data source, the following functions are available:

i-views 5.3

148/534

Incremental XML import: The XML import is performed step-by-step. These steps are spec-

ified by the partitioning element.

Import DTD: Imports the document type definition (DTD).

1.5.1.9.2 Log

The functions in the “Log” tab allow changes that are made upon import to be tracked.

Place generated semantic elements in a folder: If new objects, types or properties are

generated by the import, they can be placed in a folder in the semantic graph database.

Place changed semantic elements in a folder: All properties or objects with properties

that were changed by the import can be placed in a folder.

Write error messages to a file: Errors can occur during import (for example, there may

have been an identifying attribute for several objects, which is why the object could not be

identified uniquely). These errors are displayed in a window following import by default,

and the option of saving the error log is provided. If this is to occur automatically, then a

checkmark can be placed in the box and a file can be specified here.

Last import / Last export: The date and time of the last import performed and the last

export performed are displayed here.

i-views 5.3

149/534

The “Log” tab is also available in the case of the individual mapping objects. When necessary,

a category can be entered for log entries here. Moreover, it is possible to define that the

value of the corresponding object/corresponding property should be written into the error

log. This is not activated by default, in order to avoid revealing sensitive data (e.g. passwords).

1.5.1.9.3 Registry

The function “Set registration key” can be found under the “Registry” tab, and can be used to

register the data source for other imports and exports.

The function “Link existing source” allows a registered source to be used again.

“References” shows other places where a data source is being used:

i-views 5.3

150/534

1.5.2 Attribute types and formats

One frequent job of attribute mapping is to import specific data from concrete objects, for

example from persons: Telephone number, date of birth etc.

For the import of attributes for which i-views uses a specific format (e.g. date), the entries

of the column to be imported must be provided in a form that is supported by i-views. For

example, a string in the form abcde... cannot be imported to an attribute field of the date

type; in this case, no value is imported for the corresponding object.

The following table lists the formats that i-views supports during the import of attributes. A

table value yes or 1 is, for example, imported correctly as a Boolean attribute value (for a

correspondingly defined attribute), while a value such as on or similar is not.

Attribute Supported value formats

Selection The mapping of import to attribute values can be configured

with the “Value allocation” tab.

i-views 5.3

151/534

Boolean The mapping of import to attribute values can be configured

with the “Value allocation” tab.

File It is possible to import files (e.g. images). For this to happen,

either the absolute path to the file must be specified, or the

files to be imported must be in the same directory (or a subdi-

rectory that needs to be specified) as the import file.

Date • <day><monthName><year>, e. g. 5 April 1982, 5-APR-
1982

• <monthName> <day> <year>, e. g. April 5, 1982

• <monthNumber> <day> <year>, e. g. 4/5/1982

The separator between <day>, <monthName> and <year>
can be a space, a comma or a hyphen, for example (but other

characters are also possible). Valid month names are:

• January , February , March , April , May , June , July , August
, September , October , November , December

• ’Jan’, ’Feb’, Mar’, ’Apr’, May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, Oct’, ’Nov’,
Dec’.

Please note: Two-digit years are expanded to 20xy (so 4/5/82

becomes 4/5/2082).

If mapping is set to “Freely definable format”, the following

tokens can be used: YYYY and YY (year), MM and M (month

number), MMMM (name of month), MMM (abbreviated name

of month), DD and D (day)

Date and time For date and time see the corresponding attributes. The date

must come before the time. If the time is omitted, 0:00 is used.

Color Import not possible.

Fixed point figure Import possible.

Integer • Integers of any size
• Floats (separated by a point), e.g. 1.82. The figures are
rounded during import.

Internet link Any URL possible.

Time <hour>: <minute>: <second> <am/pm>, e.g. 8:23 pm (be-
comes 20:23:00) <minute>, <second> and <am/pm> can be
omitted.

If mapping is set to “Freely defined format” , the following to-

kens can be used: hh and h (hour), mm and m (minute), ss

and s (second), mmm (millisecond)

String Any string. No decoding is performed.

i-views 5.3

152/534

Boolean attributes and selection attributes

Selection or Boolean attributes can only assume values from a specified set; for selection

attributes this is a specified list, and for Boolean attributes this is the value pair yes/no in the

form of a clickable field. When importing these attributes, you can specify how the values

from the import table are translated to attribute values of the semantic graph database. One

option is to adopt the values as they are listed in the table; if they do not correspond to any

possible attribute values defined in the semantic graph database, they are not imported. The

other option is to specify value allocations between table values and attribute values, which

are then imported.

1.5.3 Configuration of the export

The export of data from a semantic graph database int a table is prepared in the same editor

and in the same way as the import.

1. A new mapping is created in a table mapping folder in the main window.

2. In the table mapping editor, the file to be generated is specified.

The difference to the import is that the columns are not imported from the table now but

have to be created in the table mapping editor. Since the import and export editor are one

and the same, you first have to select whether a new column to be created is a standard

column or a virtual property. However, virtual properties cannot be used for export.

Exporting structured queries

It is possible to export the result of a structured query. This procedure makes sense if only

certain objects that have been restricted by a search are supposed to be exported. Let s

assume, for example, we want to export all bands that have written songs that are more the

10 min long. To do this, we first have to define a structured query that collects the desired

objects.

We then access this structured query from the configuration of the export. To do this, we

select the mapping of a query rather than an object mapping in the mapping configuration

header. The structured query can only be accessed with a registration key.

This has the effect that only the results of the structured query are exported. For these

i-views 5.3

153/534

objects, we can now create properties that are to be included in the export: e.g. year the band

was founded, members and songs. However, we might not want to export all of the songs of

the bands we have thus compiled but only those songs that also match the search criterion,

which is songs longer than 10 min in our example. To do this, we can assign identifiers to

the individual search conditions in the structured query. These identifiers in turn can be

addressed in the export definition.

Exporting collections of semantic objects

Collections of semantic objects can also be exported. These also need a registration key,

which you can set under TECHNICAL -> Organizing folder.

Exporting the frame ID

The mapping of the frame ID enables us to export the ID of a semantic element assigned in

the semantic graph database. To do this, we simply select the object, type or property for

which we need the ID and then choose the “New mapping of Frame ID” button:

We can also decide if we want to output the ID in string format (ID123_456) or as a 64-bit in-

teger.

Export via script

Finally, we have one additional powerful tool for the export: script mapping. For further

information on this subject, refer to the “Script mapping” chapter.

Export actions for database exports

i-views 5.3

154/534

Mapping the properties of an object for an export into a database takes place exactly like

mapping for an import and all other types of mapping. The only difference is that the export

action has to be specified for the export. This specifies which type of query is to be executed

in the database. Three export actions are available:

The following actions are available in the selection dialog that opens:

• Create new data records in table: New data records are added to the database table.
This action corresponds to an INSERT.

• Update existing data records: The data records are identified via an ID in the table.
They are only overwritten if the value has changed. If there is no suitable data record, a

new one is added. This action corresponds to an UPDATE.

• Overwrite table content during export: All data records are first deleted and then
written again. This action corresponds to an DELETE on the entire table followed by an

INSERT.

1.5.4 RDF-import/export

RDF is a standard format for semantic data models. We can use the RDF import and export

to exchange data between the semantic graph database and other applications, and also to

transport data from one i-views semantic network to another.

During an RDF export, the entire semantic network is exported into an RDF file. RDF import,

in contrast, is interactive and selective. That is, we can specify at schema level as well as for

individual objects and properties what is supposed to be imported and what not.

Reconciliation from RDF with the existing objects in the semantic network

If the RDF data originates from the same schema as the network into which it is imported, e.g.

from a backup copy, the RDF import automatically assigns objects and object types by means

of their ID. Just like for table and XML imports, we can use the import settings to determine,

e.g. whether existing objects are to be updated by the import or if new ones are supposed

to be created.

If the data originates from another source, the default setting of the import is into a separate

subnet. We can also integrate this external information into our stock by means of manual

assignments using the "Map to" function in the Mapping interface.

1.5.4.1 Basic principles

In this section we have a look on the basic principles of RDF and the special cases to

be obeyed for import mapping. For further information about the RDF standard, see:

w3c.org/rdf. In general, the i-views Knowledge-Builder supports XML-RDF.

For identifying the content within the RDF file and the Knowledge-Builder as well, the RDF-URI

is used. It comprises the base URI (= base URL) and the RDF-ID:

[RDF-URI] = [Base URI] + [RDF-ID]

TheBaseURI syntax in RDF is constructed by the "xml:base" prefix, like in "xml:base=http://example.org/".

The base "base" is only a namespace for individual domains; the qualifier "xml" is for read-

ability reasons in terms of XML transportation, which is irrelevant for import.

A relative URI in RDF is built up by the syntax "rdf:about". Attribute values are most likely

text between tags: <rdf:prefLabel xml:lang="en">Example</rdf:prefLabel>, surrounded by

i-views 5.3

155/534

the translation layer identified by "xml:lang". Relations will be formed by RDF-entries like

"rdf:resource". IDs will only be created via import in the Knowledge-Builder if they are lit-

erally written in the RDF file. The RDF-ID is no absolute identifying characteristic! It is not

recommended to set RDF-IDs manually in the RDF file, since duplicate values can lead to

data being mislocated.

Global settings

The Knowledge-Builder Base URL is defined in the settings menu and it is valid for both im-

port and export:

“Additional namespaces” is for export only.

Note: Always use a local copy of the network for trying out RDF-Import. If all settings led to

a successful import, then make the import on the real instance.

Possible issues

• In most cases when importing external RDF (RDF which didn t have been created by the
Knowledge-Builder itself out of the same knowledge network), the namespaces possibly

won t fit. This results into lots of types within separate main types being created in the

network.

Therefore we can prepare the import as described at the end of this section.

• In RDF, the definition and assignment of properties can lead to creation of many objects
in the network which normally should be formed into an attribute value of some certain

object instead.

Therefore a manual correction of the type assignment in the mapping or an alternative

i-views 5.3

156/534

XML import using XPath expressions (Xpath 1.0) might be needed.

• Don t choose the option “Identify objects with global URI also by local ID” if the base URL
in the RDF differs from the Knowledge-Builder base URL. Furthermore, some RDF-ID in

the RDF file could be identical by accident with some existing ID in the network, resulting

into the object in the network being overwritten!

Always use the RDF-URI for identification.

• If your RDF file doesn t contain a base URL, the file path of the RDF will be used as the
base URL instead.

This can be checked by opening the import dialog first. We then can add the RDF-URI or

RDF-URI-Alias accordingly and then check the assignment again by opening the import

dialog once again.

Preparation before import

Imports can be prepared regarding type assignment in the case that the RDF files contains

foreign base URLs. Because RDF imports can lead to schema changes, it is always recom-

mended to try the RDF import on a local copy of the knowledge-network before. To do so,

we continue as follows:

1. Before importing, first create the scheme manually (object types, attribute types and

relation types).

2. For the types, add the RDF properties by clicking on “Add attribute or relation”

:

RDF-Ontology: Attribute for RDF base URI “xml:base”

RDF-URI: Attribute for “rdf:about”

RDF-Alias: Further attribute, if the element is being fed by several RDF with different

URIs

3. Open import dialog and check import mapping.

4. If the adjustments lead to the intended mapping, start the import and check the result.

i-views 5.3

157/534

1.5.4.2 RDF import

For accessing the RDF import mechanism, go to the global actions settings and choose Tools

> RDF > RDF-Import.

A dialog opens for choosing the import file:

Options:

• Import referenced resources:
If this option is chosen, all referenced resources specified in the RDF file are going to be

imported additionally.

Note: Be aware that the referenced resource itself can contain further references, lead-

ing to much more data being imported than initially intended.

• Ignore HTTP errors:
The Knowledge-Builder will return error messages if the RDF namespace label is missing

after the URL; only the namespace http-URL at the top will be considered.

• Identify objects with global URI also by local ID:
This option only makes sense if the rdf to be imported is originated from the same

knowledge network for which it is intended to be imported. Importing RDF with only

considering the ID can lead to data being overwritten when the RDF is from another

domain and the IDs match accidently. This option does not make sense when the RDF

base URL differs from the knowledge network base URL.

i-views 5.3

158/534

Note: When importing RDF, for every unknown namespace a separate main type will be

created in the knowledge network. The assignment of RDF content to dedicated knowledge

network types depends on how the information is represented in the RDF file.

Setting the import options

1. Manual supertype mapping:

Per default, the RDF-URL (RDF ontology) will be used as supertype assignment.

For every type within the RDF, you can choose the supertype mapping in the semantic

network manually if a different type assignment is needed:

In order to be sure about which supertypes will be created by the import, you can check

this in the “Schema changes” tab. By clicking on “Show in tree”, you can quickly jump to

the location of a type in the hierarchy structure. The “Legend” tab explains the import

mapping symbols.

2. Import options:

a. Allow schema changes: Since you don t want a file to change the schema, it is recom-

mended to disable this option

b. Avoid duplicate properties: Because in RDF properties cannot be assigned with an ID,

a unique identification of properties and their values within the knowledge network is

not possible when importing RDF without krdf. When you want to import a foreign RDF

without krdf, it is recommended to enable this option.

When transferring RDF between knowledge networks, knowledge network specific at-

tributes can be identified by means of the enhanced krdf syntax. This includes proper-

ties for view configuration, REST configuration, attribute values, relation targets, meta-

properties on relations etc. In this second case, it might be needed to disable the op-

tion. Pay attention that krdf adds the internal frame IDs for instances and properties

whereas external IDs have no impact on identification of such content. The Knowledge-

Builder automatically creates unique frame IDs when new elements are created within

the knowledge network - either by an import or by the user.

i-views 5.3

159/534

c. Allow deferred relation creation: When importing data from public resources, the at-

tribute “reference to URL” can be created as a substitute reference for (temporarily un-

available) dependencies. The attribute then can be used for re-identification in deferred

imports. This might be useful when empty parts including URL without type definition

exist within the RDF file.

d. Triggers activated: Normally, triggers are not activated during RDF import. If you nev-

ertheless wish triggers being activated, enable this option.

e. Import qualifier/namespace: This option only makes sense when re-importing RDF

that has been previously created out of the same network. If you import a RDF with a

foreign namespace, skip this option.

3. Log options:

a. Create folder with imported objects: This option allows you to inspect the imported

objects within a folder that will be created in the working folder.

b. With relation targets: When the RDF file contains new objects with relations to targets

that already exist in the knowledge network, the relation targets will be included in the

folder of imported objects.

4. Transaction options:

a. Import in a single transaction: This is the most common import method.

b. Use multiple transactions for import: This option is recommended when the RDF file

contains a huge amount of content or when the connection to the external resource

might be weak or unstable. When an error occurs, the amount of content affected by a

rollback will be less due to the increased import steps in terms of transactions.

5. If you checked all settings, start the import and check the result.

Alternative: XML import mapping

If the schema in the semantic network is too specific for the existing RDF file or if the RDF

file is too specific or the rdf schema is missing so that it cannot be imported by the import

mechanism correctly, we can use the XML import mapping for specified import.

In most cases, we will need to use XPath expressions for dedicated value assignment. Pay at-

tention that for the XML import mapping, an interactive step-by-step import is not available.

Examples for XPath expressions

Note: For Xpath expressions, the namespace (built up on to the qualifier) is not considered

by the system for import mapping.

Input RDF-XML XPath Mean-

ing

i-views 5.3

160/534

// Top-

level

of the

RDF

../ One

level

above

../../xyz Two

levels

above,

from

there

the

node

below

called

“xyz”

<rdf:label> /label/ Tag

“label”

<rdf:prefLabel xml:lang="en">
Example

</rdf:prefLabel>

prefLabel[@lang=”en”] Node

with

at-

tribute

and

cer-

tain

at-

tribute

value.

Out-

put

= "Example".

i-views 5.3

161/534

ancestor::termEntry/attribute::id Su-

per-

ordi-

nate

node

on

any

level

with

name

(“ter-

mEn-

try”)

and

at-

tribute

(“id”)

/myparent/mychild[text()] Text

be-

tween

cer-

tain

tags

Further RDF import/export possibilities

RDF files also can be imported or exported via the REST interface by means of a JavaScript

mapping. In this case, only global options for import are available as specified in the

JavaScript API documentation:

http://documentation.i-views.com/5.3/javascript-api/$k.RDFImporter.html.

Exceptions: Within i-views content, URIs are generated automatically for the semantic ele-

ments when being created in the knowledge network.

1.5.4.3 RDF export

Exporting the whole semantic network as RDF

On the global actions menu, select Tools > RDF > RDF export.

i-views 5.3

162/534

Exporting parts of the network

It is possible to export just a part of the knowledge network, for example:

• Listed elements from an objects list
• Elements from within a semantic elements folder
• Elements from within a graph editor bookmark

If you wish to export listed elements without collecting them in a folder:

• Select the list elements to be exported. Open the context menu by means of a right
click. Then choose “RDF export”.

For collecting the elements to be exported, there are severely possibilities:

1. Create a semantic network elements folder and add the elements:

a. In your private or working folder, create a semantic network elements folder.

b. Go to the objects list of your choice an add the elements to the folder by dragging &

dropping them.

-or-

Select the elements in the object list and open the context menu by means of a right

click. Then choose “Store selected elements in folder”.

2. Right-click on the semantic network elements folder and choose “RDF export”.

If you wish to put all selected list elements into a semantic network elements folder:

1. Open the context menu bymeans of a right click. Then choose “Copy semantic elements

to new folder”.

2. Right-click on the semantic network elements folder and choose “RDF export”.

If you have already created a bookmark of a graph editor view, you simply can export

them: Right-click on the bookmark and choose “RDF export”.

Note that only the content of the selection (of the folder or bookmark) will be exported. In

terms of an object, this will be the cluster containing the attributes and the relation halves

directly attached to the contained object only.

Note: When no base URL is specified in the global settings of the Knowledge-Builder, the

i-views 5.3

163/534

path name of the RDF export file will be used as base URL instead.

RDF Exporting settings

Syntax

• Use OWL: Since OWL (web ontology language) allows more options than the conven-
tional RDF syntax, this option is always recommended except the case that the RDF is

going to be reused for another system which does not accept OWL.

• Use KRDF: The KRDF syntax is i-views specific. It allows more enhanced constructions
or representations compared to RDF or OWL like the following:

o Instances that have several supertypes

o Domains that consist of an intersection of supertypes

o Frame IDs of semantic knowledge network elements

Scope

Note: The scope options comprise only schema (types) of the whole export

• Export labels: If activated, labels will not be exported as an attribute but in forms of a
label literal with the syntax <label xml:lang=”eng”>.

• Export meta properties: In terms of official RDF specification, meta properties are
out of scope. Nevertheless, meta properties can be regarded as a construct with state-

ments about statements, as described in the reification rules of the RDF specification.

Therefore, this option is useful when re-importing into an i-views semantic knowledge

network is intended.

i-views 5.3

164/534

• Export extensions: This option allows the export of extensions of semantic objects.
• Enhanced comments: When enabled, XML comments with real name will be created.
The exported RDF file will contain comments for dividing up into sections for objects,

related objects and referenced schema hereafter, including statements about the rela-

tionships from each individual object to the related object.

IDs

• Local IDs (rdf:ID): This option only makes sense when re-importing the resulting rdf
into the same knowledge network or into a highly similar knowledge network with the

same namespace and correct IDs. If the target network accidently has existing elements

with same ID, the elements might be overwritten without further recognition.

• Use full URLs (rdf:about): This option should be preferred, since the full RDF URL con-
tains the namespace and thus ensures correct mapping when reimporting the RDF, pro-

vided the base URL of both RDF file and settings being identical.

• Create attributes for generated URLs and IDs:
• Do not use stored URLs and IDs:

Frame-IDs

• Use frame URLs (krdfframe): This option is only available in combination when used
with full URLs instead of IDs. It provides internal URLs built up by frame IDs of the

semantic knowledge network elements additionally.

• Export Frame-IDs of types and objects: Exporting frame IDs only is useful in the case
if duplicating parts of the existing network is intended. Since frame-IDs change in vari-

ous cases and differ highly due to their randomized creation (2
29
possible values), they

cannot be used for another knowledge network.

Frame-IDs keep the same when:

o Changing the type of an instance

o Downloading a network

o Updating a network

Frame-IDs change when:

o Changing relations into single-sided relations

o Another instance of knowledge network is used

o Creating objects, even if they will be given identical properties

• Export Frame-IDs of attributes and relations: Exports frame-IDs of properties (at-
tributes and relations) as well. As for exporting frame-IDs of objects and types, this

option is useful for (partial) duplicating networks, but not for reuse into foreign net-

works

1.5.5 Restore deleted individuals from a back up

The RDF export and import is suitable for restoring deleted individuals from a backup net-

work. Proceed as follows to do so:

1. Open the backup network in the Knowledge Builder

i-views 5.3

165/534

2. Create a new folder and save the individuals to be restored to it. To do so, right-click to

open the context menu in the list view of the individuals to be copied, and select “Copy

content to new folder” while selecting the new folder as the destination.

3. Open the RDF export on the newly created folder using the context menu

4. Specify a file name in the export dialog, select the options “Use URLS (rdf:about)” and

“Use frame URLs (krdfframe:)” and execute the export:

Note: the option “Use KRDF” results in i-views additionally copying specific content that

cannot be mapped in full by means of RDF syntax.

5. Close the Knowledge Builder and open the target network in the Knowledge Builder

6. Open the RDF import dialog in the main menu under Tools > RDF > RDF import:

7. Select the file and press “Next”:

i-views 5.3

166/534

8. Deactivate the option “Allow changes to the schema” in the selection dialog, and activate

“Create folder with imported objects”:

9. Execute import

10. Check the restored individuals

i-views 5.3

167/534

1.5.6 Transport selected schema

The Admin tool can be used to transfer the entire schema of a semantic network from one

semantic network to another via RDF export and import. However, if you only want to trans-

fer selected types, you should consider using the “Copy schema to folder” function, which is

available for all types via the context menu. This function creates a reference to the selected

type together with all other (property) types that are required to create the selected type or

objects of this type in the target network.

Once you have collected all required information in a folder, you can export this and import

it into the target network in the same way as described in the previous chapter. However,

the “Allow changes to schema” option should be deactivated in this case.

1.6 Access rights and triggers

This attribute handles the checking of access rights and triggers:

• Access rights regulate which operations on the semantic model may be executed be
specific user groups. They are defined in the rights system in i-views. The rights system

is located in the section Technical > Rights.

• Triggers are automatic operations that are triggered on a certain event and execute the
corresponding actions. The Trigger section is located under Technical > Trigger.

The rights system and triggers are initially not activated in a newly created semantic graph

database. These areas have to be activated before they can be used.

The procedure for creating rights and triggers is basically identical. Filters are required that

check if certain conditions are met or not. If these conditions are met, the rights system

grants or denies access, and a log entry is made or a script is executed for triggers. In the

rights system, the arrangement of filters is referred to as rights tree while that for triggers is

called trigger tree.

1.6.1 Check of access right

We use rights to regulate user access to the data in the semantic network. The two basic

objectives enabled by the rights system are:

• Protection of confidential data: Users or user groups may only see data that they are
allowed to read. This ensures that secrecy and confidentiality restrictions are applied.

• Work-specific overview: Certain users only need a section of the data of a model for
their work with the system. The rights system enables them to display only those ele-

ments that they need in order to complete their tasks.

The i-views rights system is very flexible. It can be configured precisely for different require-

ments of a project. By defining rules in a rights tree, consisting of individual filters and

deciders, a network-specific configuration of the rights system is created. There are many

options for compiling these rules for the rights system, which generates even more differen-

tiated rights. It is not possible to list all possible combinations of configurations; this requires

consulting in individual cases.

How does the rights system work?

Access rights in the system are always checked when a user executes an operation on the

data. The basic operations are:

i-views 5.3

168/534

• Read: An element is supposed to be displayed.
• Modify: An element is supposed to be changed.
• Generate: A new element is supposed to be generated.
• Delete: An element is supposed to be deleted.

If the access right is supposed to be changed in a certain access situation, the Rights tree is

processed until a decision for or against access can be made in this situation. The Rights tree

consists of conditions that are checked against the access situation. To check the conditions,

filters are used which filter the elements of the semantic network and operations. Deciders

are located at the end of a subtree of filters in the rights tree. These deciders either allow or

prohibit access.

In relation to the access situation, aspects are selected which are used as the condition for

allowing or prohibit access. In access situations, the following aspects are often used for the

decision:

• The operation (generate, read, delete or modify)
• The element that is supposed to be accessed
• The current user

It is possible that only one aspect of the access situation is selected as a condition but it

is also possible to query a combination of the aspects listed. Example: "Paul [user] is not

allowed to delete [operation] descriptions [element]”.

1.6.1.1 The activation of the rights system

In a newly created semantic network the rights system is deactivated by default. Before it

can be used, it has to be activated in the settings of the Knowledge Builder.

Instructions for activation of the rights system

1. In the Knowledge Builder, call up the Settingsmenu and select the System tab. Select the

Rights field there.

2. Place a checkmark in the Rights system activated field.

3. In the User type field, specify the object type whose objects are the users of the rights

system. This is usually the “Person” object type. (Type must not be abstract.)

4. Once you have connected the i-views knowledge portal, enter a user (object of the pre-

viously defined person object type) in the Standard web user field.

Before activation of the rights system, the folder is called Rights (deactivated). Once the rights

system has been activated, the folder is called Rights. When the rights system is deactivated,

checks of the access rights are no longer performed. However, the rules defined in the rights

tree are retained and used again after renewed activation of the rights system.

Please note: If you access an element from the web front-end without special log-in, the

person specified under Standard web user is used. It is common to create a fictitious person

called “anonymous” or “guest” here.

To ensure the rights system also functions in the Knowledge Builder, the user accounts of

the Knowledge Builder must be linked to an object from the semantic model. The user ac-

count can only be linked to objects of the type for which activation of the rights system was

specified in the user type field.

i-views 5.3

169/534

The link is generally required for using the operation parameter User in query filters, or for

using the access parameter User in structured queries when the rights system or the search

is not executed in an application, but rather in the actual Knowledge Builder.

Instructions for linking Knowledge Builder users to objects of the person type

1. Open the Settings menu in the Knowledge Builder and select the System tab. Select the

field User there.

2. Select the user who is to be linked. Link can be used to link the user to a person object

that is not yet linked to a Knowledge Builder account.

The Unlink function results in the Knowledge Builder account link to the person object

is canceled.

Please note: The user currently logged in cannot be linked.

In general, users with administrator rights may perform all operations, regardless of which

rights were defined in the rights system. The definition as administrator is also implemented

in the Settingsmenu in the User field on the System tab.

1.6.1.2 The rights tree

Traversing the rights tree

The rights tree is comprised of rules that are defined in a tree. The branches of the tree,

also referred to as a subtree, are comprised of the conditions that should be checked. The

conditions are defined in the system as filters that are nested in each other. The system

works through the tree from the top to bottom when the evaluation occurs. When a condi-

tion matches the access situation, then the check continues with the next filter in the sub-

tree. This filter is, in turn, checked. This is implemented until the end of the subtree, when

there is an access right or denial. If a condition does not match the access situation, then a

switchover to the next subtree occurs. When the system encounters an access right or denial

when working through the rights tree, the rights check ends with this result. The branches

(subtrees) of the tree are therefore worked through successively, and the tree is “traversed“

until a decision can be made.

Filters and deciders are nested in each other in the form of folders, so that a tree construction

is produced that is comprised of different subtrees. A folder can have several subfolders

(several successor filters on one level), which produces branching in the rights tree. Folders

that are defined on one level are worked through successively (from top to bottom).

Structure of the rights tree

When creating the rights tree, it is important to group the rules in a sensible way because

once a decision as to whether access is allowed or denied has been made, no further rules

are checked. Hence, exceptions should be defined ahead of global rules.

The two main cases that you have to distinguish are:

• Negative configuration: Everything is allowed at the lowest subtree; denials are de-
fined above it.

• Positive configuration Everything is prohibited at the bottom, except for what is al-
lowed above.

The order of the subtrees is therefore crucial when creating the rights tree. The order of

the conditions in a subtree in contrast (whether we check the operation first and then the

property or vice versa) can be chosen freely.

i-views 5.3

170/534

You don t necessarily have to define all filter types to define a subtree of a rights tree. A

subtree consists of at least one filter and one decider. An exception is the last subtree which

generally consists of a decider only, which allows all remaining operations (which have not

been prohibited in the rights tree beforehand) or which prohibits all remaining operations

(which have not been allowed in the rights tree beforehand).

1.6.1.3 Decision maker in the right tree

Deciders are always at the last position of a rights sub-tree. The combination with filters

is used to determine access situations in which access is explicitly allowed or denied. If a

decider is reached while traversing the rights tree, the check of rights is answered with this

decision. The operation to be checked is then either allowed or rejected. The rights tree is

then not checked any further.

Sym-

bol

Access

right

Description

Grant access Access is granted in the access situation to be checked.

Deny access Access is not granted in the access situation to be checked.

In general, there are two different deciders, a positive one called Grant access and a negative

one called Deny access.

Instructions for creating a decider

1. In the rights tree, choose the position at which you want to create the decider.

2. Use the buttons and to create new deciders as subfolders of the currently selected

folder.

3. Assign a name to the folder.

1.6.1.4 Composing rights

To define rights, filters and deciders are combined in the rights tree. The Filters chapter

explains the different filter types and how they can be used. The deciders Grant access or

Deny access each represent the last node of the subtree of the decision tree. If the decider is

reached, this decision terminates the traversing of the rights tree.

The following functions are available for defining rules in the rights system:

Sym-

bol

Function Description

New operation filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

New organizing folder A new organizing folder is generated.

i-views 5.3

171/534

Grant access A positive decider that grants access is generated.

Deny access A negative decider that denies access is generated.

Organizing folders can be used to structure rights in a meaningful way. They do not affect

the traversing of the rights tree. Their only purpose is to group large numbers of rights into

subtrees of the rights tree that have related content.

Changing the arrangement of folders in the rights tree

In order to sort the filters and deciders in the rights tree into the right order, right-clicking

opens a context menu:

The filter or decider can be renamed, deleted and exported in this context menu, and its

position in the rights tree can be changed. If two folders (filters or deciders) are on the same

level, the Upward or Downward function can be used to shift the folder further to the front

or the back in the rights tree. To the top and To the bottom shifts the folder to the first or last

position of the level in the rights tree accordingly.

If folders are to be nested in each other, meaning the level in the decision tree be changed,

this can be done using Drag&Drop.

Assembly of rights

Assembling filters and deciders in the rights tree creates a large number of possible combi-

nations for defining rights. By principle, there are 3 different procedures for defining rights:

• Definition of rights for every possible access situation
• Positive configuration
• Negative configuration

Because defining access rights for every possible access situation is a very complicated pro-

cedure, one of the two other means of configuration is generally used. They are explained in

the following two sections.

1.6.1.4.1 Positive configuration of rights

If rights are defined in the rights tree which only allow specific accesses and deny all other

accesses about which nothing is specified, then this is referred to as a positive configuration

i-views 5.3

172/534

of the rights tree. Rules are defined in each subtree of the rights tree, which allow specific

operations. All operations to be checked traverse the rights tree: If the operation to be

checked does not match the conditions of the subtrees, it is rejected at the end of the rights

tree.

Example: Positive configuration

This example shows how a positively formulated rights tree might look like in the Knowledge

Builder:

The first rights subtree defines read access to the attributes name, duration and publication date.

The read operation is allowed for these attributes. The second rights subtree allows new objects of

the type song to be created. All other operations are generally denied at the end of the rights tree.

1.6.1.4.2 Negative configuration of rights

When rules are defined in a rights tree to reject specific operations and permit all the op-

erations that, after a check, are identified as not matching those operations, this process is

described as a negative configuration. Specific operations are prohibited in the subtrees of

the rights tree. If one of the operations to be checked does not match the conditions of the

subtrees, the operation is permitted at the end of the rights tree.

i-views 5.3

173/534

Example: Negative configuration

This example shows how a negatively formulated rights tree might look like in the Knowledge

Builder:

Unlike with a positive configuration, for example, the first rights subtree rejects the access rights

for deleting and modifying the Name, Length and Publication date attributes. The second rights

subtree prohibits deletion of the relation that links the songs to the album they are contained in.

All other operations may be executed.

1.6.1.4.3 Example: Each user is allowed to change and delete items that he has cre-

ated himself

Why do you need to define this right in i-views? On the one hand, you need an operation

filter since this is about changing and deleting elements. On the other hand, the connection

between the user and the element on which the user wants to execute an operation must be

defined, which is only possible by means of query filters.

Operation filter

i-views 5.3

174/534

In the operation filter, the operations Delete and Modify were selected.

Query filter

In the query filter, “Relation created by” is selected with relation target “Person.” On the relation

target Person, the access parameter User was specified. The settings All parameters must apply

and Search condition must be met are selected. In this case, the operation parameter “Primary

semantic element” was selected.

A question relating to the schema is: On which elements is the relation was created by de-

fined? There are different options for implementing this relation in a semantic network:

1. Definition on objects and types: The relation is only used on objects and types.

2. Definition on all elements: The relation is used on all objects, types, extensions, at-

tributes and relations.

In the first case, it makes sense to use the operation parameter “Primary semantic element”

or “Superordinate element.” If you define the right using the superordinate element, this

does not apply only to the object itself but to all properties stored on the objects that were

created by the user. If you use the operation parameter “Primary semantic element,” the

right also applies to all meta properties of the object.

In the second case, the operation parameter “Accessed element” is used because only el-

ements may be changed on which the relation was created occurs with the corresponding

relation target, the user.

Compiling the right in the rights tree

There are two different variants for combining the filters. If there are no branches in the

rights subtree, the order of the subtrees is not relevant.

i-views 5.3

175/534

The graphic illustrates the two possible combinations: Version 1 (left) first operation filter, then

query filter, version 2 (right) first query filter then operation filter, in both cases the decider “Al-

lowed” then follows last.

Recommendation: It makes sense to have the operation filter in the first position, which

makes it possible to create underneath it all other rights that filter on the same operation.

This creates a more simple, traceable structure in the rights tree.

Advanced right: Elements that were not created by the user may not be changed or

deleted

The right implies the denial for all elements that were not created by the user but we have

not yet expressed this in the definition of rights. To do that, we have to take into account the

Access denied decider during the creation of rights. If you look at both versions of rights and

combine these with a negative decider, this results in the following variants. However, the

two variants have different effects in the rights system.

If you add one decider Denied to each of the combination options presented above, the two ver-

sions are created: Version 1 (left) first operation filter, then query filter and decider “Allowed.” The

operation filter is also followed by a decider Denied in a second subtree. Version 2 (right) first

query filter then operation filter, and decider “Allowed.” In the version, the query filter is followed

by a second subtree with the decider “Denied.”

Effects on the different versions on the rights system

Version 1 (left)

• Allows modification and deletion of elements created by users themselves.
• Prohibits modification and deletion of all other elements.
• No statement is made in relation to all other operations.

Version 2 (right)

• Allows modification and deletion of elements created by users themselves.
• Prohibits all other operations on elements created by users themselves (e.g. read).
• No statement is made in relation to all other elements.

i-views 5.3

176/534

The items show that version 2 does not express the requested access right. Only version

1 formulates the desired access right: All users can modify or delete elements they have

created themselves and elements that were not created by the users may not be modified or

deleted.

1.6.1.5 Configuration of own operations

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs

are available in the main window. A number of operations can be configured in the Configure

tab.

The configuration of custom operations is generally only used when the Knowledge Builder

is used with other applications. A number of operations are application-specific operations

that should be checked together. This is a matter of checking a chain of operations, and not

just an operation.

Instructions for the configuration of custom operations

1. In the Knowledge Builder, select the Rights folder in the System area.

2. Select the Configuration tab in the main window.

i-views 5.3

177/534

3. Click on Add to create a new operation.

4. In the windows that follow, enter an internal name and a description for the new oper-

ation.

5. The new operation is added as a user-defined operation.

6. User-defined operations can be deleted again using Remove.

1.6.2 Trigger

Triggers are automatic operations that are executed in i-views when a specific event occurs.

They help support work flows by automating steps that always remain unchanged.

Examples for the use of triggers:

• Sending emails due to a specific change
• Editing of documents in a specific order by specific persons
• Marking jobs as open or done on the basis of a specific condition
• Creating objects and relations when a specific change is performed
• Calculating values in a previously defined way
• Automatically generating the name attribute for objects (e.g. combining properties of
the object)

How do triggers work?

Triggers are closely related to the rights system. They use the same filter mechanisms in

order to determine when a trigger is initiated. The filters are arranged in a tree, the trigger

tree, which is structured like the rights tree. It consists of filters that are used to define condi-

tions for the execution of a trigger action. If an access situation occurs because an operation

is performed, and that access situation matches the defined conditions, the corresponding

trigger action is executed.

Trigger actions are in most cases scripts that, depending on the elements of the access situ-

ation, use them to execute operations. This makes it possible to automate steps that remain

unchanged or perform intelligent evaluations on the basis of specific constellations in the se-

mantic network. Scripts can be used to execute any operations on elements that are depen-

dent on complex evaluations, and thereby ensure situation and application-specific require-

ments for the semantic network. Most triggers are therefore usually project and network-

specific; a consultation should be performed for each individual case.

1.6.2.1 Activate trigger

In order to be able to work with triggers, the trigger functionality must first be activated in

the Knowledge Builder.

Instructions for the activation of triggers

1. Call up the Settings for the Knowledge Builder.

2. Select the System tab there, and the Trigger field.

3. Place a checkmark in the Trigger activated field.

A Limit for recursive triggers can be specified here. The default setting is “None”. Triggers that

call themselves are referred to as recursive triggers. This occurs when even operations in the

i-views 5.3

178/534

semantic network are implemented in the trigger script that, in turn, themselves match the

filter definition of the trigger.

Before activation of the trigger functionality, the Trigger folder in the technical area of i-views

is called Trigger (deactivated). The folder is renamed Triggers by the activation.

Note: If the current user is used in triggers (e.g. in query filters or using the corresponding

script function) and the user does not execute operations in an application, but rather in

the actual Knowledge Builder, then the Knowledge Builder user account must be linked to

a person object. The chapter Activation of the rights system explains how a link like this is

created.

1.6.2.2 The trigger tree

The trigger tree has the same structure as the rights tree. It is comprised of branches (sub-

trees), which are comprised of filters and triggers. The filters are the conditions that must be

checked for the trigger to be able to be executed at the end of the subtree when all conditions

to be checked beforehand have been satisfied.

The trigger tree is queried for the data when each operation is performed - the tree is “tra-

versed”. If a subtree applies to the access situation, then the trigger is executed. If the con-

dition of a filter does not apply to the access situation, then a switchover to the next subtree

occurs. Once the trigger action has been executed, traversal of the trigger tree continues, in

contrast to the rights system, which stops being worked through when an decider is reached.

In order to define that no other filters should be checked in the trigger tree after execution

of an action, the Trigger no other triggers button is used:

Sym-

bol

Function Description

Trigger no other triggers The traversal of the trigger tree is ended.

At the end of a subtree, no decider is available, in contrast to the rights system, but rather

actions are available.

Sym-

bol

Function Description

Define trigger A new trigger action is created.

The available trigger actions are:

• Enter log: A log entry is written.
• Execute script > JavaScript: A script file in JavaScript is executed.
• Execute script > KScript: A script file in KScript is executed.

Structure the trigger tree

The order in which you define the triggers when designing the trigger tree usually has no

effect on the performance of i-views. There are design recommendation for the rights tree,

i-views 5.3

179/534

but these cannot be applied to the trigger tree, as the trigger tree is further traversed after a

trigger action has been executed.

To provide a clearer structure for triggers, they can be collected in organizing folders. The

organizing folders themselves do not affect the traversing of the trigger tree.

Sym-

bol

Function Description

Organizing folder Organizing folder for grouping subtrees

Example: trigger tree

This example shows a trigger tree that combines the names of persons and concerts auto-

matically from properties of the objects:

This simple trigger tree begins with an operation filter and splits into two separate subtrees after

the operation filter. If either the modify or the create operation is executed, it is let through by

the operation filter. The persons subtree filters operations that are performed on attributes and

relations of person type objects. If the operation affects either the first name attribute or the last

name attribute, it is let through by the property filter. The corresponding script that compiles the

name attribute of a person from their first and last name is executed. The second subtree also

applies to the modify or create operation filter. However, it filters attributes and relations that are

saved in concert type objects. The property filter only lets operations through if they are performed

on the attributes or relations of the date, the event location or the artist. If these conditions apply,

the corresponding script that compiles the name of the concert is executed.

This is what this trigger tree would look like in i-views:

i-views 5.3

180/534

1.6.2.3 Create trigger

As described in the Trigger tree section, triggers consist of filters and trigger actions. These

are combined in such a way that a specific trigger action is executed only when it is required.

The following functions are available in the trigger area:

Sym-

bol

Function Description

New operation filter A new operation filter is generated.

New query filter A new query filter is generated.

New property filter A new property filter is generated.

New delete filter A new delete filter is generated.

New organizing

folder

A new organizing folder is generated.

New trigger A new trigger action is created.

Trigger no other trig-

gers

A new “Stop” folder is created. It ends the traversing of the

trigger tree.

When creating triggers, you should consider two fundamental properties of the triggermech-

anism:

• Execution of a trigger script can cause further triggers to be triggered. This occurs if
operations in the semantic graph database are executed in the trigger script itself.

• After a trigger action has been executed, traversal of the trigger tree continues. All
trigger actions of the subtrees that apply to the access situation are executed.

1.6.2.4 Trigger actions

Trigger actions are used to perform intelligent operations in the semantic graph database,

which, for example, automate or support work flows. However, they are only executed when

the access situation and the links in the semantic network assume a specific state defined by

the filter.

i-views 5.3

181/534

Instructions for the creation of trigger actions

1. Select the position in the trigger tree at which the trigger action is to be created.

2. Used the button to create a new trigger.

3. Select the action type from the list: Enter the log or execute the script (if you wish to

execute a script, select the script language).

4. The trigger is created as a subfolder of the currently selected folder.

1.6.2.4.1 Script trigger

An operation parameter must be output for the script to be executed. In contrast to query

filters, only one operation parameter can be specified. Execution of the script starts on the

element contained in the operation parameter.

Time/type of execution

• Before the change: The trigger is executed before the operation is performed.
• After the change: The trigger is executed immediately after the operation has been
performed.

• End of transaction: The trigger is executed only at the end of the shared transaction.
• Job-Client: The Job-Client determines the time of execution.

Please note: Triggers that are executed for delete operations should preferably use before the

change as their time, as the element to be deleted will no longer be available otherwise. For

other operations, a more suitable time is after the change or end of transaction, as it is then

possible, for example, to add a property to the newly created element or automatically gen-

erate the name from various properties of an object if one or more properties were changed.

The import chooses the order in which the properties will be imported in i-views. Therefore a

trigger that is initiated during the import should not rely on the properties being available in

full.

Execute once only per operation parameter

If this setting is selected, the element selected in operation parameter is executed no more

than once per transaction. If this setting is chosen, the time of execution should be set to end

of transaction so that the final state of the element is used in the script.

Example: For persons, the name of the object is meant to consist of the first name and last

name. With this setting, the trigger is executed only once if the first and last names are

changed at the same time.

Execution does not initiate trigger

This setting specifies that the operations executed within a trigger cannot initiate any further

triggers. This setting can be used to avoid endless loops.

Continue to execute script in case of script errors

If this setting is active, an attempt is made to restart after an execution error and continue

with the execution of the script. This setting is predominantly useful for scripts that are

supposed to execute instructions that are independent of each other, and not for scripts

that build on previous steps of the script.

Abort transaction if trigger fails

i-views 5.3

182/534

This setting defines the termination behavior in the event of script errors. If an error occurs

while the script is being executed and this setting is active, all actions of the transaction are

reversed. If this setting is not active, all actions are executed apart from the ones affected by

the error. The original action that led to the trigger being called is nevertheless written to the

knowledge network.

Execution during data refactoring

The term data refactoring describes operations for restructuring the semantic network, e.g.

Change type or Choose new relation target. Data refactoring operations can, in some circum-

stances, initiate unwanted trigger actions and, in some cases, even generate errors during

execution of the script. For this reason, it is possible to set for each trigger whether it is to be

executed during data refactoring.

The function body for script triggers is created automatically.

The script has three parameters:

pa-

rame-

ter

$k.SemanticElement

/ $k.Folder

The selected parameter

ac-

cess

object Object with data of the change (new attribute value

etc.)

user $k.User User who triggered the change

The following example sets the attributes with the internal name “changedOn" / “changedBy.”

“Primary semantic core object" should be selected as the parameter here.

/**
* Perform the trigger
* @param parameter The chosen parameter, usually a semantic element
* @param {object} access Object that contains all parameters of the access
* @param {$k.User} user User that triggered the access
**/

function trigger(parameter, access, user)
{

parameter.setAttributeValue("geaendertAm", new Date());
var userName = $k.user().name();
if (userName)

parameter.setAttributeValue("geaendertVon", userName);
else

parameter.attributes("geaendertVon").forEach(function(old) { old.remove });
}

The parameter "access" may contain the following properties (varies in each operation):

Property Description

i-views 5.3

183/534

accessedObject Accessed element

core Core object

detail Detail

inversePrimaryCoreTopic Primary relation target

inverseRelation Inverse relation

inverseTopic Relation target

operationSymbol “read," "deleteRelation" etc.

primaryCoreTopic Primary semantic core object

primaryProperty Primary property

primaryTopic Primary semantic element

property Property

topic Superordinate element

user User (identical to “user” parameter of the function)

1.6.2.4.2 Log trigger

If the user would like to monitor or document the trigger functionality for when which trigger

was triggered and which operators were executed in the semantic network, log triggers are

suitable. The log is written to the respective log file (bridge.log, batchtool.log etc.) in the

application environment that the operation that triggered the trigger is performed in.

Log entry lines State of the sem. network at the time

#pre before triggering

#post after triggering

#end at the end of the transaction

#commit when the transaction is successfully ended

Log entries are used to retrace whether a trigger was executed in a specific access situation

that actually occurred, and what it did. In contrast to this, a test can be performed in the test

environment to determine whether a trigger would be triggered or not in a specific access

situation, without the specific access situation being performed.

Instructions for the creation of log triggers

1. Select the trigger script that is to be logged in the trigger tree.

2. Using the button to create a trigger of type Enter log in the trigger tree directly in front

i-views 5.3

184/534

of the script trigger.

Example:

Log

entry that documents the change of the attribute e-mail using a trigger.

1.6.2.4.3 ChangeLog Trigger

If you want to monitor the activities that users perform on objects, you should set up a

changeLog trigger, also referred to as a change history.

For this purpose, you must first define a string attribute with the internal name “changeLog.”

This changeLog attribute must be defined for all elements for which it is to document user

activities.

Click “Open” to open the table showing who made the change, when they did so, what the

change is, to which semantic element it applies, and which value was used.

The trigger must contain the operation filters that will log the change history, and the ele-

ments where the attribute is to be visible.

The trigger script looks like this:

/** * Perform the trigger * @param parameter The chosen parameter, usually a semantic element * @param {object} access Object that contains all parameters of the access * @param {$k.User} user User that triggered the access **/ function trigger(parameter, access, user) { $k.History.addToChangeLog(access,parameter); }

Example

A change log is to be saved in all objects in a semantic network. The aim is to log the modifi-

cation, creation and deletion of properties in the objects. First, an operation filter is created

that reacts to the operations “Delete attribute”, “Modify attribute value”, “Create relation”,

“Create relation half” and “Delete relation half”.

i-views 5.3

185/534

In the next step, a query filter was defined to determine the semantic elements on which

operations are performed.

The “Superordinate element” operation parameter was added to the trigger script, because

it corresponds to the query filter.

The trigger rules (operation filter, query filter and trigger script) are located in the hierarchy

tree as follows due to their checking sequence:

1.6.3 Filter types

With the aid of filters, the conditions are defined in the rights tree or in the trigger tree to

allow access situations to be restricted when a decider or trigger should be executed. New

filters are created under the node currently selected in the tree. This way, they are nested in

each other.

The three filter types operation filter, query filter and property filter are available in the rights

system. In addition to the three basic filter types, the trigger area provides a specific filter -

the deletion filter.

There are different types of filters - when do we use which filter?

Sym-

bol

Filter Description

Operation filter Filters the operations; selection from list

Query filter Filters elements by means of structured query

Property filter Filters relations and attributes; selection from list

Delete filter Filters the deletion of elements

Operations can only be determined using an operation filter. Users can only be determined

using a query filter. Properties can be determined using either query filters or property

i-views 5.3

186/534

filters. The use of property filters makes sense when properties should be filtered regardless

of other properties in the semantic model such as relations to the user. Above all, when large

sets of properties are to be filtered, it is more straightforward and clearer to do so in a list

instead of in a structured query. If relations to the accessed element or to the user are to be

factored in, then a query filter must be used.

Instructions for creating a filter

1. In the rights or trigger tree, choose the position at which you want to create a new filter.

2. Use the buttons , , or to create a new filter.

3. The filter is created in the tree as a subfolder of the currently selected folder.

4. Assign a name to the folder.

1.6.3.1 Operation filter

To specify the operations for which an access right should apply or a trigger should be exe-

cuted, operation filters are required. By selecting the required operation it is possible to add

it to or remove it from the filter.

i-views 5.3

187/534

The operations are divided into groups. When you select the higher-level node of a group,

all lower-level operations are included in the filter. If, for example, you choose the Create

operation, the filter considers the operations Create attribute, Create extension, Create folder,

Create relation, Create relation half, Create type and Create translation.

The Operations chapter lists all available operations and also specifies which operation pa-

rameters can be used in combination. The various operation parameters are explained ac-

cordingly in the Operation parameters chapter.

1.6.3.2 Property filter

You can use property filters to filter attributes and relations. There are two different proce-

dures for using a property filter:

• Restriction on properties: Specify the properties to which the condition is supposed to
apply. Subsequent filters or deciders of the subtree are only executed if the access

property matches the selected property.

i-views 5.3

188/534

• Exclude the following properties: Specify the properties to which the condition is not sup-
posed to apply. If the access property matches one of the selected properties, subse-

quent filters, deciders or triggers are not executed.

You can use Add and Remove to select the properties listed below. All properties below can be

selected using All. None removes all selected properties. You can use the Edit field to call up

the Detail editor of the attribute or relation that is selected in the top selection field. The tabs

All properties, Generic properties, Attribute, Relation, View configuration and Semantic network

are designed to help users find the filtering properties more quickly. The Semantic network

tab shows all relations and attributes that the user has created.

1.6.3.3 Query filter

Query filters make it possible to include elements in the environment of the element that

is to be accessed. This allows not only individual properties, but also relationships between

objects, properties and attributes to be included in the rights or trigger definition. When

using query filters, it is necessary to specify an operation parameter to which the result of

the structured query is compared. All available operation parameters are explained in the

i-views 5.3

189/534

Operation parameters chapter.

There are two ways to define query filters:

• Search condition must be met: This setting is selected initially. If the search result of the
structured query matches the operation parameter, the condition of the filter is met

and subsequent filters, deciders or triggers are executed.

• Search condition must not be met: If the structured query returns the same element as
the access parameter as its result, the condition is not met and the check of the rights

or trigger tree switches to the next subtree. If the result of the structured query differs

from the result of the access parameter, the condition is met and the subsequent filter,

decider or trigger is executed.

The objects of the type at the top left that match the search condition are the result of the

structured query. These are compared to the element that is transferred by the operation

parameter. It is possible to use access parameters in the structured query. They can be used,

for example, to include the user, accessed element etc. in the query.

During selection of the operation parameter it is possible to configure whether

• all selected parameters must apply (All parameters must apply)
• or only one parameter must apply (One parameter must apply).

Please note: Initially, the setting All parameters must apply is selected. If, for example, the

operation parameters Accessed element and Primary semantic element are selected, the con-

dition is met only if the result of the structured query is both the accessed element and the

primary semantic element of the operation to be checked.

Example 1: Query filter in the rights system

A right should be defined that determines that already published songs may be viewed by

everyone; unpublished songs, in contrast, may not.

i-views 5.3

190/534

In this example, the user Paul would like to read song X. This operation is now checked by the

rights system. A query filter has been defined in the rights system which checks whether the song

has already been published. The structured query of the query filter searches of objects of the

“Song” type, with the restriction that the attribute “Publication date” is in the past. The structured

query delivers all songs that meet this condition. If song X is one of them, then the check by the

filter returns a positive result and the folder that follows the query filter (with a filter or decider) is

executed.

In the case of the query filter, the search condition settings must be met, and “All parameters must

apply” must be selected.

Example 2: Query filter in the rights system

In most cases, there is a connection between the user who wants access and the objects

and properties that the user wants to access. An example of this would be: “Employees of a

department who look after a branch may edit all customers of this branch.” Another version

of this example that is illustrated below would be: “Users who maintain an artist may edit

and delete this artist.”

i-views 5.3

191/534

The left side shows a section of the semantic network: The object Paul is linked to the objects

Artist A, Artist B and Artist C via the relation Maintains. The inverse relation of “maintains” is

“maintained by,” which exists between the objects Artist A, Artist B and Artist C and the object Paul,

and is queried in the query filter. This relation in the semantic network represents that one person

is responsible for data maintenance relating to an artist.

In this example, user Paul wants to delete the object Artist A. The corresponding query filter de-

livers all artists that were maintained by a certain user as the query result. The current user is

transferred to the structured query as an access parameter. The “Structured query” chapter ex-

plains access parameters in structured queries. Hence the search in this access situation returns

all artists that were maintained by Paul. Since Artist A is one of them, the query filter check returns

a positive result.

In this example, the access situation adds two aspects to the query filter: the artist to be

deleted and the user. The query filter can thus be defined in two different ways. The artist

is either transferred to the query filter as an accessed element and the user is used as the

access parameter in the structured query. Or the user is transferred to the query filter as

the operation parameter “User” and the company is used as the access parameter “Accessed

i-views 5.3

192/534

element” in the structured query.

1.6.3.4 Delete filter

Delete filters are only available for defining triggers. They are used for testing in a deletion

situation whether the higher-level element is also affected by the delete operation. For ex-

ample, you want a trigger to not be executed if an object including all its properties is deleted

but a deletion filter must be used if a certain property of the object is deleted.

When defining a delete filter, at least one operation parameter must be specified which de-

termines which deletion of an object is to be tested.

• All parameters must apply: All specified operation parametersmust apply. For example, if
two operation parameters are specified (accessed element and primary element), then

it is checked whether the delete operation applies to both the accessed element and the

primary element. This can only be the case if the primary element is also the accessed

element.

• One parameter must apply: Only one of the specified operation parameters has to apply.

Note: In most cases, the operation parameter offers a superordinate element or primary

object because a check is to be performed as to whether only the property is deleted or if

the property is deleted because the entire object has been deleted.

• Not affected by the delete operation: The condition of the filter is positive if the element
transferred in the operation parameter is not deleted in this transaction.

• Affected by the delete operation: The condition of the filter is thus positive if the element
transferred in the operation parameter is deleted in this transaction.

Example: Delete filters in triggers

In this example, a trigger is only to be executed if the artist, location or date of an event is

modified or deleted, but not if the object containing the properties is deleted. The setting

Not affected by the delete operation is used for this purpose. If the delete operation affects

the superordinate accessed element, which in this case is the concert object itself, then the

checking of the subtree is aborted because the filter has returned a negative result.

i-views 5.3

193/534

The superordinate element operation parameter is used along with the Not affected by the delete

operation setting.

In this example access situation, the Date attribute with the value “19.10.” in the “Concert X” object

is deleted. The object itself is not deleted. The “Concert” query filter, which is defined by the “Su-

perordinate accessed element” operation parameter, and the “Artist, location and date” property

filter receive a positive response. The subsequent delete filter also returns a positive response, as

the object containing the property (superordinate accessed element) is not affected by the delete

operation - in line with the “Not affected by the delete operation” setting of the delete filter.

In this access situation the “Concert X” object is deleted by user Paul. Deleting the object automat-

ically deletes all properties of the object - and thus all attributes of the object as well. The check

of the trigger tree is executed for the deletion of both the object and the attribute. The “Concert”

query filter and the “Artist, location and date” property filter are fulfilled for the delete process of

i-views 5.3

194/534

the attribute in the check of the trigger tree. The delete filter itself is not fulfilled in this situation,

as the “Concert X” object containing the “Date 19.10.” property is deleted.

Use of delete filters makes sense, for example, if the trigger script compiles the name of the

object from its properties. As a result, the name of the object is not modified several times

when the properties of the object are deleted; instead, the object and all related properties

are deleted without the script for compiling the name being executed. This usually saves un-

necessary calculation times and can make sense in specific application scenarios, e.g. if the

trigger sends an email notification that an object has been renamed (and this avoids sending

numerous superfluous emails regarding the name change).

1.6.4 Operation parameters

Operation parameters control the element to which the result of the structured query for the

condition check should be compared in query filters. In the simplest case, the result is com-

pared to the element that is to be used to execute the operation to be checked. Operation

parameters can be used to modify the transferred element. You can choose the current user

or elements from the element environment that will be used as the comparison element for

the query filter.

They are also used, among other things, in delete filters and script triggers. Based on the

element to which access is executed, they specify there the element on which the script is to

be executed, or on which the deletion of elements (and which elements) is to be filtered.

When is this useful? It can be essential if you cannot use an element from the environment

of the affected object instead of the object itself for comparison: when, for example, you

want to check access rights for creating new objects or types. It is not possible to define a

structured query that returns the object that has not been created yet. In this case, the query

filter must be compared to something else, i.e. the type of object to be created and, in case

of object types, to the super-type of the type to be created.

Operation parameter Description

(Super) type In the case of types, the (super) type is the super-type of the

type. In the case of objects, the (super) type is the type of the

object type. In the case of attributes or relations, the (super)

type is the type of the property.

User The user is the object of the users which executes the opera-

tion.

Property The property is the property that the operation affects (at-

tribute or relation). If the operation is performed on an object,

type or extension, the operation parameter property is blank.

Inverse relation If the property affected by the operation is a relation, the pa-

rameter contains the inverse relation half.

Inverse relation type The inverse relation type is the type of the inverse relation. This

can be used for the generation of relations.

i-views 5.3

195/534

Core object If the higher-level element is an extension, then the core object

is the object on which the extension is stored. Otherwise, the

core object is identical to the accessed element.

Folder The Folder operation parameter is the folder affected by the

operation.

Primary property In the case of meta properties, the primary property is the

property closest to the object, type or extension. Otherwise,

the primary property is identical to property.

Primary semantic core

object

If the primary semantic element is an extension, then the pri-

mary semantic core object is the core object of the extension.

Otherwise, the primary semantic core object is identical to the

core object.

Primary relation target The primary relation target is the primary semantic element of

the relation target.

Primary semantic ele-

ment

If the superordinate accessed element is a property, the pri-

mary semantic element is the object, the type or the extension

on which the property is stored (transitive). Otherwise, the pri-

mary semantic element is identical to superordinate element.

Relation target If the property affected by the operation is a relation, the Re-

lation target parameter contains the relation target of the rela-

tion half. (The source of the relation would be the higher-level

element in this case.)

Superordinate element The semantic element is the object, the type or the extension af-

fected by the operation. In the case of properties, the semantic

element is the object, the type or the extension on which the

property is saved.

Accessed element The accessed element is the element affected by the operation.

1.6.4.1 Operation parameter accessed element

The accessed element is the element of the semantic network that is currently being ac-

cessed. For query filters in the rights system, for example, the accessed element is the ele-

ment that is to be accessed by an operation. When checking an access situation, the element

is then transferred to the query filter on which the operation is supposed to be executed.

The query filter then compares the accessed element to the result of the structured query.

1.6.4.2 Operation parameter user

The “User” parameter is always the user object of the user who is currently logged in, re-

gardless of the accessed element. For this purpose, the Knowledge Builder account must be

linked to a semantic network object. The chapter on activation of the rights system describes

how this link is created.

i-views 5.3

196/534

Accessed element User

Object, type, extension

or property

Object of the user who is currently logged in

1.6.4.3 Operation parameter (super) type

The “(super) type” parameter is used, for example, if operations that create new elements

are to be checked in the rights system. When elements are created, the query filter cannot

be defined so that it finds elements that have not been created yet. The query filter must

work on the super-type or type of the element to be created. During the creation of objects,

attributes and relations, the type of the objects, attribute or relation is used. For types, the

super-type of the type to be displayed is used.

Accessed element (Super) type

Object or extension The type of object or extension

Type The super-type

Property The type of property

1.6.4.4 Operation parameter parent element

The semantic element is used if the direct properties of an element are to be retrieved.

Accessed element Superordinate element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Property on which the meta-property is stored

1.6.4.5 Operation parameter property

Attributes and relations are understood to be properties. The operation parameter contains

the attribute or the relation on which the operation is performed. If the operation is per-

formed on an object or type, the operation parameter property is blank.

Accessed element Property

Attribute or relation The actual accessed element

i-views 5.3

197/534

Object, type or extension Blank

1.6.4.6 Operation parameter inverse relation

The inverse relation is the “opposing direction” of a relation half. If the relation half is consid-

ered as directed graphs, then there is a relation between two opposing graphs (the “forward

direction” and the “reverse direction” of the relation) that is attached between two elements.

The inverse relation is therefore the opposing relation half. The inverse relation has the rela-

tion source of the relation half as its relation target and vice-versa.

Accessed element Inverse relation

Relation half The inverse relation half

Object, type, extension

or attribute

Blank

1.6.4.7 Operation parameter inverse relation type

The inverse relation type is the type of the inverse relation.

Accessed element Inverse relation type

Relation half Type of inverse relation half

Object, type, extension

or attribute

Blank

1.6.4.8 Operation parameter relation target

The relation target is not the source, but rather the “target” of a relation half. It can also be

considered the inverse relation half.

Accessed element Relation target

Relation half The relation target is the relation source of the inverse relation

Object, type, extension

or attribute

Blank

i-views 5.3

198/534

1.6.4.9 Operation parameter primary element

The primary semantic element always delivers an object, type or extension. If the primary

semantic element is executed on meta properties, the properties are processed transitively

until the object, type or extension to which the properties are appended is found.

Accessed element Primary semantic element

Object, type or extension The actual accessed element

Property Object, type or extension on which the property is stored

Meta-property Object, type or extension on which the property is stored on

which in turn the meta-property is stored (transitive)

1.6.4.10 Operation parameter primary relation target

In contrast to the primary semantic element of a relation half, the primary relation target is

not the object, type or extension on which the relation half is located but the object, type or

extension to which the inverse half of the relation is connected.

Accessed element Primary relation target

Relation half The primary semantic element of the relation target (object,

type or extension on which the inverse relation half is stored)

Relation half whose rela-

tion target is a property

or meta-property

The primary semantic element of the relation target (object,

type or extension of the meta-property or property on which

the inverse relation half is stored)

Object, type, extension

or attribute

Blank

1.6.4.11 Operation parameter core semantic element

The core object is used when work is done with extensions. Instead of the extension, the

core object delivers the object to which the extension is saved.

Accessed element Core object

Object, type or property The actual accessed element

Extension The object to which the extension is saved

i-views 5.3

199/534

1.6.4.12 Operation parameter primary semantic element

If you want the corresponding object or type to be processes for an element, you must use

the primary semantic core object. In contrast to the primary semantic element, no extensions

are permitted. In case of extensions, the core object is output.

Accessed element Primary semantic core object

Extension The object to which the extension is saved

Object or type The actual accessed element

Property or meta-

property of an extension

The object to which the extension is saved

Property or meta-

property of an object

or type

Primary semantic element - object or type to which the prop-

erty is saved (transitive)

1.6.4.13 Operation parameter primary property

The primary property is always a property. It resembles the primary semantic element in that

it transitively processes meta properties. However, it delivers the last property that precedes

the primary semantic element, that is, the property stored directly on the primary semantic

element.

Accessed element Primary property

Property The actual accessed element

Meta-property (or meta-

property of a meta-

property)

The property that is closest to the object, type or extension

Object, type or extension Blank

1.6.4.14 Operation parameter folder

If a folder from the Folder area of the semantic network is to be transferred to the search as

a parameter, the Folder operation parameter must be used.

Accessed element Folder

Folder The actual accessed element

Object, type, extension

or property

Blank

i-views 5.3

200/534

1.6.4.15 Examples: The use of operation parameters

Example 1: Accessed element and property in the rights system

The example below shows the access situation on the left side and the corresponding query

filter on the right side.

Access situation: User Paul wants to change the attribute Duration of song X.

Query filter: All attributes created by a certain user are filtered. In the structured query, the

access parameter “User” is used, which restricts the objects of user to the person who wants

to execute the operation. This corresponds to all attributes that were created by Paul.

Checking the access rights: To check the access rights, the attribute (accessed element/property)

on which the operation is to be executed is transferred to the query filter. If this attribute is

included in the set of search results, the query filter check returns a positive result.

Operation parameter: The attribute Duration is transferred to the query filter. In this case,

both the operation parameter “Accessed element” and the property can be used because

the attribute “Duration” is actually a property and represents the accessed element of the

operation.

Example 2: Superordinate element and primary semantic element in the rights system

This example shows the access situation on the left side and the corresponding query filter

on the right side.

i-views 5.3

201/534

Access situation: User Paul changes the Length attribute, which currently has the value

02:30 and is part of the Song X object.

Query filter: The query filter is defined in such a way that it searches for all objects that were

created by a specific user; the currently logged-in user is the accessed element. Accordingly,

the query filter finds all the objects created by Paul.

Checking the access rights: If the result set of the query filter contains Song X, the following

folder (filter or decider) is executed.

Operation parameter: Use of the “Superordinate element” operation parameter has the

effect that, instead of the “Length” attribute to be changed being transferred to the query

filter, the object in which it was defined is transferred to the query filter. This is the case

for Song X. In addition to the superordinate element it would also be possible to use the

“Primary semantic element” operation parameter in this case. The “Superordinate element”

operation parameter would have the result that all properties and the object itself are rated

positive by the filter. In addition, the “Primary semantic element” operation parameter would

also permit meta properties of the object, no matter how many properties are between the

object and the meta property.

Example 3: (Super) type in the rights system

The example shows the access situation on the left-hand side and the query filter applied in

this situation on the right-hand side.

Access situation: User Paul wants to create the attribute Length on the object Song X. The

value is to be 02:30.

Query filter: The query filter returns the attribute type “Length.”

Checking the access rights: If the attribute to be created has the “Length” type, the check

of the query filter returns a positive result.

Operation parameters: When creating elements, it is not possible to define a query filter

that returns the element to be created and is thereby able to check the access rights. This

means that a different operation parameter must be chosen as the accessed element when

creating elements. The “(super) type” operation parameter is suitable in these situations. In

this example, the attribute type is used, which is the Length attribute type.

1.6.5 Operations

Operation filters can be used to specify operations that are then permitted in the filter pro-

cess of operation filters. If a different operation is executed in the access situation than

specified in the operation filter, the system switches to the next subtree when traversing the

rights or trigger tree.

i-views 5.3

202/534

The general operations Create, Read, Modify and Delete consist of multiple individual oper-

ations. If one operation group is prohibited, that means that all the operations it contains

are also not permitted; vice versa, if an operation group is permitted, all the operations it

contains are automatically permitted as well.

The table shows an overview of all available operations that can be applied in operation

filters. Depending on the operation, only specific operation parameters can be used in query

filters. These are specified in the “Operation parameters” column.

Note: Derived operation parameters such as primary semantic elements or primary semantic

core objects, for example, can be used whenever the parameter from which they are derived

can be used.

Special features of triggers

No read operations can be used for triggers. In addition, the operation groups Query (opera-

tion: use in structured query), Display of objects (operation: Display in graph editor) and Edit

(operation: Validate attribute value are not available for triggers.

In addition, the “Accessed element” operation parameter is available for triggers in the “Cre-

ate” operations if the time/type of execution is set to After the change or End of transaction.

Oper-

ation

group

Operation Operation parameter

Query Use in structured

query

Accessed element

Display

of ob-

jects

Display in graph

editor

Accessed element

Edit Validate attribute

value

Accessed element, property, superordinate element, (pa-

rameter to be checked: attribute value)

User-

defined

opera-

tion

Generate Generate at-

tribute

(Super) type, superordinate element

Generate exten-

sion

(Super) type, superordinate element, core object

Generate object (Super) type

Generate folder Folder

Generate relation (Super) type, superordinate element, relation target, in-

verse relation type

Generate relation

half

(Super) type, superordinate element, relation target

Generate type (Super) type

i-views 5.3

203/534

Add translation Accessed element, property, superordinate element

Read Read all ob-

jects/properties

of a type

(Super) type

Read attribute Accessed element, property, superordinate element

Read object Accessed element, superordinate element

Read relation Accessed element, superordinate element, property, in-

verse relation, relation target, inverse relation target

Read type Accessed element, superordinate element

Delete Delete attribute Accessed element, superordinate element

Delete extension Accessed element, property, superordinate element

Delete object Accessed element, superordinate element

Delete folder Folder

Delete relation

half

Accessed element, inverse relation, property, superordi-

nate element, relation target, inverse relation target

Delete type Accessed element, superordinate element

Remove transla-

tion

Accessed element, property, superordinate element

Modify Modify attribute

value

Accessed element, property, superordinate element

Modify folder Folder

Modify schema Accessed element, superordinate element

Change type Accessed element, superordinate element

Use tools Export

Import

Edit/execute

script

Read object

The operation Read object is used to display objects for the corresponding object type on

the Objects tab. The operation does not prevent the display of the object when it is called

up using a linked object. In this case, the operations for properties Read attribute and Read

relation then apply.

Read all objects/properties of a type

This operation specifically controls the access rights check when processing a structured

query. A structured query checks all intermediate results by default. A search for all employ-

i-views 5.3

204/534

ees with a wage greater than e10,000 would therefore not result in any hits when the wage
cannot be read, even if the corresponding employee objects could be read. This response

is often preferred, however is seldom performant. In the case of an extensively configured

rights system in particular, processing of which requires a lot of processor capacity, we rec-

ommend using a control that does not require intermediate results of a structured query

to be checked because a check of the final results is sufficient. In most semantic networks,

permission can be issued for all property types (“top-level type for properties”).

To examine which intermediate results are checked, this information can be made to appear

in a structured query. This is done using “Settings->Personal->Structured query->Show ac-
cess rights checks”.

Use in structured query (obsolete)

If a negative access right has been defined for an element that is filtered for the operation

Use in structured query, then the element may not be used in a structured query. It will not be

factored into structured queries even when the (abstract) super-type is specified.

Validate attribute value

The operation Validate attribute value is used when the attribute value to be set must sat-

isfy certain conditions. The definition of the condition for the attribute value is made in a

structured query. Two possible definitions are available there for validation of the attribute

value:

• Condition for the attribute value to be set:
The new value of the attribute can be validated by a comparison with a specified value

in the structured query.

Example: The attribute value may only be less or equal to 4.0.

• Compare with the attribute value to be set:
This compares the current value with the new value.

Example: The new value of the attribute age may only be greater in this case. Smaller values

are not permitted.

• Compare the value to be set with the result of a script:

i-views 5.3

205/534

This initially determines a comparative value by means of a script.

The script is called using a parameter object that contains the following properties:

Different comparative operators are available for the validation, which can be used to check

the attribute value to be set with another value.

If the new value does not match the defined condition, the filter check produces a negative

result when the initial setting Search condition must be satisfied has been selected.

Modify schema

The modify schema operation concerns changes to the definition area of relations and

changes to the type hierarchy (is a subtype of and is a super-type of relations).

1.6.5.1 Example: The use of operation groups in the right system

This example shows how groups of operations (read, generate, modify, delete) can be used

sensibly when defining rights. All operations are to be prohibited for the Song type and its

objects. This includes the following actions:

• Deletion of the object type Song
• Deletion of specific songs (objects of Songs)
• Deletion of attributes that occur on a Song
• Deletion of relations that occur on a Song (relation target and source)
• Deletion of extensions that extend objects of Song
• Deletion of attribute and relation types that have objects or subtypes of Song as their
definition area

For example, if all delete operations for an object and the corresponding type are to be pro-

hibited, you have to ensure you cover all delete operations by means of the corresponding

parameters when selecting the operation parameters in the query filter of the right:

The only condition of the query filter used is the object type Song, for which the setting Objects and

Subtypes is selected. The operation parameter “Accessed element” covers the object type “Song”

i-views 5.3

206/534

and all objects that belong to this type. The parameter Core object covers the extension objects that

belong to songs. Attributes and relations are covered by the operation parameter “Superordinate

element.”

In the rights tree, the operational filter for the delete operation comes first. This is followed

by the query filter depicted below and finally the decider “Access refused.”

Query filters used in the example: “Core object,” “Superordinate element” and “Accessed element”

have been selected as operation parameters. The settings used are “One parameter must apply”

and “Search condition must be met.”

Extension of the right with attribute and relation types

A thus defined right covers all but one of the above described requirements on the right. Only

the deletion of attribute and relation types that have been defined for objects and subtypes

of songs are not taken into account in this definition of rights.

The definition of rights is extended with the following filter:

The query filter includes all property types (attribute and relation types) that have been defined for

objects or subtypes of songs. In the query filter definition, the parameter “Accessed element” and

the setting “Search condition must be met” are used.

i-views 5.3

207/534

1.6.6 Test surrounding

When the Rights folder is selected in the System area, the Saved test cases and Configure tabs

are available in the main window. The test system area is found in the Saved test cases tab.

The test system for triggers is called in the Triggers folder by means of the System area.

Saved test cases can be tested again here. The test interface in which the test cases can be

defined can be called using the Open test environment button.

In addition to the functionalities that are described in the following chapters, Testing an ac-

cess situation and Defining test cases, there is the option of testing access rights directly on

an object or type. Select the access rights function using the context menu (right click). The

following menu items can be selected there:

• Object: All operations (modify, delete, read and display in graph editor) are tested on
the object and their result is output.

• All: All operations (modify, delete, read and display in graph editor) are tested on the
object and all their properties (attributes and relations) are tested.

• Rights system test environment: The test environment for checking rights opens.

i-views 5.3

208/534

1.6.6.1 Test the access right situation

Two areas are relevant for testing the rights system and the trigger functionality:

• The actual test environment: The test environment offers the option to test the access
rights or when a trigger is executed for a certain test case.

• The Saved test cases tab: This lists the test cases and makes them available for subse-
quent checking.

Instructions for opening the test environment

1. Select the folder Rights or Triggers in the Technical area in the Knowledge Builder.

2. If you are working in the rights system, select the Saved test cases tab in themain window.

3. Click Open test environment (bottom right) so that the test environment opens in a new

window.

The test environment is comprised of several areas: The user and the element to which the

property that is to be checked is attached is defined in the upper area. The elements can be

an object, a type or a property (when this is transferred as an element).

The properties area lists all properties of the selected element. Non-italic properties are spe-

cific properties that are already on the object or the property. Italic properties, in contrast,

are properties that can be created based on the schema, but have not yet been created. If

creation of a new property is to be tested, the property in italics must be selected.

The operation that is to be tested can be selected in the Operation window. Depending on

the parameters selected, checking rights either is possible or not.

Please note: If a property of a property, this being a meta-property, is to be tested, then

the property must be marked in the property window and the As element button must be

selected. In the case of relations, for example, the specific relation between two objects or

properties is selected as an object. All properties of the specific relation are now available in

the properties window. (This can also be done with attributes.) The Sem. element button can

be used to reverse this step.

i-views 5.3

209/534

The result of the test is displayed in the bottom window. The Check button must be selected

for this. The results window displays all tested cases.

• Element: the object, the type or the property on which the property is defined.
• Property: the specific property that is to be tested (is blank when italic properties are
tested)

• Operation: that operation that is to be tested
• Access allowed: the result of the test in the test case
• Decision path: the corresponding folder which leads to the test result
• Time: the time required for the rights check

Please note: When testing relations, the relation, the inverse relation and the both relations

halves are generally tested separately.

1.6.6.2 Define test cases

In order to monitor the functionality of the rights system, it is possible to save test cases.

This is particularly important if changes are made to the rights system and you want to check

afterwards whether the new result still matches the expected result. All saved test cases are

displayed on the Saved test cases tab. There it is possible to check all test cases at the same

time.

Instructions for defining a test case

1. In the test environment, select the element and the property you wish to check.

2. Select the operation to be tested.

3. Press the Check button. Now the access rights are tested for the delivered parameters.

i-views 5.3

210/534

4. In the results output, choose the test case you want to save. (You can only ever save

one operation as a test case.)

5. Press the Test case button. The selected test case is saved and is available for future

checks.

Test multiple test cases simultaneously

Screenshot with saved test cases, the second test case is displayed in red.

All test cases whose test result matches the expected test result are displayed in green. If a

test case is displayed in red, the result of the check differs from the expected test result. The

expected test result is determined by the fact that the check of the test case was performed

for the first time during the definition of the test case. The result of this first check is displayed

as the expected result during later checks of the test case. In the test system, the expected

result is either Access permitted or Access refused; for triggers, the expected result is either

Execute script or “nothing happens” in the form of a hyphen.

Saved test cases can be deleted with Remove. If you want to edit a test case, you can use the

Open test environment button to do so. In that case, all the parameters of the test case are

transferred to the test environment.

1.7 View Configuration

The view configurationmakes it possible to configure various views of the data in i-views. The

configured views are deployed in applications. It is possible, for example, to display sections

of the semantic model or create specific compilations of data (e.g. in forms, tables, results

lists etc.).

This allows us to answer the following questions, for example, and create the required views

with view configurations:

i-views 5.3

211/534

• How should the properties of specific objects be displayed?
• In what order should the properties be displayed?
• Whenwe create a new object, which attributes and relations should be displayed in such
a way that they cannot be overlooked and thus not filled out?

• What should the list of objects for a type look like?
• Should it even be a simple list, or should the objects be displayed in tables?
• Which elements should be displayed in the individual columns?
• Should relation targets be displayed directly? Or only specific attributes?
• Should we define different tabs that summarize properties and attributes that go to-
gether? ...

Example: Specific persons have the properties Name, Age, Gender, Address, Phone number,

Email, Cell number, Fax, knows, is friends with and is a colleague of. Now we can use the view

configuration to create more structure for the data view by defining a tab with the heading

“General information”, which contains the name, age and gender; a tab with the heading

“Contact data”, which contains the address, phone number, email, cell number and fax; and

a tab with the heading “Contacts”, which contains the knows, is friends with and is a colleague

of properties.

Example of a view configuration. Upper screenshot: Unconfigured section of an object in the

graph view with all its properties. Lower screenshot: Configured view of the same object, where

i-views 5.3

212/534

the properties that go together have been grouped, unimportant relations have been left out, and

similarity relationships are displayed directly.

One special case of view configuration is the configuration of the data view in the Knowl-

edge Builder, because the Knowledge Builder is also an application which allows various data

views. This is helpful if we want to use the Knowledge Builder as a preview in order to try out

specific configurations. The view configuration in the Knowledge Builder can be configured

so that important properties that need to be added can be requested in a clearly visible way,

for example the detail pages for objects. This is particularly helpful if data are to be collected

systematically.

1.7.1 Concept

The concept of i-views is that semantic elements can be used for configuration. The views in

the Knowledge Builder are generated with the help of a preset view configuration.

1.7.1.1 View Configuration

The purpose of the view configuration is to format the data of the semantic network for

applications in such a way that it can be displayed either in Knowledge Builder or as an

application in the web front-end via a bridge.

In the semantic network, special “view configurations” can thus be created for use in Knowl-

edge Builder and for applications such as the ViewConfiguration Mapper.

The view configuration in Knowledge Builder contains the following categories:

• Applications
• Graph configuration
• Configuration of the KB folder structure
• Panel
• Relation target search
• Start view (KB)
• Search field (KB)

i-views 5.3

213/534

For more information, see the “Context/using view configurations” chapter.

1.7.1.2 View Configuration Mapper

The view configuration mapper is used to map the preconfigured views of the view configu-

ration to the web front-end of the browser.

The structure of the view configuration mapper is generally structured in hierarchical fashion

and contains the panels for building the layout (= content arrangement) of the web front-end.

To display the contents, a panel needs a sub-configuration, which is referred to as a “view”

(= prepared content).

In concrete terms, the view configuration mapper contains one main window panel and any

number of dialog panels. The main window panel reflects the entire display area of the

website in the web front-end and contains the following panels, for example:

• Window title panel
• Panel with defined view
• Panel with flexible view
• Panel with linear layout
• Panel with changing layout

Please note that the view configuration mapper is a single-page application; this means it

is not the visibility of panels over several pages that is controlled, but the visibility of the

elements featured in the permanent panels.

1.7.1.3 Create and update the view configuration

Create

i-views 5.3

214/534

In Knowledge Builder, there are two places where you can create a new view configuration:

1. Semantic element-oriented configuration

The first place makes sense if a view configuration is to be generated for a certain object

type: On the “Details” tab, you can edit the view configuration for details views and lists.

The displayed hierarchy has the sub-item “View configuration” with four additional subitems.

• Object -> Details: This is where you can configure the details view for objects.
• Object -> Object list: This is where you can configure the object list that shows the ob-
jects of the selected type in Knowledge Builder.

• Type -> Details: This is where you can configure the details view for types.
• Type -> Object list: This is where you can configure the object list of subtypes of the
selected type that can be seen in Knowledge Builder.

You can create view configurations for this type or objects of this type on the object type on the “Details” tab.

You can create view configurations for this type or objects of this type on the objects type on the

“Details” tab.

Click on “New" to create a new view configuration. For object lists you automatically

create a new view configuration of the table type. For details, a dialog opens in which you

can select the desired view configuration element (on this subject, see the “View configuration

elements” chapter).

By clicking on the Edit button or double-clicking on the selected view configuration, open the

editor with which you can configure the view.

Note: On the “Context” tab of the respective configuration, the entry “use in” specifies in

which application the configuration is to be displayed:

Application context “apply in" Result

Knowledge Builder The details view or the list for a type or ob-

ject in Knowledge Builder is displayed.

i-views 5.3

215/534

View configuration mapper The details view is used for the web front-

end.

If there is no entry for the application context and the view does not receive an application

content through inheritance from a higher-level element (view or panel), the view is not as-

signed and therefore deactivated.

Special case: Hierarchy + object list

A possible use case for the details view of the Knowledge Builder is to display a domain-

specific hierarchy with object details. In this case, “Knowledge Builder” must be entered for

the application context in the “Knowledge Builder” hierarchy view, and to configure the de-

tails, the configuration name must be entered in the hierarchy view. Assigning a different

application context in this constellation can lead to an endless cycle in the view configura-

tion.

2. View-oriented configuration

The second position presents itself if an application is to be generated from scratch the many

view configurations are to be created at once. To this end, Technical > View configuration >
Object types contains all view configuration elements that are in use in the semantic network

or for which a new view configuration can be created.

To configure a web front-end, use the panel configuration Technical > View configuration >
View configuration mapper. For more information, see chapter 3 “View configurationmapper.”

Update

To ensure that changes to the view configuration are copied to the application, you have to

update the view configuration in Knowledge Builder by clicking on the “View configuration

update” button. This button is always located in the respective View configuration menu

bar.

1.7.1.4 Context / Use of view configurations

The context in which a view configuration element is used is shown in the properties editor

under the “Context” menu tab.

i-views 5.3

216/534

Context

The context area is used to define the semantic elements for which the view configuration

applies, and to define where, i.e. in which applications or in which other view configurations,

it is displayed:

• “Apply to”: The semantic element for which the view is being used must be specified
here. If the view configuration is defined by the object type, the object type is entered

automatically. Additional object types can be specified as necessary

Example: If the view is a node category of the Net-Navigator, then the object type for

which the objects are shown can be specified under “Apply to.”

• “Apply to subtypes”: This is selected to show the type itself, and its subtypes, using the
application.

• “Apply in” specifies the application context, i.e. which application (mostly: ViewConfigu-
ration Mapper or Knowledge Builder) or configuration the view is applied in.

If no application has been entered for using the view configuration, then the view configura-

tion will not be shown, apart from the following exceptions. View configurations are defined

as a tree structure in which the principle of inheritance applies. This is why the application

does not have to be specified separately for sub-configurations. They are shown as part of

the top-level configuration. A property configuration is shown, for example, when this is part

of a group for which its use was specified. A view configuration is also shown when it is part

of a panel which, in turn, is defined in an application.

The following applications are available from the start:

• Graph editor: The configurations have an impact on the display in the graph editor.
The graph editor is used for visualizing the semantic elements and their relationships.

• Knowledge Builder: The view configurations are used in the actual Knowledge Builder.
Along with the detailed configurations, the object list configurations are also available

here.

i-views 5.3

217/534

• Knowledge portal: The knowledge portal is a component of i-views which can be used
as a front-end. It shows the objects of the semantic network on details pages and in

context boxes on the basis of their semantic contexts.

• Net-Navigator: This is used for visualizing semantic elements. In contrast to the graph
editor, which is part of the Knowledge Builder, it can be used in the Knowledge Builder

and ViewConfiguration Mapper applications.

• Topic chooser: It allows relation targets to be selected in a window.

• ViewConfiguration Mapper: The ViewConfiguration Mapper is an intelligent front-end
which, in contrast to the knowledge portal, uses the view configurations. It can be used

to create straightforward and fast views of the data.

Moreover, it also allows any individual applications to be defined, which can be linked to the

view configuration at this point.

References

“References” refers to the reuse and continued use of a view configuration within another

view configuration:

• “Is included in panel:” Indicates which higher-level panels there are in the view configu-
ration hierarchy

• “Has sub-panel:” Indicates which panels there are in subordinate hierarchy levels
• “Order”: Determines the order of the panel when the higher-level panel has a linear
layout (horizontal or vertical)

• “Sub-configuration:” Refers to a subordinate configuration that contains the view (= spe-
cific display of the content)

• “Activate actions from panel”: Indicates that an action in this panel is influenced by the
action in another panel (for example: Display of the search result in one panel is influ-

enced by the search input in another panel)

• “Show result from action.” Determines that the action by another panel causes a result
to be displayed in a defined form in this panel (for example: Net-Navigator shows the

elements for the object that was clicked in another panel s search result field)

• Other relations (“Table of”, “Context of”, “Configuration for meta properties of”, “Action
of”, etc.) show the contexts in which a view configuration is used. A view configuration

can be used in any number of view configurations.

1.7.1.5 The validity of view configurations

The chapter Using the view configurations already noted that the application in which and

the objects and types for which the view is displayed are decisive for view configurations.

Nonetheless it is possible that the view configuration is not displayed in the selected applica-

tion. This question is: When is a view configuration valid? And for which object or type is the

view configuration valid?

Inheritance of view configurations

In relation to inheritance, view configurations respond like properties. Subtypes or objects of

subtypes inherit view configurations.

i-views 5.3

218/534

Application of the most specific view configuration

The subtypes use the super-types according to the inheritance principle as long as they don t

have their own view configurations. The most specific view configuration is always used: This

is the configuration that is defined directly on the type. If that is not the case, it is checked

whether there is a view configuration on the super-type. If that is not the case, the next level

up in the type hierarchy is checked to determine if a view configuration has been defined.

The view configuration that is closest to the object type is then used. If no view configuration

is found on the super-types, the default configuration is used for the administrators.

What happens when there are two equivalent view configurations?

If there are two equivalent view configurations, no view configuration is displayed. If the

application or object type was not defined for one of the view configurations, this is not

considered to be an active view configuration. In this case the other view configuration is

used. If you want to display different views for different users, you can define a rule in the

detector system. In this case, the view configuration is used in accordance with the defined

rule as long as the rule only has one view configuration dependent on the user.

1.7.2 Menus

Menu configurations contain buttons, so-called actions, which allow the user to execute a

range of functions.

The menus mainly serve two functionalities in the handling of actions. On the one hand, they

can be used to structure actions, and on the other, they can be used to specify where the

menus are deployed. The Knowledge Builder and ViewConfigMapper contain many locations

where the contents of menus are displayed, for example buttons at the head of an editor, or

the context menu for an individual property. Currently it is not yet possible to apply menus

to all places where menus are theoretically possible.

The next section describes the direct setting options for a menu, as well as the existing menu

types and how to use them.

Name Value

Label The menu type and the interface handling the display de-

termine whether the label is displayed.

Replaces standard menu This parameter currently only affects the Knowledge

Builder. Some editors, e.g. for a table, display standard

menus. These can be switched off with the help of this pa-

rameter.

Menu type The menu type describes the use of the menu in the indi-

vidual components. The menu types are described further

down.

Menu types:

Menu bar

i-views 5.3

219/534

Name Value

Add standard actions This icon is only displayed if standard actions can be added.

This is currently possible for table and search configurations.

This function offers the option to reactivate some or all de-

fault menu entries and to change the order of the individual

actions if the parameter Replaces standard menu is set.

Notes

• If the parameter Replaces standard menu is not set, the actions that are not included in
the menus are appended sequentially.

• If the order of the standard actions is supposed to be changed, the parameter Replaces
standard menumust be set. Following that, standard actions can be added using the Add

standard actions action. The standard actions can now be sorted in any way you wish

and mixed with your own actions.

Context menu

Icon

Knowledge

Builder

Currently it is possible to expand or define context menus for a table

row and an object editor.

Object configuration:

You can use the Menu tab to create menus in any top configuration of

an element. You can also switch off the standard menu here by setting

the Replaces standard menu parameter.

Table configuration:

The context menu contains two sections for a table row. The first relates

to the selected element, the second relates to the table. There are two

different configuration locations for the two sections. For the first case,

the menu for an element must be linked to any configuration, ideally

a new one, which in turn is attached via Apply in to the table that is to

display the contextmenu. In the second case, themenu can be attached

directly to the table.

ViewCon-

figMapper

This is currently not used in the ViewConfigMapper.

JSON

"label" : “Menu (context)”,
"actions" : [{...}],
"type" : "contextMenu"

List

i-views 5.3

220/534

Icon

Knowledge

Builder

This is only used in the start screen configuration. The configured ac-

tions are displayed in a list.

If labels are assigned for the menus, these are also displayed and there-

fore offer a structuring option.

ViewCon-

figMapper

This is currently not used in the ViewConfigMapper.

JSON

"label" : “Menu (List)",
"actions" : [{...}],
"type" : "listMenu"

Toolbar

Icon

Knowledge

Builder

The actions contained in themenus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

ViewCon-

figMapper

The actions contained in themenus are added in sequence. Subdivision

by menus and labelling of menus are currently not considered.

JSON

"label" : “Menu (toolbar)”,
"actions" : [{...}],
"type" : "toolbar"

i-views 5.3

221/534

1.7.3 Actions

The actions in i-views are divided into preconfigured action types. These action types are

categorized as follows:

• Universal actions (can be used in knowledge and ViewConfiguration Mapper)
• Actions specific to Knowledge Builder
• Actions specific to ViewConfiguration Mapper
• Internal actions (for administrative use only)

Depending on the action type and application, additional configurations are required, for

example creating additional panels for displaying the results of an action.

1.7.3.1 General

Functionalities can be specified in the view configuration using actions.

All the configured actions are displayed in the Knowledge Builder as additional buttons. The

script contained is executed when selection occurs.

The actions configured are generally displayed as buttons in the web front-end (ViewConfig-

uration Mapper). Actions can be summarized in a menu, or be defined directly for a view

configuration.

Action on an object list

The label is displayed as a tooltip in the Knowledge Builder. The selected symbol (any image

file) is scaled to the size of the button.

Please note: If no symbol is specified, no button is displayed in the Knowledge Builder.

Buttons with a label and/or a symbol image are possible in another application. A tooltip can

also be configured.

Important note: Actions of any type can be attached at a wide range of positions. In most

cases, they are also displayed. There is no guarantee that this action can be executed in the

content in which it is currently being used.

Setting options

Name Value

Action type The type of action. The different types are explained further

down. A script overwrites the action defined by the action

type.

execute in the view

(VCM-specific)

View in which the action is to be executed.

i-views 5.3

222/534

Notification Text shown in a notification that appears after the action.

Label A label can be defined for the button for the action here.

Show result in panel

(VCM-specific)

A panel in which the result of the action is to be displayed.

Script for target object

(VCM-specific)

.

Prompt before execution A text can be specified here which is to be shown to the user

in a dialog box before the action is executed. The dialog

provides the option of canceling or continuing the action.

Context of .

Close panel

(VCM-specific)

Defines whether the panel is to be closed after the action.

Script The script that is to be executed for this action. Not avail-

able for all action types.

Script (ActionResponse)

(VCM-specific)

A script specified here executes a so-called ActionResponse

after the action. Not available for all action types.

Script (enabled) A script can be used here to determine whether the button

for the action is to be activated, and should therefore be

able to be executed.

Script (visible) A script can be used here to determine whether the button

for the action is to be displayed.

Script for notification A script can be used here to determine the content of the

notification.

Script for label A script can be used here to define the label.

Script for prompt before ex-

ecution

A script can be used here to determine the text for the con-

firmation dialog for the action. If a blank string is returned,

the dialog does not appear.

Script for tooltip A script can be used here to determine the content of the

tooltip for the action, instead of using the text of the label.

Start semantic element of .

Symbol A symbol can be selected here that is to be displayed on the

button for the action.

Tooltip The content of the tooltip for the action can be defined

here, instead of using the text of the label.

Use original position .

i-views 5.3

223/534

1.7.3.2 Universally applicable actions

Universally applicable actions can be used in both the Knowledge Builder and in the web

front-end using the ViewConfigurationMapper. This includes the action types “Display graph-

ically”, “Delete” and “Search”.

1.7.3.2.1 Action type "Display graphically"

The “Display graphically” action is used in a view configuration to graphically depict object

types, relations and objects in the Net-Navigator. Here the configuration is as follows:

For this purpose, a panel must be specified under “Show result in panel” that contains a graph

object as its sub-configuration. The graph object in turn must contain a graph configuration

for the definition of the elements to be displayed:

1.7.3.2.2 Action type "Delete"

This action type deletes the respective element.

i-views 5.3

224/534

In Knowledge Builder, the "Delete" action type is preconfigured for object lists:

Like any other configuration in Knowledge Builder, the default configuration can be replaced

with a customized configuration. In this case, use “Delete” as the action type.

Deleting by action with script

In the web front-end, action type “Delete” is not practical as the deleted element is no longer

displayed afterwards, i.e. there is nothing left to see. Hence, we almost always implement an

action with a script in the web front-end.

The script for deleting an element is created under the “Script” entry of the action:

The syntax for this could look as follows:

function onAction(element, context) {
element.remove();
return;

}

i-views 5.3

225/534

One possible use for this is the configuration of a dialog panel for creating new objects whose

Cancel button then deletes the temporarily generated object.

Keep in mind that no action type for the action has to be deleted with this script as the script

overwrites the action type.

1.7.3.2.3 Action type "Search"

This action triggers a search. This function has been integrated into the menu bar of object

lists in the KB (shortcut Ctrl + S):

When used for the configuration of the web front-end, the action is assigned to an action by

means of the drop-down menu under the entry “Action type:”

Tip: If a search function with string input (keyword search) is required, then the search field

element in the view configuration can be used as an alternative. An input line and search

button are preconfigured here; the search result can be displayed in combination with the

search result view.

1.7.3.3 Actions for the knowledge builder

These action types can only be used for configurations in the Knowledge Builder.

Note: The KB-specific action types are only available in the “KB” tab of an action from KB

version 5.2.2 or higher.

1.7.3.3.1 Action type "Update"

In KB, this action recalculates the visible content of table cells. This option is available via the

“Update” button in the object list menu bar (shortcut: F5).

i-views 5.3

226/534

1.7.3.3.2 Action type "Print"

This action is used in the menu bar of list views. The preset configuration can be used to

print out object lists or output them in an Excel table, without having to create an export

mapping.

The “Print” action opens the Print dialog in Knowledge Builder.

The Print action is also available in the results lists of structured queries. To configure in-

dividual views in Knowledge Builder, the action must be added to the respective view or

configuration element:

The prerequisite for being able to use the action type “Print” is that the Printing component

i-views 5.3

227/534

exists, which can be installed retrospectively via the Admin tool if necessary.

1.7.3.3.3 Action type "User guide"

This action opens the i-viewswebmanual in the browser.

In contrast to the “Web-link” action type, this is a link to a preconfigured address, like the

“Manual” action type.

Setting options

Name Value

URL Preconfigured weblink to the i-views manual.

1.7.3.3.4 Action type "Homepage"

This action type can be used for the start view of the KB. The home page is opened in the

browser.

i-views 5.3

228/534

Setting options

Name Value

URL Link to a website

1.7.3.3.5 Action type "Show in tree"

The Show in tree action can be used to display the location of an element from the semantic

network. Executing this action has the effect that the location of an element (e.g. an entry

in a list view) appears at the corresponding point in the structure tree of the organizer (left

column of the KB) and opens in the details view of the element.

1.7.3.3.6 Action type "Save query result"

If searches are executed in the Knowledge Builder by means of a structured query, you can

save the results by clicking the button in the menu bar:

i-views 5.3

229/534

This action saves the query result in a folder you can choose:

Note: The saved search is an object list based on the configuration of a structured query re-

lating to currently existing semantic elements. If changes are made to the relevant elements

after the search result has been saved, this will have an effect on the saved results as well:

When the relevant element is deleted, it no longer exists in the saved search result.

1.7.3.3.7 Action type "E-Mail support"

This action type can be used for the start view of the KB. The actions contained open a dialog

in which you can send an email to the configured address.

i-views 5.3

230/534

Setting options

Name Value

URL Email link

i-views 5.3

231/534

1.7.3.3.8 Action type "Web link"

The “web link” action type can be used for the start view of the KB. It differs from the “manual”

action type in that you can assign any web address as the hyperlink.

Note: In later KB versions (KB 5.2.2) the “home page” action type is only available on the “KB”

tab.

Setting options

Name Value

URL Address of the web link.

i-views 5.3

232/534

1.7.3.3.9 Action type "Recently accessed objects"

Shows the objects (semantic elements) that were last used in the respective table. Objects

might be filtered depending on the definition of the table.

In Knowledge Builder, this action is preconfigured for list views and can be called up using

the key combination Ctrl+R.

1.7.3.3.10 Action type "New"

The new action creates new types or new objects in the semantic network. The new action is,

for example, used in the menu bar of object lists in the Knowledge Builder.

Note: Instead of the new action, a script must be used in the web front-end. For more

information, see the chapter “JavaScript-API”.

1.7.3.4 Actions for the viewconfiguration mapper

The actions for the ViewConfiguration Mapper can only be used for the web front-end and

are split into different action types.

1.7.3.4.1 Action type "Show"

This action initiates a re-calculation of a suitable view for the semantic object that is the target

of the action. You typically use this action if you want to change the view. The result of the

action is the new view.

You can use “Show result in panel” to determine in which panel the view is to be displayed.

i-views 5.3

233/534

The “Activation mode” determines the update behavior of the view:

Dis-

play

(Ac-

tive

flag

and

con-

tent)

=

“Push

re-

sponse"

The view is recalculated if the display action is influenced or if any change is made

to the content, irrespective of whether or not the panel is activated (= visible).

This mode makes sense, for example, when calling up a dialog panel.

i-views 5.3

234/534

Up-

date

(with-

out

flag,

con-

tent

only)

=

“Delta

load"

This view is only recalculated if the content changes:

• When the panel is called up for the first time, the view is calculated.
• If a view exists, it is kept even if another panel is called up in the meantime.
The view is “stored” for the duration of the session until it has to be recalcu-

lated because the content has changed.

An example of this is the display of a graph: As long as no changes are made to

the graph, the same, unchanged graph panel is displayed every time the graph is

called up.

Lazy

(lazy

flag,

no

con-

tent)

=

“Pull

re-

sponse"

If the content changes, the view is not calculated until the panel is called up. By

setting the Lazy flag, a separate request only loads the new view if the panel is

activated.

An example of this is a shopping cart: The composition of a shopping cart can

change constantly but the content of the shopping cart only needs to be displayed

at certain times.

If no activation mode has been selected, the “Display (active flag and content)” mode applies

by default.

1.7.3.4.2 Action type "Selection"

This action corresponds to the “Display” action, with the only difference being that the action

is executed on the parameter “selectionElement,” i.e. on a selected element. Please note:

This effect also applies to any script that might be available.

The “Selection” action is used only (but not necessarily) in order to call up a display from

another panel when clicking on a table entry or list entry in a search result. This is often used

to display detailed information on a semantic element.

Example

i-views 5.3

235/534

Keep in mind that the respective “Selection” action specifies the panel that this action is sup-

posed to affect. This is specified under “Show result in panel.”

1.7.3.4.3 Action type "NN-Expand"

NN-Expand is an action type that makes it possible to expand a graph node in the Net-

Navigator. This means that you can see all the nodes that are connected to this node via

a relation and that are permitted by the graph configuration. The affected relations between

the nodes are also displayed. Nodes that are already displayed in the Net-Navigator only

display the relevant relations in addition.

Display with a plus sign as shown in the image below is the default setting. If you click on

the plus button and it involves too many relations, a dialog window appears, and that dialog

window has also been configured already. In this dialog you can choose which nodes should

be displayed.

i-views 5.3

236/534

In the graph configuration this action is attached to all node categories that are supposed

to be equipped with it. A menu that can contain all NN actions is created on the “Node”

tab. In the action itself, it is only necessary to select the “NN-Expand” action type, all other

specifications are optional. The action type may not be available in the drop-down menu;

further action types are available from the neighboring “...” button.

1.7.3.4.4 Action type "NN-Hide"

With the configuration of this action type, a menu button is provided in the graph nodes that

hides the selected graph nodes and its displayed relations one time (see crossed-out eye in

the image). The node can, for example, be displayed again when another connected node is

expanded.

i-views 5.3

237/534

The NN-Hide action is configured like the NN-Expand action, but “NN-Hide” is chosen as the

action type instead of “NN-Expand”. In order to configure more than one action type on a

node, multiple actions must be created for a menu.

1.7.3.4.5 Action type "NN-Pin"

The NN-Pin action is used to configure a menu button that allows a node to be pinned down

in the Net-Navigator. When the graph is automatically restructured, for example when ex-

panding another node, the node that was pinned down remains in its position. Despite this,

the node can be repositioned manually and the pin is released when the graph is reloaded.

Clicking on the pin again also releases it again. The “pinned” status is displayed by a change

in the graphic (the pin points downwards instead of lying at an angle).

The configuration of the action type is performed as described in the “NN-Expand action”.

i-views 5.3

238/534

1.7.3.4.6 Action type "Save"

The Save action stores the form data from the web front-end in the semantic network. The

web front-end automatically recognizes the action type and sends it to the configured view.

If no view has been defined as the recipient of the action, the web front-end tries to find a

suitable view in a neighboring panel.

To do this, the action type “Save” is assigned to the action in a menu:

The Save action can be used, for example, to replace the individual Save buttons in several

edit fields in a dialog with a customized Save button.

Note: If you want to to use the save-action to do more than just to save (e.g. add another

i-views 5.3

239/534

object to the object you just edited), you have to use "Script (after action)" instead of "Script".

The reason is that otherwise the save action would be overwritten by the script action.

1.7.3.5 Internal actions

The use of internal actions requires expert knowledge.

If in doubt, please contact i-views support: support@i-views.com.

The actions listed here are only included for reasons of completeness. This includes actions

such as:

• Show action
• Sorting action
• Jump action
• Create target action
• Script action: If there is a script on an action, it causes it to be executed automatically,
and therefore overwrites the integrated function of the respective action type.

1.7.3.6 Scripts of actions

1.7.3.6.1 Script (onAction)

This script is executed when the action is executed. The return value is passed on to the

optional ActionResponse script.

function onAction(element, context) { return element;
}

Arguments

el-

e-

ment

The semantic element, in the context of which the action is executed. The “Selection”

action forms the only exception - in this case, “Element” is equivalent to the element

selected, and is therefore identical to “context.selectedElement.”

con-

text

Other predefined variables that describe the context of the action in more detail.

The script of an action can access the following predefined variables contained in context:

Detail editor

Variable Value

selectedElement Object selected or type selected

type Object type. If the element is a type, the actual type is used

Object list

i-views 5.3

240/534

Variable Value

selectedElement Object selected or type selected. Undefined if no ele-

ments, or several elements, were selected.

selectedElements Elements selected

elements All elements of the object list

type Object list type

Transactions

A transaction is required for write changes. This is automatically the case when executed

using the ViewConfigMapper.

By principle, no transaction is active in the Knowledge Builder. The script itself must control

transactions.

Knowledge Builder

Another variable for interacting with the user is available in the Knowledge Builder:

Variable Value

ui Object $k.UIObject

For example, an alert can show:

ui.alert(“Current Element: " + element.name());

1.7.3.6.2 Script (actionResponse)

This script is executed after the action has been executed. Its main task is to prepare the

result of the action for the ViewConfigMapper (or other front-ends). The script must return

an object of the type $k.ActionResponse.

function actionResponse(element, context, actionResult) { var actionResponse = new $k.ActionResponse();

actionResponse.setData(actionResult);
actionResponse.setFollowup("new");
actionResponse.setNotification(“done","warn");

return actionResponse;
}

i-views 5.3

241/534

Arguments

ele-

ment

The semantic element in the context of which the action is executed

con-

text

More predefined variables that describe the context of the action in more detail

(see previous section)

ac-

tion-

Result

The return value of the onAction script or, if not defined, the return value of the

configured action type.

ActionResponse

The ActionResponse can be supplemented with values for Followup / Data and Notification.

These values can be evaluated by other applications such as the ViewConfigMapper.

In the Knowledge Builder, the following values for Followup are possible in tables:

re-

fresh

Renders the current table again without recomputing the list

up-

date

Recalculates the table

show-

element

Selects the element in data in the table. Alternatively, the “data” element can handle

an object by means of {"element": actionResult, "viewMode": "edit} in order to open

the result in a new Detail editor.

Followup is not evaluated in detail editors.

1.7.3.6.3 Script (actionVisible)

function actionVisible(element, context) { return true;
}

The return value is used to decide whether the button is displayed or not.

In the case of actions on the elements, the following function is called up in tables, which

transfer an array of elements and expect an array of Boolean values. This can be used to

compute the visibility for the elements more efficiently in one go.

function actionsEnabled(elements, contexts) { return elements.map(function (element, index) { return actionVisible(element, contexts[index]);
});

}

i-views 5.3

242/534

1.7.3.6.4 Script (actionEnabled)

function actionEnabled(element, context) { return true;
}

The return value is used to decide whether the button is active.

In the case of actions on the elements, the following function is called in tables, which transfer

an array of elements and expect an array of Boolean values:

function actionsVisible(elements, contexts) { return elements.map(function (element, index) { return actionVisible(element, contexts[index]);
});

}

1.7.3.6.5 Script with UI specific actions

The script that implements the action can access UI-specific functions in the Knowledge

Builder using context.ui.

UI functions should not be executes within transactions when possible, as the display is not

updated within the transaction.

context.ui.alert(message, windowTitle)

Shows a message.

context.ui.requestString(message, windowTitle)

The user can enter a string.

context.ui.confirm(message, windowTitle)

Opens a cancel dialog.

context.ui.choose(objects, message, windowTitle, stringFunction)

Have an object selected from a set.

context.ui.openEditor(element)

Open the default editor for the object.

context.ui.notificationDialog(notificationFunction, parameters, windowTitle)

A wait dialog or notification dialog is opened. Depending on how it is configured, it can be

canceled.

Possible parameters:

Parame-

ter

Description Default

value

i-views 5.3

243/534

autoEx-

pand

The dialog display area is opened initially. true

canCan-

cel

The dialog can be canceled. true

stay-

Open

The dialog remains open after the end of the function. true

Example:

ui.notificationDialog(
function() {

ui.raiseNotification("start");
for (var i = 0; i < 10; i ++)

ui.raiseNotification("" + i + "*" + i + "=" + (i*i));
ui.raiseNotification("end");
return undefined;

},
{ "canCancel" : false },
"A wait dialog"

)

Messages can be output in the display area using the following raiseNotification function.

$k.UI.raiseNotification(message)

This message is only captured by the notificationDialog function, and the message is only

output in the display area there.

1.7.3.7 Action sequences

Often you will want to summarize the changes that the user makes to the semantic network

and that are split into several sequential actions. Example: in one action, a new product is

created, and in the next action the properties of the product are described. Aborting the

second action would create a product without a description in the semantic network. What is

required is an “All or nothing” behavior to ensure that either all actions that belong together

are executed, or that none of them are. You also want to ensure that other users can only

see the change to the semantic network once it has been completed. You can achieve such

behavior by encapsulating the actions in a “Transaction”.

In order to summarize a sequence of actions in a transaction, you mark the first action with

“Transaction - start” and the final action with “Transaction - end”.

Careful: The transaction is started only if the first action actually modifies the semantic net-

work. When creating new objects in a sequence of actions you also have to ensure that the

order of newly created objects is deterministic, so whenever an action script is repeated the

creation order is the same as before. If the set of created objects varies dependent on the

actual situation, make sure to sort the originating set in a deterministic way before creating

the objects (e.g. by idString()).

i-views 5.3

244/534

The transaction end can also be brought about dynamically via the “setTransactionCommit()”

script function.

If the transaction is to be canceled, you can achieve this by means of an action of the “Cancel”

type. Canceling means that all previous changes to the semantic network conducted within

the transaction are undone. The “setFailed()” script function can be used to dynamically initi-

ate a cancellation.

As a transaction is always coupled to the duration of a session, a transaction is canceled

automatically when the session ends in which the transaction was started. If, for example,

you open a dialog at the start of the transaction and the dialog is closed before the transac-

tion was completed, the transaction is canceled automatically. This does not apply to dialogs

that are opened while a transaction is already running, because this creates a new session

on the session stack. Dialog sequences (one dialog is closed and another dialog is opened

immediately) do not interrupt the transaction either.

1.7.4 View configuration elements

A view configuration describes how objects or types are to be shown. The different element

types that are available in the view configuration are described in the following.

The individual view configuration elements can, in part, be plugged together in any way. The

configurations can also be used multiple times as a sub-configuration.

List of the different detail configuration types

Configuration type Top-level config-

uration

Can include the following sub-

configuration

Alternative x any

Property

Properties x property

Group x any

Hierarchy x any

Script-generated content x

Static text

Search Table

Setting options that all detail configuration types have in common

Name Value

i-views 5.3

245/534

Configuration name This is not used in the user interface. The user who cre-

ates a configuration has the option of assigning a name

that is comprehensible for the user in order to be able to

find this configuration more easily later on, and to be able

to use it again in other configurations.

Script for window title Only for use in the Knowledge Builder. If an object is, for

example, opened by double-clicking in the object list, a

window with the properties of this object opens. The title

of this window can be determined using a script.

Note: The setting options for the individual configuration types are described in the following

sections. The obligatory parameters are printed in bold.

1.7.4.1 Alternative

An alternative is used to configure many different alternative views on an object. You can use

tabs to switch between the views in the application.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

has default alternative The sub-view that is supposed to be selected initially can be

specified here.

Display in an application

If the views are exported into JSON, the individual sub-views are attached to the alternatives

KEY in an ARRAY.

i-views 5.3

246/534

Example of an alternative in an application: You can use the tabs to switch between the views

“Example,” “Branches” and “Create own data.”

Display in Knowledge Builder

In Knowledge Builder, the various configured views of an object that are linked to the alter-

native are made available to users by means of tabs

Example of an alternative in Knowledge Builder: You can use the tabs to move between the view

“Tab 1” and the view “Tab 2.”

Configuration of tabs

If a view configuration of the “Alternative” type has been created, you can use the button

“Create new objects of object configurations” to add a new tab.

It usually makes sense to use the view configuration type “Group” as the tab as any number

of view configurations can be placed therein. The label of the view configuration is also the

label of the tab.

1.7.4.2 Groups

You can use a group to summarize different sub-configurations in one view. The subelements

are then shown in order. However, there are exceptions that only apply for the front-end: The

configuration element Property cannot be a direct sub-configuration of a group. This initially

requires the properties configuration.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Display in an application

If the view is exported into JSON, the individual subviews are attached to the KEY group in an

ARRAY.

i-views 5.3

247/534

Display in Knowledge Builder

A frame is drawn around a group in the Knowledge Builder. This frame then shows the views

of the sub-configurations.

A group with the following sub-configurations: the “Image and Text” property list, the “Properties”

property list and the “Similar points of interest” query

1.7.4.3 Hierarchy

The configuration type “Hierarchy” displays elements of a semantic model as a hierarchy in a

tree structure, in which individual branches can be expanded and collapsed.

Either relations or relation targets can be used for work. The hierarchy is structured from

the start element of the view configuration, for which all subordinate relations or objects and

their subordinates must first be determined. After this, the higher-level relations or objects

are determined for each element. This element result set is then shown in the hierarchy.

Setting options

Name Value

i-views 5.3

248/534

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Script for label It is also possible to define a label using a script.

Display the hierarchy root

banner

Only relevant for the Knowledge Builder: Banner is dis-

played.

Action (selection) Reference to an action that is called when a hierarchy ele-

ment is clicked.

Hide details view The details view of a selected object is displayed (Knowl-

edge Builder) or output (json, as a subview) by default. By

activating this option, no details view is displayed or output.

Script for visibility

Generate subelements

without name query

When new subelements are generated in the hierarchy,

what their name should be is queried by default. A check-

mark here generates nameless objects without a name

query.

Deny manual sorting By default, the user can reattach elements in the Knowledge

Builder to the schema by means of Drag&Drop. If this op-

tion is activated, this is no longer possible.

Setting options for sorting

Name Value

Sort downward Controls if sorting is in ascending or descending order. If

this parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the prop-

erties:

• Position: The order defined in the configuration is used
(default).

• Value: The content of the attribute or display name of
the relation target is used.

• Script for sorting: The script saved in the attribute Script
for sorting is used for determining the sort criterion.

Secondary sort criterion Sort criterion for properties which have the same value for

the primary sort criterion. The setting options are analo-

gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for

the primary or secondary sort criterion.

i-views 5.3

249/534

Options for determining the elements that form the hierarchy

Name Determining of...

Relation (descending) Subelements

Relation (ascending) Top-level elements

Structured query (descend-

ing)

Subelements

Structured query (ascending) Top-level elements

Script (descending) Subelements

Script (ascending) Top-level elements

Actions and styles

Actions and styles can be attach for both the entire hierarchy and for the individual nodes.

From version 5.2 or higher, style classes can be automatically assigned using a script.

Display in an application

The JSON representation of a configuration of type hierarchy is only available from version

4.1 or higher.

Display in Knowledge Builder

A hierarchy appears in the area on the left in the detailed display of an element. The element

is displayed with a view configuration without hierarchy in the area on the right. This view

configuration must be defined separately and the configuration name of the hierarchy must

be specified under Reference >> Apply in. Alternatively, the sub-configuration can also be
specified directly in the hierarchy under Sub-configuration.

i-views 5.3

250/534

Notes

• Elements are not always represented by their name in hierarchies. It is not possible to
display anything other than the name, or information supplementing the name, directly

in the hierarchy.

• The values of all properties that can be filled out for forming the hierarchy are relations.
• The individual attributes such as relation - descending can be assigned multiple times.
• The relation or relations are determined and collected for each attribute type. If differ-
ent attribute types are specified, the subsets are used to form an intersect.

Example - application case

Hierarchies are typically used to represent supertopic/subtopic relations or part-of relations.

1. Relation that forms a hierarchy

The most direct variant. The relations that form the hierarchy are entered.

2. Structured query that forms the hierarchy

The relations can also be determined by means of a structured query.

3. Script that forms a hierarchy

A script can also be used to collect the relations that potentially form a hierarchy. The current

element is passed to it as a parameter, and it must return a set of relations. Instead of

working on relations, working on elements is also possible.

Script has supertopic

function relationsOf(element)
{

return element.relations(hasSupertopic’);

i-views 5.3

251/534

}
function targetsOf (element)
{

return element.relationTargets(hasSupertopic’);
}

1.7.4.4 Tree

Just like a “hierarchy,” a “tree” is based on the configuration of a hierarchical tree structure. In

contrast to a hierarchy, a tree can also include static nodes. Hence, it is possible to create a

tree without a semantic network source element. Another difference is that the sub-nodes of

a “tree” can be configured differently whereas all nodes of a “hierarchy” respond in the same

way for a given semantic element.

A tree configuration generally distinguishes two types of nodes:

• Static hierarchy node: Nodes of this type always exist if there is a connection to the root
of the tree. The “context element” relation can be used to optionally integrate the node

into a semantic element. Please note: The top node of a tree is always static and always

invisible.

• Hierarchy node patterns: This type can map several nodes for each level. A node is
formed for each relation target that can be reached from an element of the higher-level

node. You can set the property “transitive” to map several levels. You can the property

“apply to” to restrict to which element types the node pattern is applicable. Otherwise

the node pattern can be applied to all elements that fall into the target validity area of

the configured relations.

The sorting of tree nodes can be configured in the same way as that of the “hierarchy.” How-

ever, this configuration does not globally apply to the tree but each node configuration ap-

plies to the respective sub-nodes.

Finally, the image and label displayed can be configured for each node type, either directly

or via script.

1.7.4.5 Properties

The Properties configuration is a list of individual configurations. The sub-configurations can

be exclusively of the Property type, each of which is linked to an attribute or a relation of a

semantic network object or type.

Setting options

Name Value

Label Display name of the collection of properties. If no la-

bel is specified, the string Properties is used in Knowledge

Builder.

i-views 5.3

252/534

Script for label Alternatively, the display name can also be determined via

a script.

Script for visibility Control of the visibility of the properties by a script.

Initially expanded If this configuration in included e.g. as ameta-configuration,

this parameter can be used if this is supposed to be ex-

panded already when opening Knowledge Builder.

Note: The web front-end does not display the affected

meta-property if the checkmark is not set here.

Setting options for sorting

Name Value

Sort downward Controls if sorting is in ascending or descending order. If

this parameter is not set, sorting occurs in ascending order.

Primary sort criterion Selection option for the criterion used for sorting the prop-

erties:

• Position: The order defined in the configuration is used
(default).

• Value: The content of the attribute or display name of
the relation target is used.

• Script for sorting: The script saved in the attribute
Script for sorting is used for determining the sort cri-

terion.

Secondary sort criterion Sort criterion for properties which have the same value for

the primary sort criterion. The setting options are analo-

gous to those for the primary sort criterion.

Script for sorting Reference to a registered script that returns the sort key for

the primary or secondary sort criterion.

Display in applications

The views of the configuration of individual property elements are stored in an ARRAY during

output in JSON format and appended with the KEY properties.

i-views 5.3

253/534

Display in Knowledge Builder

The label set in the configuration is displayed prominently. This is followed by views of the

configured properties.

Note

Meta properties are appended using the same process.

1.7.4.6 Property

The Property view configuration can be used to define individual attributes or relations to be

displayed in a list of properties. It is also possible to use an abstract property that groups a

set of properties.

Setting options

Name Value

Sort downward Controls whether the properties are sorted by name in as-

cending or descending order. If this parameter is not set, sort-

ing occurs in ascending order.

i-views 5.3

254/534

Display type Available in two cases:

1. The property is a relation:

Selection option for the display of the label of a relation target.

This setting is only available if the Relation target view setting

has the value Selection or Relational structure.

2. The property is a file attribute:

Selection option for the display of the value in a file attribute.

Selection options:

• Icon (topicIcon): Icon of the relation target / file as an icon
• Icon and string
• String (name attribute: Name of the relation target / name
of the file

Label Display name of the property. If no label is specified, the name

of the property type is output.

Property Link to the property type that is to be displayed.

Script for virtual proper-

ties

Alternative to Property : Script for calculating the values to be

displayed.

If you set the “Automatic updates” meta flag, the KB is auto-

matically updated when a value on which a calculation was

based is changed. Careful: if you set this flag, this can have a

significant effect on performance, depending on the script.

Display relation target Only available for relations.

By default only the name of the relation target is displayed.

When you click the name, the relation target opens in another

editor.

But if you choose the Display relation target option, the rela-

tion targets are displayed directly, which means not just their

names, but also all their properties.

Show additional proper-

ties

Only relevant in the view for editing objects: If this option is

set, another property is shown in addition to the property, so

this can be filled quickly and conveniently. It must be permit-

ted for the property to occur multiple times.

Show new properties Only relevant in the view for editing objects: If this option is

set, the property is shown only if the property has not been

created yet. This makes it quick and easy to complete and less

easy to forget.

i-views 5.3

255/534

Display filter Only relevant in the view for editing objects: This option can

be used to create a prompt that decides whether this config-

uration is displayed. The prompt is filled with the object of

this property. The property is displayed for editing only if the

prompt receives a result.

Configuration for em-

bedded meta properties

Specification of the configuration to be used to display meta

properties. The meta properties are embedded, i.e. the prop-

erty is displayed after the value. The name of the property

type is not displayed.

Configuration for meta

properties

Specification of the configuration to be used to display meta

properties. The meta properties are displayed under the value

of the property.

For display in the web front-end, the properties with the meta

properties must be set to “initially expanded.”

Relation target view If a relation is chosen as the property, this parameter can be

used to define the view of the relation targets:

• Selection: All relation targets are listed and displayed with
a preceding checkbox. In case of existing relations, the

checkbox is equipped with a tick.

• Drop-down: This setting is only useful if the relation may
appear only once. A drop-down list is displayed showing

all relation targets available for selection.

• Relational structure: All relation targets are listed in the left
area, rather like a hierarchy. The right area then shows

the details view for the selected relation target. This view

is only effective if the configuration is directly subordinate

to a top-level configuration.

• Table: Table view of the relations. The table view can not
be applied in the Knowledge Builder. For the table view,

the Table setting must be filled in.

• Table (relation targets): Table view of the relation targets.
This table can be applied in the Knowledge Builder.

Script for label The label can be determined by means of a script specified

here.

i-views 5.3

256/534

Script for relation target

identifier

This script can be used to control how the relation target is

displayed for relations. If no script is entered, the object name

of the relation target is used for the display.

Application example: A person belongs to a department with

the name Dpt. IV . Using a suitable script, it is possible to

change the output for the person from Dpt. IV to Darmstadt

city administration, Dpt. IV .

Script for sorting The script is used to determine a value for sorting. See the

example below.

Search for target selec-

tion

The search determines which semantic elements are offered

as possible relation targets. For configuration of the search,

see also the Search / queries chapter.

Table Only available if the Relation target view has the value Table or

Table (relation targets), in which case it is obligatory. The ta-

ble configuration specified here determines which properties

of the relation targets are to be output in table form. For the

relation target to be displayed, at least its name must be con-

figured in the table. For configuration of a table, see the Table

chapter.

Example of a script for sorting

Precondition: The sortKey attribute can be attached to all properties.

function sortKey(element)
{

if (element instanceof $k.Property)
{

var attribute = element.attribute(’sortKey’)
if (attribute)
{

return attribute.value();
};

};
if (element instanceof $k.Domain)
{

var attribute = element.type().attribute(’sortKey’);
if (attribute)

{
return attribute.value();

};
};
return undefined;

}

Property display for a person

i-views 5.3

257/534

Configuration of a property

A property can only be configured as part of a list of properties. It is acceptable for the list to

contain only one property.

In this example, the Properties view configuration already contains the “Name” property. A second

property is created by selecting an attribute or a relation under “Property” (marked in orange).

Note

In case of the Name attribute type, the value 3 is entered for sortKey , so this temporary value

is at the end of the list.

1.7.4.7 Edit

This configuration type is used to make attributes and relations of a Properties configuration

editable. For this purpose, it is assigned to the relevant Properties element at a higher level.

Next to a button for saving changes, a Delete button is displayed next to every property

where this is possible.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. Alternative.

Edit mode switchable If this option is selected, the properties are first displayed

only as a normal list. However, a switch is offered as an

addition, which can be used to switch between the normal

view and the edit view.

Only custom buttons If this option is set, the Save button is not displayed.

i-views 5.3

258/534

1.7.4.8 Table

Tables can be used as a sub-configuration for displaying results of queries of the configura-

tion type “Query,” or as a separate configuration for displaying the object lists in the Knowl-

edge Builder.

A table lists specific objects, properties or subtypes of a specific type. Whether all objects,

properties or subtypes, or only a selection, is displayed, can be managed using the input in

the heads of the columns. The values entered are used to execute a structured query accord-

ing to suitable objects, properties or subtypes and display the result as a table. Moreover, in

the case of object lists, a new object, a new property value or a new subtype can be generated

with the properties that were filled in after entering values in the heads of the columns.

A subcomponent of the table configuration is the column configuration. This, in turn, con-

tains a column element or a menu cell. This layout is used to separate properties relevant to

the column (such as order and name of the column in the table) and to assign which con-

tents should be displayed in the column. Column elements, in turn, allow the assignment of

properties, script modules and structured query modules.

Since version 5.1, not only column configurations, but also additional tables can be added

to a table configuration. This provides the option of summarizing frequently used columns

in a table configuration and add them to another table in full. The intermediate tables are

removed when determining the overall table. There is only one level of columns.

The hierarchical display of all sub-configuration elements in the table configuration exhibits

a menu line that is assigned with actions as follows:

• Create and link a new subelement.

• Search through all potential subelements that already exist and link (= add) the

slected subelement.

• Delete link again. When this occurs, the subelement is retained as an object and can

be used again in other configurations.

• Delete complete subelement selected. If used in other configurations, a warning will

appear before deleting which highlights all existing links.

i-views 5.3

259/534

• Move selected subelement up in the list.

• Move selected subelement down in the list.

Note: The availability of an action depends on the currently selected table element in the

hierarchy on the left side.

Example of a simple table configuration

For a list of objects, certain properties should appear in a table. The name attribute used to

represent the objects in the first column should not be forgotten.

Setting options (table)

Name Value

Configuration

Configuration name The configuration name is used for identi-

fication and reuse of the configuration.

Label Defines a static heading for the table.

Click action Determines an action which is performed

when clicking into a table row.

Script for label Script which returns a string as substitute

for the label.

Without initial sorting No sorting occurs. Default process: the

first column is used for sorting.

i-views 5.3

260/534

Sort order For instance lists in the Knowledge

Builder, each table configuration is

represented in a separate tab.

By specifying an integer, the user can con-

trol at which position the tab is displayed,

provided that several tables are config-

ured for the same instance type or for the

same folder structure element.

The tables are sorted using two criteria,

which are checked in the following order:

1. Attribute Sort order specified:

If yes, then this is used as the sort cri-

terion.

If no, then the configurations for

types are shown first, followed by

those for objects.

2. Sorting by display name

Without column filtering (VCM) Suppresses the indication of column fil-

ters in the web frontend. In the Knowl-

edge Builder, column filters are always

displayed.

Page size (VCM) This specifies howmany rows (= search re-

sult hits) should be display on one page.

Default value: 20

Label for empty table (VCM) A label configuration which is displayed in-

stead of the original label when the table

is empty.

Script for visibility (KB) Script which returns a Boolean for

whether the table is visible or not. For in-

stance lists in the Knowledge Builder, the

whole tab will not be displayed if visibility

is set to false. In the web frontend, this

script has no effect.

Restore last column filtering/sorting (VCM) Restores the recently selected filtering or

sort order for the duration of the web

frontend session.

Sort

Column Column configuration for which the sort-

ing takes effect.

i-views 5.3

261/534

Sort priority An integer value determines the order by

which table column values the assortment

of the table rows will be influenced first.

Example: If an ID is more important for

sorting instances than the primary name,

the column for ID gets the sort priority

1 and the column for primary name gets

sort priority 2.

A higher sort priority overrides the sort di-

rection ("Sort downward") of another col-

umn.

Sort downward Determines if the values are sorted up-

ward (alphanumerical order) or down-

wards.

Table

Tab "Menus" For the Knowledge Builder, the menu

actions at the top of the table can be

configured here. For more information,

see chapter "Actions for the Knowledge

Builder".

Tab "Styles" (VCM) For the web frontend, different styles can

be applied on the whole table at once.

Rows

Tab "Styles" When using a table for the Knowledge

Builder, styles can be used for rows of the

table for the purpose of character format-

ting.

KB

Automatic search • Automatic search
• No automatic search: No automatic
search is performed.

• Automatic search up to threshold
(system settings)

Creating elements without question by name When this option is enabled, new ele-

ments can be created by clicking on the

button "New", without a dialog asking for

a name before creating the element. As an

indication for the missing name, a period

"." is shown as name instead.

Script for window title (KB) A script can be used which returns a

string for the window title whenthe table

is opened in a separat window.

i-views 5.3

262/534

Script for windowstatus (KB) A script can be used which returns a

string for the bottom line of the Knowl-

edge Builder application or the window (if

the table is opened in a separate window).

Without inheritance If the table is used for instance lists in the

Knowledge Builder, only the instances of

the currently chosen type are displayed,

without instances of subtypes.

Context

apply to Restricts the context to the instances of a

given element type.

apply to subtypes Restricts the context to the subtypes of a

given element type (instead of instances).

apply in Application context for within the view is

applied. For the table to be displayed

within the Knowledge-Builder at all, the

application "Knowledge-Builder" must be

selected here.

Usage Within the section "Usage", the "Context

of" relation reveals for which view the cur-

rent element is used as application con-

text. It is the counter part of the relation

"apply in" of the other respective element.

Table of Indicates the superordinate view configu-

ration element within which the table is

used.

Actions and styles

Actions and styles can be defined for the entire table, as well as for rows.

Use

The Context tab specifies where the table is used.

The object type specified under Apply to is the type to which the table should be applied.

Tables can be used again in other view configurations. If the table module is a different view

configuration, this is displayed under [inverse] Apply in.

The property Apply in refers to an application. Several links are possible.

Examples:

• If the table to the right in the main window in the Knowledge Builder is to be used by
the folder structure during navigation, then the table configuration must be linked to

the corresponding folder structure element.

• If potential relation targets are displayed as tables in the Knowledge Builder, then the
table must be linked with the Knowledge Builder application.

Tables / Object lists in the Knowledge Builder

i-views 5.3

263/534

To configure the way objects or types are displayed in a table in the Knowledge Builder,

the Details tab contains the section View configuration -> Instance/Type -> Object list next to
the respective type. Creating and maintaining the table configuration is explained using the

objects of Subtype YZ as an example.

No table configuration has yet been linked with this type. The greyed entry shows a standard

configuration which is inherited from the upmost type "Knowledge Graph" of the type hier-

archy by default. By clicking on the New button, a new, blank configuration is generated

here. The configuration can then be selected and be edited as needed. As soon as the appli-

cation context has been specified (e. g. "apply in: Knowledge Builder"), the configuration is

applicable after updating the view configuration.

1.7.4.8.1 Column configuration

As mentioned before, column configurations contain properties used to define the display

and behavior of the column in the table. The column is only displayed once properties are

configured in the column elements contained in the column configuration.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse

of the configuration.

Label Displayed in the caption of the column. Please note that the

label is used for display in the table, but the column config-

uration also contains the configuration name attribute. This

name is used only to manage and find the configuration in-

ternally and is not displayed or output.

Script for label As an alternative to the static label text, a script can be used

which returns a string for the label.

i-views 5.3

264/534

Bookmark identifier The bookmark identifier is used to represent a query pa-

rameter in forms of an expression within the web frontend

URL. It can be used for query views and table column filters

and synchronizes parameter value and URL in both direc-

tions.

Column width (%) A percentage value is expected here for the column width

(so for 60% you have to enter “60”).

Standard operator The operator used initially in the search for a search text.

Search string Preset search text for the column filter.

Do not show If this value is set, the complete column is hidden. This is

used, for example, to sort a search result using hit qualities

without displaying them.

Mandatory for query If this value is set, the column must be filled out for the

search to be permitted.

Not sortable Prevents the table from being sorted when clicking onto the

column header.

Script for input field prepro-

cessing

For preprocessing any search text input in the column fil-

ter before passed on as parameter for the column element

query, a script can be used.

Operators

Configuration name The configuration name is used for identification and reuse

of the configuration.

Icon Symvol that will be shown in the dropdown selection of the

column filter.

Key Operator designator that defines which kind of operator

is used (e.g. "word" or "containsPhrase"). See the oper-

ators explained in the chapter about runtime genereated

queries.

Label Tooltip that will be shown in addition to the symbol in case

of mouse-over.

Modifier Name of the indexer string filter.

Menus

For the column, a menu can be configured for the web frontend which is displayed besides

the label text at the label (header) of the column.

Styles

For columns, there are following style settings which can be applied within the view con-

figuration mapper:

• hideFilters: Suppresses the column filters from being displayed in the web frontend.
• hideLabel: Suppresses the column label from being displayed in the web frontend.

Context

i-views 5.3

265/534

Sub configuration of Specifies for which table configuration(s) the column con-

figuration is used.

Sort order Specifies at which order the column is arranged within the

table, compared to another column. If there is more than

one column with the same sort order, the columns are or-

dered alphabeticaly by column label.

Sorted column of Indicates that the column is used for sorting the table con-

tent.

Sort priority Specifies the sort priority of the column used for sorting,

compared to other columns used for sorting.

Example

Column configuration for the Name column

1.7.4.8.2 Column operator

The column operator configuration determines which comparison operator can be used in

the table view when entering a term into the table filter. In most cases, operators like "equal",

"contains phrase" or "contains string" might be needed.

For example, the difference between "contains phrase" and "contains string" is as follows:

• "contains phrase": When entering several words (= phrase) into the filter, only content
with the same word order will be found

• "contains string": When entering several words into the column filter, content match-
ing an arbitrary combination of the entered words will be found

i-views 5.3

266/534

This allows to use different filtering behaviors when filtering large tables to narrow down the

search results to specific content.

For all filter operators, a dropdown provides a selection of all operators defined for the re-

spective column:

If the table is used within the Knowledge Builder, a context menu is provided additionally for

selecting or removing effective operators:

i-views 5.3

267/534

Creating new column operators

New column operators can be created as follows:

Precondition: the respective column element needs to have defined its property to be shown.

Note: Since the application of operators depends on the value type of the property to be

filtered for and on the indices, the preset operators are only available if the property of the

column element has been defined. If string operators are needed, a correctly configured

index including index filter is required.

After having specified the property of the column element, select the column itself again.

Click onto the search button: a selection of operator templates will be shown, each

applicable on the value type of the property. Operator templates shown with the appendix

"Create new" indicate that they are not used until now (no instance has been created from

the template).

Select the needed kind of operator.

The "Operator" tab shows the newly created and assigned operator. Each operator listed

here will be available for the column filter. Operators can be reused for other table columns.

i-views 5.3

268/534

For the default operator, switch to the "Configuration" tab and select one of the operators:

Note: Within the Knowledge Builder, the standard operator will not be shown in the respec-

tive column filter, but it is active when no other operator has been selected in the context

menu.

Operators also can be defined by yourself. For the operator, following properties can be

specified:

Prop-

erty

Description Value

type

Con-

fig-

ura-

tion

name

The configuration name is used for identification and reuse of the configura-

tion element.

String

Icon The icon which will be shown in the filter and its dropdown selection.

Note: Without further plugins, vector images like *.svg cannot be used for

configuration elements within the Knowledge Builder.

Blob

key The operator key for the operator. See table below. String

La-

bel

Text for the tooltip which will be shown at the symbol in case of mouse-over. String

mod-

ifier

Name of the index filter. String

i-views 5.3

269/534

Operator keys

Operator name Short term Description

containsPhrase Contains phrase

covers contains

distance Distance

equal == Equal

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above

greaterPresentTime after now (future)

isCoveredBy is contained in

less < Less than

lessOrEqual <= Less/equal

lessOverlaps Overlaps from below

lessPresentTime before now (past)

notEqual != Not equal

overlaps overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

i-views 5.3

270/534

unmodifiedEqual Exactly identical

words Contains string

Modifiers

For using operators like "Contains phrase", the respective operator key like "containsPhrase"

requires a modifier which depends on an index filter.

Index filters are used within an index. The index configuration is done in the global settings

of the Knowledge Builder: Settings > Index configuration.

Within the configuration of the index, the name of the assigned index filter can be specified

and copied for using as modifier:

New index filters are defined within the main settings of the Knowledge Builder:

Settings > Index configuration > Index Filter

i-views 5.3

271/534

1.7.4.8.3 Column element

A column element is used to assign the content that a table column is supposed to show,

and how that should take place. You can either specify properties, such as attributes and

relations, that are defined by the semantic objects, or you can use structured query modules

or script modules.

Setting options

Name Value

Configuration

Configuration name The configuration name is used for identification and reuse

of the configuration.

Do not show Use this Boolean attribute to control whether the values of

the selected property should be displayed. By default all

properties are displayed.

Do not create This attribute controls whether this property is supposed

to be created when a new object is created if the relevant

input field in the column contains a value. By default new

properties are created.

Do not search Here you can specify that the configured property is not

transferred to the search. This means that this property

is not used to search for the entered search values.

Note: If all column elements in a column are set to “Do not

find”, this has the same effect as “Hide”!

Emphasis Here you can provide formatting specifications for the dis-

play of values; currently, the only available option is under-

line.

Property

(obligatory or script)

Link to the property type that is to be displayed.

Script

(obligatory or property)

Executes the cellValues script to determine the values to be

displayed.

i-views 5.3

272/534

Quality For the web frontend, this option displays a bar showing

the hit quality incl. percentage value.

Note: This option is used instead specifying the property

and can only indicates a value when the option "Use hits" is

activated because only hits carry a quality value.

Structured query element A structured query can be used to determine the property.

Script A script can be used which returns a property of an element

or a hit instead of specifying the property.

Use hits Objects are created by default. However, if you want to fur-

ther process the hits in the cellValues script, youmust switch

on Use hits.

Relation target view Currently only the Drop down alternative is available. If you

select it, the possible values that can be entered for this col-

umn for filtering in this table are compiled from the possi-

ble relation targets as per the schema into a drop-down list,

so that a possible value can be specified quickly. This is rec-

ommended for manageable amounts of potential relation

targets.

Note: This parameter is only available if a Relation type

property was selected.

It is possible to define multiple column elements for a column configuration. This makes

sense, for example, if multiple attributes are to be considered in the search, for example the

Name and Synonym attributes, but only one of them is to be displayed.

Example

The Name attribute is configured in the first column element of the Name column configura-

tion.

The Topic belongs to relation is configured in the column element of the second column.

i-views 5.3

273/534

The transitiveRelationalChainUpwards structured query module is configured in the column

element of the third column.

Related structured query:

To make it possible to adopt values from the input field of the column, the structured query

must have configured parameters. Multiple parameters can be applied, all of which are as-

signed the same value when the structured query is evaluated.

Note: This is different from other cases in which the structured query is used. Normally the

results are determined by the initial object (in this case “Topic”). In this case, the results are

determined by the objects or properties to which the parameter is attached (in this case the

name attribute).

Unless further changes are made, the value displayed in the column is the value of the at-

tribute used for filtering. If the displayed value does not result from the attribute used for

i-views 5.3

274/534

filtering, there are two options:

• The “renderTarget“ identifier can be attached to relation targets. Objects marked in this
way are displayed in the table as the column value.

“renderTarget” also has the effect that, during output via the JavaScript API, the proper-

ties relating to display are included in the output as a link.

• The identifier “renderProperty“ can be attached to attributes. Properties marked in this
way are displayed in the table column as the column value.

If the search module is not used for filtering, the element to be displayed must be deter-

mined by means of a manually defined parameter or by means of predefined parameters

like renderTarget/renderProperty!

The structured queries that can be included in the module of the column element can be

selected from a list of structured queries that have already been registered, but it is also

possible to create new structured queries for exactly this module, which includes the alloca-

tion of a registration key. The Do not create property does not affect columns that have been

assigned a structured query module.

A script module is mapped to the fourth column

The aim is to display the persons responsible for the objects to which the topic listed in the

table is linked by means of Topic belongs to. As with the structured query, it is possible to

select the assigned script from a list of registered scripts or to create (and register) a new one

in the dialog. The script editor opens when you click the script module name.

/* * Returns matching elements for column search value "objectListArgument" * Note: "elements" may be undefined if no partial query result is available. * Return undefined if the script cannot provide any partial result itself. */ function filter(elements, queryParameters, objectListArgument) {
return elements;

}

// Returns cell values for the given element function cellValues(element, queryParameters) {
var result = new Array();
var firstTargets = element.relationTargets(“isTopicOf”) ;
if (firstTargets.length == 0) { return result ;
}
else {

for (var i = 0; i < firstTargets.length; i++) {
var secondTargets = firstTargets[i].relationTargets(“hasResponsiblePerson”);
for (var j = 0; j < secondTargets.length; j++) {

result.push(secondTargets[j].name());};

i-views 5.3

275/534

};
};

return result.join(’, ’);
}

In this case the language of the script module is JavaScript. Two parts have to be maintained

here: the upper part is used to filter all elements in the table on the basis of the objectLis-

tArgument value entered in the column, while the second part specifies how the value to be

output for an element is calculated. This first part has not been described as yet. A code

pattern is added to both parts during creation, and it can be built upon during creation.

If KScript was selected as the language in the script module for controlling the output of a

column, the selected (registered) script must provide a return value for the column for every

object that forms a row.

As KScript is in principle designed for only one output, the following convention has been

reached for filtering:

If the selected script contains a function named objectListScriptResults and a declared param-

eter, this function is called with the argument of the corresponding search input in order to

return the set of matching objects. The function is called as the initial object on the root term

or the former hit list - depending on the best way to resolve the search. To make this version

truly efficient, it is recommended to evaluate the search inputs accordingly and use the result

to call a registered structured query in order to forward its result to the object list.

1.7.4.9 Search

The user can use the view configuration element “Search” to configure search options for the

semantic network. The search can either be a predefined search with parameters, or be a

search field input screen for the user.

The “search” can be selected as a sub-configuration of an alternative or a group. Any type

of query is obligatory here, the results of which are displayed. Searches for user inputs can

also be configured; instead of the configuration element “Search” (object configuration), the

configuration element “Search field element” is used for the view configuration. Examples of

the panel configuration for the web front-end can be found in chapter 3 “ViewConfiguration

Mapper”.

When a search is to be configured with facets, then the functional chain should be observed

in the case of panel influencing.

Search field element –> Facet –> Search result.

Setting options

Name Value

Query A search can be selected here that is executed as soon as

the configuration element is displayed. The semantic ob-

ject, for which the view configuration is displayed, can be

used as an accessed element in the query.

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

i-views 5.3

276/534

Table A table configuration is specified here which is used to

display the search results.

Script for label The label can, alternatively, be determined using a script.

Script for visibility A script can be used to control whether the configuration

element should be displayed.

Script for table configuration The table can also be determined using a script.

Setting options for a query

The following parameters are maintained as meta properties for a query.

Name Value

Parameter name Specifies a parameter name that is to be used in the query.

Setting options for a parameter name

The following parameters are maintained as meta properties for a parameter name:

Name Value

Script The script parameterValue is used for determining the

search value for the specified parameter name.

Value determination Specifies the value determination path

Script: The value is determined from the script and must

not be overwritten by the user.

Script, can be overwritten: The script determines the value.

The user may overwrite it.

User input: No script evaluation. User input only.

Type xsd-type

Label During output to JSON this value ends up in label.

Display in an application

Search results are output in a table by default.

i-views 5.3

277/534

In this example, search results are output as a table view “mediaList” render mode style. The

“mediaList” render mode converts the typical table view into a sizable list with an icon and link to

the objects. Additional properties of the object can be specified (in this case, the location of the

point of interest).

Display in Knowledge Builder

The results of any query are always shown in an object list in the Knowledge Builder.

Example:

The “Properties” and “Friends” tabs are defined in the view configuration. “Friend” is a configura-

tion element of the type “Search”. A search can be selected, or a new one be created directly, under

“Query”.

i-views 5.3

278/534

Definition of the search

The result of the query is displayed in the “Friends” tab in the Knowledge Builder for objects of the

type “Person”.

Instead of the individual configuration element, searches can be split into several separate

configurations.

1.7.4.10 Graph

The contents of the semantic database are plotted in a graph with their objects and connec-

tions (see Knowledge Builder > Basics > Graph editor).

Setting options

Name Value

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label A script that returns the label.

Graph configuration A graph configuration object is defined here.

Hide key This defines whether the key for the node types is to be

displayed.

Width/height This defines the width and height of the configuration ele-

ment, either as a percentage or exact to the pixel.

Script for visibility The visibility of the configuration element can be defined

in a script referenced here.

Structured query for start el-

ements

A query that determines the objects to be displayed.

i-views 5.3

279/534

1.7.4.10.1 Graph configuration

The graph configuration only allows specific types and relations to be displayed in the

graph. This prevents unwanted types and relations from appearing in the graph. The graph

configuration can also be queried using JavaScript functions. It is, for example, used in the

Net-Navigator.

Node category elements are subordinate to a graph configuration.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Maximum path length .

Steps until node is hidden .

1.7.4.10.2 Node categroy

Node categories are subordinated to graph configurations.

They are assigned subordinate link elements.

Setting options

Name Value

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Display extensions initially .

Color Color assigned to the nodes of this category

Show in key Always, If necessary or Never

Node size .

Draw icon only .

1.7.4.10.3 Links

What exactly are links?

They are subordinate to a node category.

Setting options

Name Value

i-views 5.3

280/534

Query for link .

Label A label is only used if this configuration is embedded in an-

other configuration, e.g. an additional alternative.

Expand as preference .

Color .

Initially expanded .

Relation .

Script for label Here it is possible to reference a script that determines the

label.

Script for link A script referenced here can be used to define the link.

1.7.4.11 Text

This configuration element outputs a simple text. This is either configured fixed or deter-

mined via a script.

Setting options

Name Value

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label A script that returns the label.

Text Text that is to be output.

Script for text A script that returns the text to be displayed.

1.7.4.12 Image

Static graphics can be integrated with the aid of this configuration element.

Name Value

Label A label is only output if this configuration is embedded in

another configuration, e.g. Alternative.

Script for label Alternatively, this can be used to determine the label using

a script.

i-views 5.3

281/534

Image The image file that is to be output.

Script for image Alternatively, the graphics can be returned using a script.

Width/height Scales the image file to the dimensions specified.

Script for visibility A script is used to determine whether the graphics are to

be displayed.

1.7.4.13 Script generated view/HTML

Script-generated view

A view created using a script saved in the semantic network. This is written in JavaScript and

can use a custom template (a Ractive.js “partial”). This allows complex views to be created,

which extend beyond the functionalities of the standard view configuration.

Setting options

Name Value

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Script Script for generation of the view.

Script for visibility Script for determining the visibility.

Script for label Script for determining the label.

viewType Name of the partial.

Script-generated HTML

This view configuration shows an HTML fragment that is generated using a script stored in

the semantic network. In it, the JavaScript API of i-views is used to access semantic elements

and their properties and an XML writer object generates an HTML structure and fills it with

data.

Setting options

Name Value

Label A label is only used if this configuration is embedded in

another configuration, e.g. Alternative.

Script Script for generating HTML output.

Script for visibility Script for determining the visibility.

Script for label Script for determining the label.

i-views 5.3

282/534

Example of a script that generates simple HTML output:

function render(element, document) {
var writer = document.xmlWriter();
writer.startElement("div");
writer.startElement("h2");
writer.cdata(element.name());

writer.endElement();
writer.endElement();

}

Output:

<div>
<h2>Hermann</h2>

</div>

1.7.4.14 Label

The label configuration allows, for example, the labeling of a website or the labeling of a table

to be configured. The label configurations are managed in the category “Subordinate config-

uration” in the Knowledge Builder.

Labels are used in the window title panel; this requires creation of a new object under “Label

configuration:”

The entries can then be made under “Label” and “Image”, which later appear on the browser

tab of the website:

i-views 5.3

283/534

Note: The view configuration element (“Label”) is titled “Label - Object” by default in the

Knowledge Builder. If a string is entered under “Label”, then this appears as the element

name of the view configuration element. When a configuration name (“Label”) is assigned,

this appears as the element name. As a rule, configuration names should be assigned so that

configuration elements can be found again and are easier to distinguish from each other.

In regard to the web front-end that is generated by the ViewConfiguration Mapper, this is

equivalent to the <title> element in the <head> section:

A comparison shows the different states of the website without a label (title = website path)

or with a label (title = label):

1.7.5 Panels

Panels are configuration elements that separate the application interface into sections. They

are used to build the basic layout of an application.

Panels contain further panels or view configurations and can be nested in each other. They

i-views 5.3

284/534

can mutually affect each other.

Panels usually contain exactly one start element (an object or a type) during activation, which

they pass on to their sub-configurations. Panels that contain view configurations that display

a set of objects (table, facet selection, graph) can also process a set of start elements.

Panels themselves have no other functions. These can only be defined with the help of

actions and view configurations.

There are different types of panels:

• Main window panels
• Dialog panels
• Window title panel
• Footer panels
• Normal panels

For each application there must be precisely one so-called main window panel, which can be

divided by means of subordinate panels. In addition, it can be allocated a window title panel

specifying the title and logo (Favicon) of the application.

It is also possible to assign additional dialog panels to the application; these panels can be

displayed as a pop-up on top of the main window. Next to additional panels, they can also

contain window title and footer panels.

A specific panel type must be selected for each panel .

• Layout panels (contain additional panels):
– Linear layout (all subordinate panels are displayed in horizontal or vertical order)

– Changing layout (only one of the subordinate panels is displayed at the same time)

• View panels (contain view configuration(s)):
– Defined view (contains only one single defined configuration element)

– Flexible view (multiple views possible, depending on the type of start element)

Setting options

Name Value

Show action results in

panel

All actions that are shown in the source panel cause the target

panel to be displayed with the respective transferred object

(example: every click in the panel object list causes the result

to be shown in the details view panel).

The action setting "show result in panel" overrides this setting.

Moreover, the setting has no effect on "save" actions.

influences Here you can specify a panel that is influenced by the current

panel (example: the objects displayed in the search results af-

fect which facets are displayed correspondingly).

Script for target object With the help of scripts you can specify not only panels but

also conditions under which specific panels are affected by the

current panel.

i-views 5.3

285/534

Setting options for layout

Name Value

class CSS classes for the panel (considered only for web appli-

cations or in the ViewConfig mapper)

Width/height The precise dimensions of the panel can be set here in

percent or down to the pixel.

Maximum width/height Alternatively, you can enter the maximum dimensions of

the panel here. The panel takes up as much space as pos-

sible without exceeding these values.

Flex-grow/shrink Here you can specify the values for the relevant CSS prop-

erty for the growth or shrink factor of the panel. An ele-

ment with a value of 2 for flex-grow, for example, receives

twice as much value as an element with a value of 1.

overflow-x/y (scrollbar) This can be used to define how scrollbars are displayed if

the content of the panel does not fit into its horizontal (x)

and vertical (y) dimensions. The available options are auto,

scroll and hidden.

Style CSS styling rules for the panel (considered only in web ap-

plications or in the ViewConfig mapper)

1.7.5.1 Activation of panels

Panels exhibit two basic conditions: “active” and “inactive”. A panel is visible when it is active.

The activation of panels functions using the following mechanisms:

A. The main window panel of the application is always active when an application starts

B. The execution location determines which panel become active when an action is executed

Based on A/B, there are subsequent activations based on these rules:

1. Panels influenced are activated

2. Panels with a specialized function (e.g. window title) are activated, and this from all

panels in the corresponding hierarchy

3. Subpanels are activated

4. In the case of a panel with a changing layout: Sister panels of the active subpanel are

deactivated

5. Continue with 1. until no further panels can be activated (an integrated cycle test pre-

vents endless loops)

Subsequent activations transport the model displayed respectively. If, for example, panel A

shows the object “Mr. Meier”, then the activated subpanel B also shows “Mr. Meier”.

Last of all, this ensures that all panels above the activated panel are also active. However,

i-views 5.3

286/534

their content is not calculated again.

Advanced activation mechanisms (version 5.2 or higher):

So-called “Activation mode” can be used to optimize the calculation of the panel contents in

step A (action activation) and in step 1 (influencing).

This avoids the recalculation of panel contents that are currently not displayed because de-

spite activation, they are not within the visibility area (e.g. a shopping basket). The option

“Lazy” is provided for this case.

In the same way, the option “Update” can be used to avoid triggering the activation chain. In

this case, only the content of the panel is calculated again.

The option “Display” is the default setting when neither of the two options described above

were selected.

1.7.5.2 Layout panels

The application is divided into different areas using layout panels. Linear layouts arrange

subordinate panels either next to each other or one above the other. Changing layouts per-

mit alternative displays on the same visualization panel, with only one of the subordinate

panels being displayed at the same time.

Setting options for configuration

Name Value

Activate the first by default

(for changing layout only)

If a checkmark is set, this means that the first subordinate

panel is activated by default (the example below shows the

start screen)

1.7.5.3 View panels

View panels serve as containers for individual views. They can however contain no further

panels.

Setting options

Name Value

Context element Here it is possible to specify a concrete object or concrete

type that serves as the source element from which further

paths can be pursued through the network.

Cannot be overwritten by ex-

ternal context element

If this option is activated, the configured context element

is always used. Influence from other panels has no effect

in this case.

If no context element has been configured, the context el-

ement remains empty.

i-views 5.3

287/534

Script for context element The script determines the start element. The external con-

text element is transferred as the argument.

The “Cannot be overwritten by external context element”

option has no influence, and the script is always executed.

Sub-configuration (only for

defined view)

Here it is possible to specify the one view configuration

that is used for the defined view.

1.7.5.4 Dialog panels

Dialog panels are special display areas whose contents are displayed in a dialog box. Dialog

boxes appear automatically when the corresponding dialog panel is activated. Just like with

other panels, activation is also possible via certain actions (see relation “Show result in panel”

in Action configurations) or generally on activation or updates of other panels (see relations

“Show actions in panel” and “influences” in other panel configurations).

Actions also have to be used to hide (“close”) dialog boxes. If the “Close panel” attribute is

selected in an action configuration, executing this action in a dialog box has the effect that

the window is closed. Hence, the action must be linked to a menu that is displayed in the

dialog panel or one of its subordinate panels.

Content-wise, dialog boxes are divided into the following three areas:

• Window title
• Content area
• Footer

The contents and the layout within the three areas can be specified using a panel configura-

tion for each. The dialog panel itself represents the content area. To configure the window

title and footer, a sub-configuration of the type window title or footer panel must be created

on the dialog panel (see the example below).

i-views 5.3

288/534

You can use the “Panel type” attribute on the actual dialog panel and on its window title and

footer panels to determine whether the respective panel provides layout or view functions.

Detailed descriptions of the different panel types are available in the preceding chapters.

Dialog panels can be created as follows in Knowledge Builder:

1. Use a user account that has administrator rights to log on to Knowledge Builder

2. In the navigation area, on the left, open the “Technical” category and select the sub-item

“View configuration.”

3. Select the “Application” tab on the right window.

4. In the list underneath, select the application to which you would like to add the dialog

panel (usually “View configuration mapper”).

i-views 5.3

289/534

5. Select the top element in the panel tree below and click on the Create icon

6. The newly created dialog panel is automatically selected in the panel tree and the details

view is displayed to the right of the panel tree

i-views 5.3

290/534

To create a window title or footer panel, you have to select the dialog panel in the panel

tree, and click on the icon for creating sub-configurations . Following this, a selection

window appears in which the entry “Window title” or “Footer” can be selected. Depending on

the panel type of the dialog panel, additional subelements can also be created in this way.

These, however, then refer to the content area of the dialog box.

1.7.6 Sessions

A session in the sense of the view configuration is used as temporary storage for variable

values, which can be read and written to within scripts of the view configuration. This makes

it possible to map the current status of an application.

Sessions form a stack. The first session also lasts the entire duration of the web session; that

is from the time the application is called until the respective browser window is closed. You

can always call up the first session by using function “$k.Session.main().”

Opening a dialog generates a new session on the stack. The closing of the dialog removes

the corresponding session from the stack.

The activation of panels marked “Session boundary” also generates a new session on the

stack which lasts until the panel is deactivated. The element of the new session is set to the

current element of the panel and can be used in the future using the "element()" function on

this session.

Use function "$k.Session.current()” to reach the top session of the stack.

1.7.7 Knowledge Builder configuration

The view configurations described here exclusively relate to Knowledge Builder. Additional

view configurations that affect Knowledge Builder are also described at other points in chap-

ter 7 but can then also relate to the output in JSON.

1.7.7.1 Folder structure

The left part of the main window in Knowledge Builder is used for navigating through the

semantic model. To do so, a hierarchical folder structure is displayed there. This can be split

into several main areas that are then displayed as bars. If you click on such a bar, the folder

structure underneath it is expanded. This then enables you to access the contents (elements,

queries, import/export mappings etc.). The contents are listed on the right side where they

can be edited.

i-views 5.3

291/534

1.7.7.1.1 Default folder structure

The configuration of the standard folder structure provides folders, making it possible to

navigate the semantic model and store contents there. Three main areas are available to

administrators.

The upper main area is “Folder” and provides folders for creating further folders and for

managing content. These are the working folder, the private folder, the “Most recently used

objects” folder and the “Query result” folder.

The second main area “Semantic network” makes it possible to navigate to the elements

via the hierarchy of the types. The elements to be reached here are types, objects, attributes

and relations. The area contains three folders:

• Object types for the hierarchy of object types and their concrete objects
• Relation types for the hierarchy of the relations
• Attribute types for the hierarchy of the attributes

The third main area is “Technical”; it enables administrators to make changes, settings and

configurations of all kinds in the semantic network. These include, among others, registered

objects, the rights system and triggers.

The configuration of this standard folder structure can be viewed, modified and adapted to

the users needs in the Technical area >> View configuration.

Note: Administrators always see the standard folder structure. If you configure a view con-

figuration for folders, these are displayed only to non-administrators. If an administrator

wishes to see the configured view of the folder structure, this can be set in the personal set-

tings for the Knowledge Builder: Under “Settings” > “Personal” > “View configuration”, select
the “Configured” option.

i-views 5.3

292/534

1.7.7.1.2 Configuration of the folder structure

The folder structure is configured in the technical area under View configuration >> Object
types >> Knowledge Builder configuration >> Folder structure. The admin is granted quick
access to the configurations by selecting the View configuration node in the technical branch,

and then selecting the Organizer object in the Folder structure tab in the pane to the right.

Folder structure elements are linked to each other as a hierarchy in the configuration. The

root node of this hierarchy is an object of the folder structure type. It initially contains a folder

structure called Organizer. All sub-nodes and their sub-nodes are of the folder structure ele-

ments type. The hierarchy in the configuration shows the hierarchy shown in the main win-

dow directly. The direct sub-nodes of the root node are shown as bars in the main window,

resulting in a visual distinction between the various folder hierarchies.

Label is a parameter that all configuration types have in common. A node that is described

by a configuration is labeled with this value. The content displayed in the right part of the

main window when a node is selected depends on the parameters of the folder structure

element. To do so, a type must be assigned to the parameter Folder type, for which a range

of types is available. These folder types and their additional parameters are listed in the

following table.

Folder type (obligatory) Parame-

ter

Description

Attribute types Type The attribute type specified, and all it sub-

types, are displayed in a hierarchy-based

tree.

Private folder - Display of the folder that only the actual

user may view, and which is different to

each user.

Relation types Type The attribute type specified, and all it sub-

types, are displayed in a hierarchy-based

tree.

Organizing folder Organizing

folder

Any organizing folder can be added here.

Query result folder - Each user has a query result folder of their

own in which the user s most recent query

results are saved.

Type-based folder structure “Without

inheri-

tance”

view, type

The specified type and its subtypes are

listed in a table. If the parameter “Without

inheritance” view is set, then only the speci-

fied type is displayed.

Note: In order to manage which table con-

figurations are used on the right-hand side,

the apply in relation found there must be

linked to this folder structure element.

Virtual folder - A folder that is used for structuring the fold-

ers.

i-views 5.3

293/534

Last objects used - Each user has a folder of their own in which

the last objects used are saved for quicker

access.

Only the configuration type Virtual folder can contain additional sub-configurations, and it is

the only one for which sub-configurations make sense.

Note: In the case of the folder type “Attribute types,” “Relation types” and “Type-based folder

structure,” the parameter “Type” is used for specifying the attribute type, relation type or

object type, and its subtypes, should be displayed in the folder.

1.7.7.2 Relations destination search

The configuration of relation targets makes it possible to influence the strategy used to

search for possible relation targets. If a semantic model does not include a search for re-

lation targets, entering “Egon” always results in a search for objects named “Egon” (i.e. the

respective defined name attribute is used). This response can be modified by specifying a

previously defined query. Ordinary queries rather than structured queries are usually used

for this purpose.

For example, to search for persons, you could define a query that searches both the first

name and the last name. If you then search for a target of a relation whose target domain

is person, the first names and last names of persons are searched for the entry “Egon.” A

modified search for relation targets also makes sense if you want to search for objects and

object synonyms at the same time, so that e.g. the “Architecture” object is also found if a user

enters “the art of construction.”

Relation target search configured to search for persons

As with all configurations, the context must be specified in which the relation target search is

to be used. To do this, the relation to which the relation target search is to be applied must

i-views 5.3

294/534

be entered for “apply to relation.” The properties “apply to target” and “apply in” are no longer

taken into account as of version 5.2.

1.7.7.3 Home view

You can use the configuration Start view (KB) (available as a tab in the view configuration area)

to define which background image and which actions are supposed to be displayed on the

start screen in Knowledge Builder on the right side. The display can be highlighted by means

of de-selection (clicking on the selecting in the left navigation tree).

Setting options

Name Value

Background An image

Color value for font of an ac-

tion

Depending on the image selected, a different color must be

selected for labeling the actions in order to make the text

readable.

In addition to this, actions can be defined. Refer to the Action chapter. An action type can

also be specified. The following entries are available in this case:

Action type Action

Manual (specialized web link) Web manual is opened in the browser

Home page (specialized web

link)

The home page is opened in the browser.

Support email (specialized

web link)

A window opens for a new email to the email address of

the Support department.

Web link Freely definable web link

<no action type> Execute configured action (using a script)

A web link must be configured completely; otherwise it will not be displayed.

However, this is not necessary for the three action types (specialized web links) displayed

above. They use default values if a property is missing. It is possible to override the default

values.

Possible configuration for a web link

Name Value

Label Display name after the icon

Symbol Icon that is displayed in front of the label

i-views 5.3

295/534

URL URL that is to be opened

1.7.7.4 Search field

The quick search field can be found in the upper left corner of the main window. This field

provides quick access to queries. These are provided by the administrator or can also be

added by the user. All queries that are used here may only expect a search string or no

search input.

No search input makes sense for queries like this, the result of which changes from time

to time. Executing a search like this in the quick search field then shows the current result

without the need to look up the corresponding query in a folder, for example, every time.

For example, there could also be a search query that displays all songs that the active user

has already listened to.

1.7.7.4.1 Search field configuration for administrators

The “Search field” configuration defines which queries are made available by the administra-

tor in the quick search field of the Knowledge Builder.

Newly created networks feature a search field configuration that is the same for all users. The

administrator can expand this search field configuration to make other queries accessible to

all users. Moreover, each user can add further queries to their quick search field, which are

then only visible to this particular user.

A search field configuration is comprised of “Quick search elements” that must contain a

reference to a query and can optionally be given a label. The order of the quick search

elements is determined by the order of the menu entries at the quick search field.

1.7.7.4.2 Search field configuration for users

The user can add queries by dragging an existing query to the quick search field.

Adding can also take place via the Settings. The Search field item is available on the Personal

tab. On the right, in the User-defined section, the Add and Remove operations are available as

well as an option for changing the order.

i-views 5.3

296/534

1.7.8 Style

The view configuration is responsible for the structural formatting of elements of the seman-

tic model for the display. If purely visual properties or information without context is also be

specified, a “Style” element is used.

There are a number of Style elements that are already defined in i-views. The following sec-

tion explains what these elements are and how these style elements are created in Knowl-

edge Builder so that they can then be linked to individual elements of the view configuration

of an application or Knowledge Builder.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Almost every view configuration type has a “Styles” tab. There, you

can either define a new style element or link an existing style element . If a new style

element is defined, this must first be given a configuration name. You can then configure it

on the right side of the editor.

A style element can be filled with any number of style properties. The style properties are

always distributed across several tabs, which are described in the sections below.

Note

Not all properties of a style make sense for all configurations. The tables of the following

sections then also have a column called “Configuration type” which shows which view con-

figuration type is supported by the respective property. The effect is described in the last

column.

1.7.8.1 Style properties in applications and in the knowledge kuilder

This chapter describes the “Configuration” tab of a style element, which contains the style

properties used in both the Knowledge Builder and the view configuration mapper.

i-views 5.3

297/534

Style property Configuration

type

Effect

Tree view Group Show elements of the group as a tree. The default is

no, which means the group elements are displayed

next to each other or underneath each other.

Height Property Height in lines for string attributes

Height Group Height in pixels of a group element if group elements

are shown next to each other.

Script for acti-

vation

All The style can be activated in dependence on the ac-

tive element by means of a script.

Vertical layout Group Show elements of the group next to each other. By

default they are shown underneath each other.

1.7.8.2 Style properties in applications

The “ViewConfiguration Mapper” tab is only displayed when the component “ViewConfigu-

ration Mapper” has been installed. The style properties available for this component are

included in the chapter Style of the ViewConfiguration Mapper (chapter 3).

1.7.8.3 Style properties in the knowledge kuilder

This chapter describes the “KB” tab of a style element, which contains the style properties

used only in the Knowledge Builder.

i-views 5.3

298/534

Style property Configuration

type

Effect

Display banner Object configu-

ration

Display banner with name of objects and buttons for

editing. The default is no.

Editor width

(pixel)

Property Width in pixels of a property

Show meta

properties in

context menu

(Meta-) prop-

erty (proper-

ties)

Meta properties are shown in the context menu of

the property. You can thus show either individual

meta properties or all meta properties in a meta

properties configuration. (Note: the Add meta prop-

ertiesmenu option remains unchanged).

Buttons used Property (rela-

tions only!)

Show preview Table Controls whether an editor is shown underneath the

table.

1.7.9 Detector system for determining the view configuration

View configurations can be linked to conditions using the detector system. The detector

system determines when which configuration should be displayed. The way the detector

system functions and the interplay with view configurations are explained in the following

using an example.

Several displays can be created for objects of an object type using the settings in the view

configuration. They can be linked to conditions using the detector system - for example, to a

specific user. For the example described here, two views were configured for the objects of

any type using the view configuration.

i-views 5.3

299/534

Users who are members of the band which they wish to access should see the “Band view

for members”. All users who are not members of the band which they wish to access should

see the “Band view”. The conditions that determine show the views are used are defined in

the detector system.

Creation of a view configuration determination

The detector system is located in the folder hierarchy on the left in the “Technology” section,

and has been designated as “View configuration determination” under “View configuration”.

By creating a new query filter (see the “Query filter” chapter) in the first step, the starting

point must be defined. This means that you have to define to what other things the following

settings are supposed to apply. In this example, our starting point is therefore a view config-

uration (in this case: “Band view for members”), for which a condition is created at the same

time. “View configuration” must be selected from the list and be entered as the operation

parameter. The query filter then looks as follows:

i-views 5.3

300/534

A new query filter must now be created under the query filter that is searching for the view

configuration “Band view for members” and which describes the condition for this view con-

figuration: the view configuration “Band view for members” should only be visible to users

who are members of the band that they are currently viewing. The second query filter there-

fore checks whether the active user is a member of the band. By clicking on , the set of

search results is then permitted to view the configuration “Band view for members”. The fol-

lowing diagram shows the query filter for users who are members of the band that they are

currently viewing and the folder hierarchy that was created so far on the left-hand side.

The view configuration “Band view” is automatically used for those users who are not mem-

bers of the band that they are currently viewing.

Weighting of the configurations in the detector system

The configurations in the detector system “View configuration determination” are weighted

from top to bottom in the application. This means that access settings made closer to the

top have a higher weighting that those further down. In order to bypass this default setting,

the authorizations or denials can be given priorities.

Priority 1 is the highest priority. If the condition instructions overlap, then the authoriza-

tion or denial conditions with the highest priority is implemented. If no specifications have

been made for priorities, or if all priority numbers have the same value, then the previous

conditions are implemented in the detector tree.

i-views 5.3

301/534

1.8 JavaScript API

1.8.1 Introduction

The JavaScript-API is a server-side API for accessing a semantic net. The API is used in triggers,

REST services, reports etc.

1.8.1.1 API Reference

The API reference is available here:

http://documentation.i-views.com/

1.8.1.2 The namespace $k

Most objects are defined in the namespace $k. The namespace object itself has a few useful

functions, e.g.

$k.rootType())

which returns the root type of the semantic network, or

$k.user())

which returns the current user.

1.8.1.3 Registry

Another important object is the Registry object $k.Registry. It allows to access objects by their

registered key (folder elements) / internal name (types).

Examples:

$k.Registry.type("Article")

returns the type with the internal name "Article".

$k.Registry.query("rest.articles")

returns the query with the registered key "rest.articles".

The Registry object is a singleton, similar to JavaScript’s Math object.

1.8.1.4 Working with semantic elements

Semantic elements are usually retrieved from the registry or by a query.

// Get the person type by its internal name
var personType = $k.Registry.type("Person");

// Perform the query named "articles",
// with the query parameter "tag" set to "Sailing"

i-views 5.3

302/534

var sailingArticles = $k.Registry.query("articles").findElements({tag: "Sailing"});

The properties of an element can be accessed by specifying the internal name of the property

type.

// Get the value of the attribute "familyName"
var familyName = person.attributeValue("familyName");
// Get the target of the relation "bornIn"
var birthplace = person.relationTarget("bornIn");

A shortcut to access the value of the name attribute is the function name()

var name = birthplace.name();

If an attribute is translated, the desired language can be specified, either as 2-letter or 3-letter

ISO 639 language code. The current language of the environment is used if no language is

specified.

var englishTitle = book.attributeValue("title", "en");
var swedishTitle = book.attributeValue("title", "swe");
var currentTitle = book.attributeValue("title");

1.8.1.5 Transactions

Transactions are required to create, modify or delete elements. If transactions are controlled

by the script, a block can be wrapped in a transaction:

$k.transaction(function() {
return $k.Registry.type("Article").createInstance();

});

It is possible to configure if the script controls transactions or if the entire script should be

run in a transaction. The only exception are trigger scripts, which are always run as part of a

writing transaction.

A transaction may be rejected due to concurrency conflicts. An optional function can be

passed to $k.transaction() that is evaluated in such cases:

$k.transaction(
function() { return $k.Registry.type("Article").createInstance() },
function() { throw "The transaction was rejected" }

);

Transactions, like the ones described above, may not be nested. There are, however, cases

in which nesting is unavoidable; for example, because a script function is called both by

functions that are already encapsulated in a transaction and functions for which this does

not apply. A so-called “Optimistic transaction” can be used in this case. This construction

i-views 5.3

303/534

uses the external transaction - if there is one, or it starts a new transaction.

$k.optimisticTransaction(function() {
return $k.Registry.type("Article").createInstance();

});

Constructions like this should be avoided, because a transaction represents a practical oper-

ational unit which is executed in whole or not at all. Either what is embedded makes sense

and is complete in itself, or is not.

Please note: A troubleshooting function in the event of failure of the optimistic transaction is

not available. If an external transaction exists, its troubleshooting function is executed in the

event of failure.

1.8.1.6 Modify elements

1.8.1.6.1 Create elements

// Create a new instance
var person = $k.Registry.type("Person").createInstance();

// Create a new type
var blogType = $k.Registry.type("CommunicationChannel").createSubtype();
blogType.setName("Blog");

1.8.1.6.2 Add and change attributes

Attribute values can be set with setAttributeValue(), which implies that a single attribute is

either already present or created. Existing attribute values are overwritten. An exception is

thrown when more than one attribute of a type is present.

person.setAttributeValue("familyName", "Sinatra");
person.setAttributeValue("firstName", "Frank");
// Overwrite the value "Frank" with "Francis""
person.setAttributeValue("firstName", "Francis");

createAttribute() allows to create more than one attribute of a type.

// Create two attributes
person.createAttribute("nickName", "Ol’ Blue Eyes");
person.createAttribute("nickName", "The Voice");

1.8.1.6.3 Add relations

A relation between two elements can be created with createRelation():

i-views 5.3

304/534

var places = $k.Registry.query("places").findElements({name: "Hoboken"});
if (places.length == 1)

person.createRelation("bornIn", places[0]);

1.8.1.6.4 Delete elements

Any element can be deleted with the remove() function:

person.remove();

This also deletes all properties of the element.

1.8.2 Examples

1.8.2.1 Queries

Search for elements:

// Perform the query "articles" with parameter tag = "Soccer"
var topics = $k.Registry.query("articles").findElements({tag: "Soccer"});
for (var t in topics)

$k.out.print(topics[t].name() + "\n");

Return hits. A hit wraps an element and adds a quality value (between 0 and 1) and additional

metadata.

// Perform the query "mainSearch" with the search string "Baseball"
var hits = $k.Registry.query("mainSearch").findHits("Baseball");
hits.forEach(function(hit) {

$k.out.print(hit.element().name() + " (" + (Math.round(hit.quality() * 100))+ "%)\n");
});

Convert query results to JSON:

var topics = $k.Registry.query("articles").findElements({tag: "Snooker"});
var jsonTopics = topics.map(function(topic) {

return {
name: topic.name(),
id: topic.idNumber(),
type: topic.type().name()

}
});
$k.out.print(JSON.stringify(jsonTopics, undefined, "\t"));

i-views 5.3

305/534

1.8.2.2 Runtime generated queries

The JavaScript API also makes it possible to generate queries dynamically. Here are several

examples from a film network:

Search for films by year + name

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
query.addAttributeValue("name", "name");
query.findElements({year: "1958", name: "Vert*"});

The domain is transferred to the constructor. In case of internal names, the search automat-

ically looks for objects of this type. The setDomains() function offers more options

Year + number of directors >= 3

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
query.addCardinality(“imdb_film_director", 3, ">=");
query.findElements({year: "1958"});

Year + name of director

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year", ">=");
var directorQuery = query.addRelationTarget(“imdb_film_director").targetQuery();
directorQuery.addAttributeValue("name", "director");
query.findElements({year: "1950", director: "Hitchcock, Alfred"});

Alternatives (Or conditions)

var query = new $k.StructuredQuery("imdb_film");
query.addAttributeValue("imdb_film_year", "year");
var alternatives = query.addAlternativeGroup();
alternatives.addAlternative().addAttributeValue("name", "name");
alternatives.addAlternative().addAttributeValue("imdb_film_alternativeTitel", "name");
query.findElements({year: "1958", name: "Vert*"});

Possible operators:

Operator name Short term Description

containsPhrase Contains phrase

covers contains

distance Distance

equal == Equal

i-views 5.3

306/534

equalBy Corresponds to

equalCardinality Equal cardinality

equalGeo Equal (geo)

equalMaxCardinality Cardinality smaller than or equal to

equalMinCardinality Cardinality greater than or equal to

equalPresentTime now (present)

equalsTopicOneWay filter with

fulltext Contains string

greater > Greater than

greaterOrEqual >= Greater/equal

greaterOverlaps Overlaps from above

greaterPresentTime after now (future)

isCoveredBy is contained in

less < Less than

lessOrEqual <= Less/equal

lessOverlaps Overlaps from below

lessPresentTime before now (past)

notEqual != Not equal

overlaps overlaps

range Between

regexEqual Regular expression

regexFulltext Contains string (regular expression)

unmodifiedEqual Exactly identical

words Contains string

1.8.2.3 Create and change elements

Create a person

// Get the person type by its internal name
var personType = $k.Registry.type("Person");
// Create a new instance
var person = personType.createInstance();

i-views 5.3

307/534

// Set attribute values
person.setAttributeValue("familyName", "Norris");
person.setAttributeValue("firstName", "Chuck");

Set the full name of a person

var familyName = person.attributeValue("familyName");
var firstName = person.attributeValue("firstName");
if (familyName && firstName)
{

var fullName = familyName + ", " + firstName;
person.setAttributeValue("fullName", fullName);

}

Set the value of an attribute

// Boolean attribute
topic.setAttributeValue("hasKeycard", true);

// Choice attribute
// - internal name
topic.setAttributeValue("status", "confirmed");
// - choice object
var choiceRange = $k.Registry.attributeType("status").valueRange();
var choice = choiceRange.choiceInternalNamed("confirmed");
topic.setAttributeValue("status", choice);

// Color attribute
topic.setAttributeValue("hairColor", "723F10");

// Date / Time / DateAndTime attribute
topic.setAttributeValue("dateOfBirth", new Date(1984, 5, 4));
topic.setAttributeValue("lastModification", new Date());
topic.setAttributeValue("teatime", new Date(0, 0, 0, 15, 30, 0));

// FlexTime attribute
// - $k.FlexTime (allows imprecise values)
topic.setAttributeValue("start", new $k.FlexTime(1984, 6));
// - Date (missing values are set to default values)
topic.setAttributeValue("start", new Date(1984, 5, 3));

// Number (integer / float) attribute
topic.setAttributeValue("weight", 73);

// Interval
topic.setAttributeValue("interval", new $k.Interval(2, 4));

// String attribute
// - untranslated
topic.setAttributeValue("familyName", "Norris");
// - translated (language is an ISO 639-1 or 639-2b code)
topic.setAttributeValue("welcomeMessage", "Welcome", "en");

i-views 5.3

308/534

topic.setAttributeValue("welcomeMessage", "Bienvenue", "fre");

Create a new attribute

person.createAttribute("nickName", "Ground Chuck");

Create a new relation

var places = $k.Registry.query("places").findElements({name: "Oklahoma"});
if (places.length == 1)

person.createRelation("bornIn", places[0]);

Delete an element, including its properties

person.remove()

Convert a string to an attribute valu. The ValueRange of an attribute type knows the valid

values of the attribute and can parse a string. It throws an exception if the string is not valid.

var statusRange = $k.Registry.type("status").valueRange();
var statusConfirmed = statusRange.parse("Confirmed", "eng");

Set change metadata

topic.setAttributeValue("lastChangeDate", new Date());
var userInstance = $k.user().instance();
// Ensure that a single relation to the user instance exists
if (topic.relationTarget("lastChangedBy") !== userInstance)
{

var relations = topic.relations("lastChangedBy");
for (var r in relations)

relations[r].remove();
topic.createRelation("lastChangedBy", userInstance);

}

1.8.2.4 REST

A REST script must define a respond() function that receives the HTTP request, the parsed

request parameters and an empty HTTP response. The script then fills header fields and the

contents of the response.

function respond(request, parameters, response)
{

response.setText("REST example");
}

Restlet that returns a blob

function respond(request, parameters, response)

i-views 5.3

309/534

{
var name = parameters["name"];
if (name)
{

var images = $k.Registry.query("rest.image").findElements({"name": name});
if (images.length == 1)
{

// Set the contents and content type (if known) from the image blob.
response.setContents(images[0].value());
// Show the image instead of asking to download the file
response.setContentDisposition("inline");

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText(images.length + " images found");

}
}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText("Name not specified");

}
}

Restlet that creates an instance with an uploaded blob

function respond(request, parameters, response)
{

var formData = request.formData();
var name = formData.name;
var picture = formData.picture;
if (name && picture)
{

var city = $k.Registry.type("City").createInstance();
city.setAttributeValue("image", picture);
city.setName(name);
response.setText("Created city " + name);

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setText("Parameters missing");

}
}

1.8.2.5 XML

Transforms query results into XML elements

function respond(request, parameters, response)
{

i-views 5.3

310/534

var name = parameters["name"];
if (name)
{

// Find points of interest
var topics = $k.Registry.query("rest.poi").findElements({name: name});
// Write XML
var document = new $k.TextDocument();
var writer = document.xmlWriter();
writer.startElement("result");
for (var t in topics)
{

writer.startElement("poi");
writer.attribute("name", topics[t].name());
writer.endElement();

}
writer.endElement();
response.setContents(document);
response.setContentType("application/xml");

}
else
{

response.setCode($k.HttpResponse.BAD_REQUEST);
response.setContents("Name not specified");

}
}

XML output

<result>
<poi name="Plaza Mayor"/>
<poi name="Plaza de la Villa"/>
<poi name="Puerta de Europa"/>

</result>

Use qualified names

var document = new $k.TextDocument();
var writer = $k.out.xmlWriter();
writer.setPrefix("k", "http://www.i-views.de/kinfinity");
writer.startElement("root", "k");
writer.attribute("hidden", "true", "k");
writer.startElement("child","k").endElement();
writer.endElement();

XML output

<k:root xmlns:k="http://www.i-views.de/kinfinity" k:hidden="true">
<k:child/>

</k:root>

Define a default namespace

i-views 5.3

311/534

var document = new $k.TextDocument();
var writer = $k.out.xmlWriter();
writer.startElement("root");
writer.defaultNamespace("http://www.i-views.de/kinfinity");
writer.startElement("child").endElement();
writer.endElement();

XML

<root xmlns="http://www.i-views.de/kinfinity">
<child/>

</root>

1.8.2.6 HTTP client

Load a picture via HTTP and store it as a blob

var http = new $k.HttpConnection();
var imageUrl = "http://upload.wikimedia.org/wikipedia/commons/e/e7/2007-07-06_GreatBriain_Portree.jpg";
var imageResponse = http.getResponse(new $k.HttpRequest(imageUrl));
if (imageResponse && imageResponse.code() == $K.HttpResponse.OK)
{

var portree = $k.Registry.type("City").createInstance();
portree.setAttributeValue("image", imageResponse);
portree.setName("Portree");

}

Update the weather report of all cities

var instances = $k.Registry.type("City").instances();
var http = new $k.HttpConnection();
for (var i in instances)
{

var city = instances[i];
var weatherUrl = "http://api.openweathermap.org/data/2.5/weather";
var weatherRequest = new $k.HttpRequest(weatherUrl);
weatherRequest.setQueryData({q: city.name()});
try {

var weatherResponse = http.getResponse(weatherRequest);
if (weatherResponse.code() == $k.HttpResponse.OK)
{

var json = JSON.parse(weatherResponse.text());
var weather = json.weather[0].description;
city.setAttributeValue("weather", weather);

}
} catch (e) {
}

}

i-views 5.3

312/534

1.8.2.7 Send e-mails

E-mails can be sent with the MailMessage object. To do so, an SMTP server must be config-

ured in the network (Settings -> System -> SMTP).

var mail = new $k.MailMessage();
mail.setSubject("Hello from " + $k.volume());
mail.setText("This is a test mail");
mail.setSender("kinfinity@example.org");
mail.setReceiver("developers@example.org");
mail.setUserName("kinf");
mail.send();

The user account “kinf” is used for authentication. The password is saved in the SMTP set-

tings.

1.8.2.8 Views

JSON structures can also be generated using the view configuration; this is possible for indi-

vidual objects as well as for lists of objects.

In the most straightforward case, an object is converted to JSON using the standard configu-

ration without additional context:

var data = element.renderJSON();

All structures defined by the configuration are then converted to JSON:

{
"viewType" : "fieldSet",
"label" : “Bern",
"elementType" : "instance",
"modNum" : 26,
"elementId" : "ID17361_141538476",
"type" : {

"elementType" : "instance",
"typeId" : "ID10336_319205877",
"internalName" : "City",
"typeName" : “City"

},
"properties" : [{

"values" : [{
"value" : "Bern",
"propertyId" : "ID17361_137824032"

}
],
"schema" : {

"label" : "Name",
"elementType" : "attribute",
"internalName" : "name",
"maxOccurrences" : 1,
"attributeType" : "string",
"viewId" : "ID20838_426818557",

i-views 5.3

313/534

"typeId" : "ID4900_317193164",
"minOccurrences" : 0

}
}, {

"values" : [{
"typeId" : "ID4900_79689320"

}
],
"schema" : {

"label" : “AlternativeName/Synonym",
"elementType" : "attribute",
"internalName" : "alternativeName",
"attributeType" : "string",
"rdf-id" : "alternativeName",
"viewId" : "ID20839_64952366",
"typeId" : "ID4900_79689320",
"minOccurrences" : 0

}
}, {

"values" : [{
"target" : {

"typeId" : "ID10336_493550611",
"label" : “Museum of Fine Arts Bern",
"elementId" : "ID17362_205182965"

},
"propertyId" : "ID17361_395925739"

}, {
"target" : {

"typeId" : "ID10336_493550611",
"label" : “Swiss National Library",
"elementId" : "ID20401_126870015"

},
"propertyId" : "ID17361_9264966"

}
],
"schema" : {

"targetDomains" : [{
"elementType" : "instance",
"typeId" : "ID10336_493550611",
"internalName" : "point_of_interest",
"typeName" : “Point of interest"

}
],
"label" : “contains point of interest",
"elementType" : "relation",
"internalName" : "contains_poi",
"viewId" : "ID20840_182208894",
"typeId" : "ID2052_332207092",
"minOccurrences" : 0

}
}

]
}

i-views 5.3

314/534

You can also define a context in the form of an application or configuration object. A suitable

configuration for this context is then selected. The application “Android” is specified in the

following example:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application);

However, it is also possible to specify a configuration and let this configuration convert the

element. To do so, you generate a $k.ViewConfiguration from the configuration object.

var configurationElement = $k.Registry.elementAtValue("viewconfig.configurationName", “Android Article Configuration”);
var data = $k.ViewConfiguration.from(configurationElement).renderJSON(element);

Since the JSON structure is rather extensive, you can also leave out certain properties in the

conversion by specifying the keys as additional parameters:

var application = $k.Registry.elementAtValue("viewconfig.configurationName", "Android");
var data = element.renderJSON(application, ["rdf-id", "viewId", "typeId", "propertyId", "modNum", "minOccurrences", "maxOccurrences"]);

{
"viewType": "fieldSet",
"label": "Bern",
"elementType": "instance",
"elementId": "ID17361_141538476",
"type": {

"elementType": "instance",
"internalName": "City",
"typeName" : “City"

},
"properties": [

{
"values": [

{
"value": "Bern"

}
],
"schema": {

"elementType": "attribute",
"label": "Name",
"internalName": "name",
"attributeType": "string",
"maxOccurrences": 1

}
},
{

"schema": {
"elementType": "attribute",
"label": “AlternativeName/Synonym",

i-views 5.3

315/534

"internalName": "alternativeName",
"attributeType": "string"

}
},
{

"values": [
{

"target": {
"label": “Museum of Fine Arts Bern",
"elementId": "ID17362_205182965"

}
},
{

"target": {
"label": “Swiss national library",
"elementId": "ID20401_126870015"

}
}

],
"schema": {

"elementType": "relation",
"targetDomains": [

{
"elementType": "instance",
"internalName": "point_of_interest",
"typeName" : “Point of interest"

}
],
"label": “contains point of interest",
"internalName": "contains_poi"

}
}

]
}

1.8.2.9 Mustache templates

The following restlet function renders a document using the Mustache template library. It

expects the following schema of a template document:

• a string attribute (internal name "template.id") to identify a template
• a document blob (internal name "template.file") containing the template, e.g. an HTML
document

• a relation to a media type(internal name "template.contentType")

A query ("rest.articles") returns the elements that should be rendered. The Mustache library

is registered as "mustache.js".

function respond(request, parameters, response)
{

i-views 5.3

316/534

// Include Mustache library
$k.module("mustache.js");

// Get template
var templateId = parameters["templateId"];
var templateTopic = $k.Registry.elementAtValue("template.id", templateId);
var templateText = templateTopic.attributeValue("template.file").text("utf-8");

// Find elements
var topics = $k.Registry.query("rest.articles").findElements(parameters);

// Prepare template parameters
var topicsData = topics.map(function(topic) {

return {
name: topic.name(),
id: topic.idNumber(),
type: topic.type().name()

}
})

var templateParameters = {
topics: topicsData

};

// Render with Mustache
var output = Mustache.render(templateText, templateParameters);

// Return the rendered document
response.setText(output);
response.setContentType(templateTopic.relationTarget("template.contentType").name());

}

1.8.2.10 Java native interface

Java can be accessed via JNI (Java Native Interface).

Caution: JNI is an experimental feature and has several restrictions:

• JNI cannot be used in triggers
• It is not possible to define classes (e.g. for callbacks)
• Generics are not supported
• JNI allows accessing system resources (files etc.), so take care when using JNI in REST
services

• JNI has to be enabled and configured in the configuration file of each application. The
classpath cannot be changed during runtime.

[JNI]
classPath=tika\tika-app-1.5.jar
libraryPath=C:\Program Files\Java\jre7\bin\server\jvm.dll

i-views 5.3

317/534

Basic example

// Import the StringBuilder class, without namespace
$jni.use(["java.lang.StringBuilder"], false);
// Create a new instance
var builder = new StringBuilder();
// Javascript primitives and Strings are automatically converted
builder.append("Welcome to ");
builder.append($k.volume());
// toJS() converts Java objects to Javascript objects
$k.out.print(builder.toString().toJS());

Text/metadata extraction with Apache Tika

$jni.use([
"java.io.ByteArrayInputStream",
"java.io.BufferedInputStream",
"java.io.StringWriter",
"org.apache.tika.parser.AutoDetectParser",
"org.apache.tika.metadata.Metadata",
"org.apache.tika.parser.ParseContext",
"org.apache.tika.sax.BodyContentHandler"

], false);
// Get a blob
var blob = $k.Registry.elementAtValue("uuid", "f36db9ef-35b1-48c1-9f23-1e10288fddf6").attributeValue("ebook");
// Blobs have to be explicitely converted to Java byte arrays
var bufferedInputStream = new BufferedInputStream(new ByteArrayInputStream($jni.toJava(blob)));
// Parse the blob
try {

var parser = new AutoDetectParser();
var writer = new StringWriter();
var metaData = new Metadata();
parser.parse(bufferedInputStream, new BodyContentHandler(writer), metaData, new ParseContext());
var string = writer.toString().toJS();
// Print extracted metadata
var metaNames = metaData.names().toJS().sort(

function(a,b) { return a.localeCompare(b) });
for (n in metaNames)

$k.out.print(metaNames[n] + " = " + metaData.get(metaNames[n])).cr();
// Print extracted text (first 100 chars)
$k.out.cr().cr().print(string.substring(1, 100) + " [...]\n\n(" + string.length + " chars)");

}
catch (e) {

$k.out.print("Extraction failed: " + e.toString());
} finally {

bufferedInputStream.close();
}

1.8.3 Modules

i-views 5.3

318/534

1.8.3.1 Define modules

A module is defined with the define() function. The argument is either a module object or a

function that returns an module object. A module should contain only a single definition.

Example: Define a module with a function jsonify())

$k.define({
/*
* Create a JSON object array for the topics
*/
jsonify: function(topics) {

return topics.map(function(topic) {
return {

name: topic.name(),
id: topic.idString(),
type: topic.type().name()

};
});

}
});

define() allows to specify dependencies from other modules. The following script defines a

module that uses another module.

$k.define(["rest.common"], function(common) {
return {

stringify: function(topics) {
return JSON.stringify(common.jsonify(topics), undefined, "\t")

}
}});

1.8.3.2 Use modules

A module can be used either with require() or module().

require() expects an array of module names and a callback function. The arguments of the

callback function are the module ojects. require() returns the return value of the callback

function

var topics = $k.Registry.query("rest.poi").findElements({name: "Madrid"});
var json = $k.require(["rest.common"], function(common) {

return common.jsonify(topics);
});
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() expects the name of a module and returns the module object.

var json = $k.module("rest.common").renderTopics(topics);
$k.out.print(JSON.stringify(json, undefined, "\t"));

module() can also be used to include scripts that doe not define a module at all. The script is

evaluated and all declared functions are instantiated.

i-views 5.3

319/534

1.8.3.3 AMD

To integrate JavaScript libraries that support the AMD standard, you first have to globally

define require() and define().

this.define = $k.define;
this.define.amd = {};
this.require = $k.require;

If a library defines a module with a certain ID and you want to register this library under a

different name, you can map the module IDs to registry IDs.

$k.mapModule("underscore", "lib.underscore");

You can now register underscore.js as "lib.underscore" and use the "underscore" module

defined there.

1.8.4 Debugger

1.8.4.1 Debugging in the knowledge kuilder

The following wrapper script is an example for testing a restlet in the Knowledge Builder. It

can be defined in the script editor on the "Execute Script" tab as "Additional test script".

// Prepare request and response
var testRequest = new $k.HttpRequest("http://localhost");
var testResponse = new $k.HttpResponse();
// Call the restlet function respond() with the testbench parameters,
// which are available as a property named $k.testbenchParameters
respond(testRequest, $k.testbenchParameters, testResponse);
// Print the response header and contents
$k.out.print(testResponse.debugString());

Breakpoints can be set on the tab "Debug".

1.8.4.2 Remote Debugger

Restlet scripts can be also be debugged with a remote debugger.

1. Enable a debug port in the REST bridge .ini file

[KRemoteDebuggerBridge]
port=9000

2. Install Eclipse and JavaScript Development Tools

3. Create a JavaScript debug configuration in Eclipse with a Mozilla Rhino connector

i-views 5.3

320/534

4. Start debugging

5. Enable "Show all scripts" to see all Javascripts of the bridge

6. Select "Open source" to view the source of a script (double click does not seem to work)

7. Set breakpoints in the source code

1.8.5 API extensions

1.8.5.1 Additional functions

The API can be extended by adding functions to the prototypes. The following example ex-

tends schema prototype objects to print schema information.

// Print the schema of the instances and subtypes of a type

i-views 5.3

321/534

$k.Type.prototype.printSchema = function() {
this.typesDomain().printSchema("Type schema of \"" + this.name() + "\"");
this.instancesDomain().printSchema("Instance schema of \"" + this.name() + "\"");
this.subtypes().forEach(function(subtype) {

subtype.printSchema();
});

}

// Print information about a property type
$k.PropertyType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name() + "\n");
}

// Attribute types print their type
$k.AttributeType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name() + " (Attribute of type " + this.valueRange().type() + ")\n");
}

// Relation types print their target domains
$k.RelationType.prototype.logPropertySchema = function() {

$k.out.print("\t" + this.name());
var inverse = this.inverseRelationType();
if (inverse)
{ var inverseDomains = inverse.domains();

if (inverseDomains.length > 0)
{

$k.out.print(" (Relation to ");
var separate = false;
inverseDomains.forEach(function(inverseDomain) {

if (separate)
$k.out.print(", ");

else
separate = true;

$k.out.print("\"" + inverseDomain.type().name() + "\"");
});
$k.out.print(")");

}
}
$k.out.cr();

}

// Print all properties defined for a domain
$k.Domain.prototype.printSchema = function(label) {

var definedProperties = this.definedProperties();
if (definedProperties.length > 0)
{

$k.out.print(label + "\n");
definedProperties.sort(function(p1, p2) { return p1.name().localeCompare(p2.name()) });
definedProperties.forEach(function(propertyType) {

propertyType.logPropertySchema();
});

}
}

i-views 5.3

322/534

// Print the entire schema
$k.rootType().printSchema();

1.8.5.2 Define your own prototypes

The prototype of a semantic element is usually one of the built-in prototypes (Instance, Re-

lation etc.). It is possible to assign custom prototypes to instances of specific types with the

function mapInstances(internalName, protoype).

Example: A basket prototype

// Define a Basket prototype with a function totalPrice()
function Basket() { }

Basket.prototype.totalPrice = function() {
return this.relationTargets("contains").reduce(

function(sum, item) {
return sum + item.attributeValue("price");

},
0);

}

// Set the prototype of instances of the basket type
$k.mapInstances("Basket", Basket);

// Print the total price of all baskets
var baskets = $k.Registry.type("Basket").instances();
for (var b in baskets)

$k.out.print(baskets[b].totalPrice() + "\n");

For using within other scripts, the module needs to be loaded first:

$k.module(’myBasketSkript’);
var basket = $k.Registry().elementWithID(’ID_123’);
$k.out.print(basket.totalPrice() + "\n");

1.9 REST services

The REST interface can be used for read and write access to the semantic network. To do so,

you define resources (which describe the interface behavior when accessing a resource) in

the semantic network and services (which summarize several resources).

The behavior of a resource is controlled using scripts. In addition, predefined resources may

also be used.

Access takes place via HTTP requests that are structured according to the pattern

https://<hostname>:<port>/<service-id>/<resource-path-and-parameter>

i-views 5.3

323/534

1.9.1 Configuration

The REST components must be added in the semantic network. These define the necessary

schema, which is found in the “Technical” area -> “REST” in the Knowledge Builder.

The REST interface is usually provided by the bridge service. This responds to HTTP prompts

using the REST configuration in the network. The interface is already included in the tryout

version of the Knowledge Builder, and no bridge service is required.

Changes to the configuration in the semantic network do not automatically affect interfaces

that are already running. This occurs when the menu item “Administrator -> Update REST
interface” is executed in the main menu of the Knowledge Builder.

The bridge service requires a suitable configuration file (bridge.ini). The name of the server

(host), the semantic network (volume) and the REST service ID is entered in this. The line with

“services” can be omitted entirely, and the resources of all existing service objects are then

automatically activated.

[Default]
host=localhost
loglevel=10

[KHTTPRestBridge]
volume=demo
port=8086
services=core,extra

1.9.2 Services

Services combine several resources. Resources may be featured by several services.

The service editor in the Knowledge Builder shows the resources in its structure view. A new

resource is created using “Link new” and is added to the service. A resource that has already

been defined is added to the service using “Link existing”.

1.9.3 Resources

Resources describe the response in the event of an HTTP prompt at the interface. There are

the following types of resources:

Resource Description

Script resource Resources that can be defined by scripts.

Built-in resource Predefined resource with a response that is defined by the sys-

tem. These resources are created by the component.

Static file resource Delivers files from the file system.

A resource has the following configurable properties:

i-views 5.3

324/534

Property Description

Path pattern Defines the URL of the resource relative to the address of the

service. The path can be parameterized by adding parameters

in curly brackets:

albums/{genre}

Several parameters can be specified. Each parameter must,

however, be a part completely separated by “/”:

albums/{genre}-{year}

is not valid,

albums/{genre}/{year}

is valid

Part of service Services that use this resources

Description Description for documentation purposes

Requires authentication Authentication is required for access to the resource

1.9.3.1 Methods

A resource is linked to one or moremethods. This defines the response as well as the sup-

ported input and output types (content types). The methods and types of the HTTP request

are used to select a suitably configured method.

In the structure view, methods are displayed as subelements of resources and can be cre-

ated/deleted there.

Method Description

HTTP method Supported HTTP methods (GET, POST, PUT, DELETE). Multiple

entries are possible.

Input media type Only POST/PUT: expected content type of the content of the

enquiry.

Output media type Content type of the response. If the request specifies an ex-

pected content type via “Accept,” the output media type must

match this.

Script Registered script for the definition of the response (only rele-

vant for script resources)

i-views 5.3

325/534

Transaction Transaction control (only relevant for script resources)

Transaction control is relevant for write accesses to the semantic network because these are

only possible within a transaction.

Transaction control Description

Automatic For GET read access only; for POST/PUT/DELETE the script is

executed in a transaction.

This is the default setting.

Controlled by script No transaction; the script must control this itself.

Read Read access only; the script cannot start a transaction.

Write The script is executed in a transaction.

1.9.3.2 Script resource

A script is used to define the response to an HTTP query for a method of a script resource.

For this purpose, the respond function (request, parameters, response) that must be defined

in the script is called from the interface.

Argument Type Description

request $k.HttpRequest Request (URL, header etc.)

parameters Object Parameter extracted from the request

response $k.HttpResponse Response

The function then fills out the header and content of the response. There is no return value.

If a type has been defined for a parameter (e.g. xsd:integer), then the converted value is

transferred. If not, a string is transferred. Parameters that can occur more than once by

definition are always transferred as an array.

If an output content type was defined for the response in the method, this is set automati-

cally. Alternatively, it is also possible to define the content type in the script.

The following script searches for albums and converts them into JSON objects. The parame-

ters of the resource are transferred to the query as search parameters.

function respond(request, parameters, response)
{

var albums = $k.Registry.query("albums").findElements(parameters);
var albumData = albums.map(function(album) {

i-views 5.3

326/534

return {
name: album.name(),
id: album.idString(),

}});
response.setText(JSON.stringify(albumData, undefined, "\t"));
response.setContentType("application/json");

}

You could use this script, for example, in the resource

albums/{genre}/{year}

and use the search parameters “genre” and “year” as the search conditions in the “albums”

query.

1.9.3.3 Built-in resources

Built-in resources are predefined resources with a response specified by the system. Each

predefined response can be assigned using an assigned value of the string attribute Rest re-

source ID.

Rest resource ID

Method

Description

BlobResource GET Returns the binary content of an existing

blob attribute.

The blob attribute is identified using the

query parameter “blobLocator”.

Optionally, the parameter “allowRedirect”

can be used to define that blobs may not be

obtained directly by the blob service (fixed

value: false).

BlobResource POST,

PUT

Changes the binary content of a blob at-

tribute.

The blob attribute is identified using the

query parameter “blobLocator”. Depend-

ing on the type of the blobLocator, a

new attribute is created or an existing one

changed.

EditorConfigResource GET,

POST,

PUT

Output and import of an XML representa-

tion of a semantic element.

ObjectListResource GET Returns a table of instances or subtypes of

the specified type. The set of objects can

optionally be filtered, sorted or be defined

directly.

i-views 5.3

327/534

ObjectListPrintTemplateResource GET Returns a table of instances or subtypes in

printed form. The print template must be

specified.

ObjectListPrintTemplate Re-

sourceWithFilename

GET Returns a table of instances or subtypes in

printed form. The print template must be

specified. The parameter (filename) is not

evaluated, and is only used to improve its

use in the browser.

TopicIconResource GET Returns the icon or image of the specified

semantic element.

Version 4.1 or higher of i-views allows a JavaScript (rest.preprocessScript) to be attached to

the resource. The function it contains (preprocessParameters (parameters, request) can

supplement the parameters. Any blobLocator (or the associated blob attribute) still missing

can, for example, be determined from the parameters transferred, which would otherwise

require an additional script resource call.

BlobResource

This integrated resource allows contents of file attributes to be loaded and saved.

Download
The “GET” method can be used to download the binary content of an existing file at-

tribute. The file attribute is then identified by means of the query parameter “blobLocator.”

Upload
In the case of an upload, the parameter “blobLocator” either identifies an existing file at-

tribute or a potential file attribute (i.e. new one to be created). The syntax for a potential

attribute has the following form: “PP∼ID1_115537458∼ID36518_344319903,” whereby the
first ID represents the semantic element and the second ID the attribute prototype.

The binary data can optionally be transmitted as a multipart or single part. In the case of

multipart, several files can potentially be uploaded at the same time, which, of course, only

makes sense when each file is written to a newly created file attribute. In any case, the file

name must be set for every file transmitted.

The optional parameter “binaryKey” defines the form key used to transmit the binary data in

multipart.

If the optional Boolean parameter “uploadOnly” is set to “true,” then the binary data are

uploaded only, and are not written into the file attribute. This mode is used in interplay with

the ViewConfiguration Mapper. The JSON value is returned in this case (fileName, fileSize,

binaryContainerId), which can be written into the attributes using the mapper in a second

step. The content type of the returned JSON value is normally “application/json”, however

can be set to another value using the parameter “overrideContentType” should the browser

(e.g. IE) encounter problems doing so.

Topic icon

The following path can be used to load the image file to a given topic. If an individual does not

have an image file of their own, the image file of the type is used, which is, in turn, inheritable.

The optional parameter “size” can be used to select the image file with the size that is most

suitable, providing several image sizes are saved in the semantic network.

http://{server:port}/baseService/topicIcon/{topicID}?size=10

i-views 5.3

328/534

Object list

The following path can be used to request an object list in the JSON format:

http://{server:port}/baseService/{conceptLocator}/objectList

The object list type is referenced via the “conceptLocator” parameter, which is followed by

the format for topic references in the remaining URL (see link).

Alternatively, the “conceptLocator” can also reference the single prototype (individual or type)

of the type to be used.

The optional “name“ parameter determines the object list to be used for the output.

Filter

The optional and multi-value query parameter “filter“ can be used to filter the object list. A

filter can take two different forms:

1. <column name/column no.> ∼ <operator> ∼ <value>

2. <column name/column no.> ∼ <value>

The available operators are: equal, notEqual, greater, less, greaterOrEqual, lessOrEqual, equal-

Cardinality, containsPhrase, covers, isCoveredBy, distance, fulltext, equalGeo, equalPresent-

Time, greaterOverlaps, greaterPresentTime, lessOverlaps, lessPresentTime, equalMaxCardi-

nality, equalMinCardinality, overlaps, unmodifiedEqual.

Sorting

The optional and multi-value query parameter “sort” can be used to sort the object list. The

order of sorting parameters determines the sorting priority. Sorting can be specified in two

forms:

1. <column name>

2. {-}<column no.>

If you prefix a minus sign in variant 2, sorting is performed in descending order, otherwise it

is in ascending order.

Setting the starting set of the list

The optional “elements” query parameter can be used to transmit a comma-separated list

of topic references to be used as list elements.

As the list of elements can be very long, the request can also be sent as POST and the param-

eters can be transferred as form parameters.

Setting the starting set of the list via KPath

The optional query parameters “elementsPath” and “startTopic“ can be used to calculate

the initial elements of the list. If these parameters are not set, the initial set consists of all

individuals or all subtypes (in case of a type object list) of the type specified via “conceptLo-

cator.”

Here “elementsPath” is a KPath expression and “startTopic” is a reference to the topic with

which the evaluation of the KPath is to be started. The form of the “startTopic” parameters

corresponds to that of the “conceptLocator.”

Inheritance

Inheritance can be suppressed via the optional query parameter “disableInheritance.” The

i-views 5.3

329/534

parameter only makes sense if no “elementsPath” is set.

JSON output format (example)

{
rows: [{
topicID: "ID123_987654321",
row: ["MM",
"Mustermann",
"Max",
"111",
"m.mustermann@email.net",
"10",
"6",
"2000-01-01",
“project A, project B"]

},
{
topicID: "ID987_123456789",
row: ["MF",
"Musterfrau",
"Maxine",
"222",
"m.musterfrau@email.net",
"10",
"8",
"2000-01-01",
“project X, project Y, project Z"]

}],
columnDescriptions: [{
label: "Login",
type: "string",
columnId: "1"

},
{
label: “Last name",
type: "string",
columnId: "2"

},
{
label: “First name",
type: "string",
columnId: "3"

},
{
label: “Telephone extension",
type: "string",
columnId: "4"

},
{
label: “email",
type: "string",
columnId: "5"

},

i-views 5.3

330/534

{
label: “Availability",
type: "number",
columnId: "6"

},
{
label: “Expenditure",
type: "string",
columnId: "7"

},
{
label: “created on",
type: "dateTime",
columnId: "8"

},
{
label: “Project",
type: "string",
columnId: "9"

}]
}

Object list print template

The following path can be used to fill an object list in a print template for list and download

the result:

http://{server:port}/baseService/{conceptLocator}/objectList/printTemplate/

{templateLocator}/{filename}

The service functions exactly the same way as retrieving an object list, however, as an addi-

tional parameter, features a reference to the individual of the type print template for list in

the semantic network.

“templateLocator” must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser

performance.

The header field “Accept” is used to control the output format into which conversion occurs.

If there is no header field, or the value is “*/*”, no conversion occurs. Accept with multiple

values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-

cept” header field. This is necessary when the user would like to call the request from a

browser, and has no influence on the header fields.

Print topic

The following path can be used to fill out a topic in a print list template and download the

result:

http://{server:port}/baseService/{topicLocator}/printTemplate/

{templateLocator}/{filename}

“templateLocator” must have one of the formats described under “General”

The optional path parameter “filename” is not evaluated, and is used to improve browser

performance.

i-views 5.3

331/534

The header field “Accept” is used to control the output format into which conversion occurs.

If there is no header field, or the value is “*/*”, no conversion occurs. Accept with multiple

values is not supported and will result in an error message.

The optional query parameter “targetMimeType” is used to overwrite the value of the “Ac-

cept” header field. This is necessary when the user would like to call the request from a

browser, and has no influence on the header fields.

Document format conversion

You can use the following path to convert a document to another format (e.g. odt in pdf):

http://{server:port}/baseService/jodconverter/service

The service maps the JOD converter (see http://sourceforge.net/projects/jodconverter/) and

is used for downward compatibility for installations that used to be operated with the JOD

converter.

For the service to work OpenOffice/LibreOffice (version 4.0 or above) must be installed and

the configuration file "bridge.ini" must have an entry that refers to the "soffice" file.

[file-format-conversion] sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

1.9.3.4 Static File Resource

Delivers files from the file system.

With this type of resource, you merely use Path pattern to specify the directory under which

the files are delivered. The directory is addressed relative to the content directory of the REST

bridge.

Example:

Enter an icons directory with the file bullet.png. The path pattern of the resource is icons, the

corresponding service has the Service ID test. The file bullet.png is thus accessed via:

http://localhost:8815/test/icons/bullet.png

1.9.3.5 Resource parameters

The parameters for the resource can be defined below methods. This is not absolutely

essential, does, however, have a number of advantages:

• The parameters can be checked and converted by using type specifications (e.g. in num-
bers or objects)

• Documentation for customers

The following parameter properties can be configured:

Parameter name Name of the parameter

i-views 5.3

332/534

Style Type of parameter

• path (part of the path of the URL)
• query (query parameter of the URL)
• header (HTTP header)

Type Data type of the parameter. Parameters have been validated

and converted when passed to the script.

Repeating Parameters may occur multiple times.

When this is activated, an array of values is always passed to

the script, even if there is only one parameter value in the re-

quest.

Required Parameter must be specified

Fixed value Default value when no parameter was specified.

1.9.4 CORS

In the case of OPTIONS requests, the REST interface responds by default with

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,Content-Type, Accept

These headers can be configured in the configuration file (bridge.ini):

[KHTTPRestBridge]
accessControlAllowOrigin=http://*.i-views.de
accessControlAllowHeaders=Origin, X-Requested-With,Content-Type, Accept

1.9.5 OpenAPI documentation

i-views offers the possibility to generate OpenAPI 2.0 documentation for configured services.

For this purpose, service configurations and resource configurations can be enriched with

documentation data.

1.9.5.1 Configuration

Service

Property Description Mapping

to Ope-

nAPI 2.0

i-views 5.3

333/534

Service

Descrip-

tion

Free text description of the service; supports GitHub Flavored

Markdown

info.description

Service

Version

Version specification in forms of a free text. It is recommended

to follow the Semantic Versioning.

info.version

Service ID

info.title

Swagger

Defini-

tions

Script which generates reusable OpenAPI 2.0 definitions in

forms of a JSON object.

definitions

Resource

The Resource Description is not used for OpenAPI documentation, since descriptions in Ope-

nAPI are intended to be used on method level only.

Method

The mappings to OpenAPI elements are specified relatively to paths.{path}.{method}

Prop-

erty

Description Mapping to Ope-

nAPI 2.0

Method

de-

scrip-

tion

Free text description of the resource; supports GitHub Fla-

vored Markdown

.description

Input

me-

dia

type

The name of the media type configured here (e.g. applica-

tion/json) describes the format which is required as input for

the request. .consumes.0

Out-

put

me-

dia

type

The name of the media type configured here (e.g. applica-

tion/json) describes the format in which the request will re-

spond. .produces.0

Re-

quest

Body

See section Request Body special parame-

ter with property

in: "body"

i-views 5.3

334/534

Re-

sponse

See section Response

.responses.{code}

Parameter

Themappings to OpenAPI elements are specified relatively to paths.{path}.{method}.parameters.{index}

Property Description Mapping to Ope-

nAPI 2.0

Parameter

Description

Free text description of the parameter; supports

GitHub Flavored Marlkdown

.description

Parameter

name

.name

Repeating In case of path parameters, this option MUST NOT be

enabled.

.collectionFormat: "multi"

Required In case of path parameters, this option MUST be en-

abled.

.required

Style

.in

Type

.type

Request Body

In OpenAPI 2.0, the request body is represented in forms of a special parameter. The map-

pings relate to this parameter object:

i-views 5.3

335/534

Property Description Mapping

to OpenAPI

2.0

Name Denomination of the special request body parameter for

OpenAPI 2.0

.name

Request

Body De-

scription

Free text description of the body; supports GitHub Flavored

Markdown

.description

Request

Model

Script which generates a JSON schema object, which in turn

describes the format of the body.

.schema

Response

For a valid OpenAPI documentation, at least one possible response needs to be documented

for each request. The specified mappings relate to the response object.

Property Description Mapping to

OpenAPI 2.0

Response

Code

HTTP status code of the response Key

Response

Descrip-

tion

Free text description of the response; supports GitHub Fla-

vored Markdown

.description

Response

Model

Script which generates a JSON object, which in turn de-

scribes the format of the response.

.schema

JSON schema definitions

For generating JSON schema for a further description of input and output, scripts can be

used at different spots. The scripts allow usage of a subset of the JSON schema standard,

which can be looked up at the OpenAPI specification website.

Example script Swagger Definitions:

function swaggerDefinitions() {
return {

i-views 5.3

336/534

"Example": {
"properties": {

"id": { "type": "integer" },
"name": { "type": "string" }

}
}

}
}

Example script Request Model with reference to the definition above:

function swaggerJSONSchema() {
return {

"$ref": "#/definitions/Example"
}

}

1.9.5.2 Generating the API documentation

Manual generation within the KB

For generating a .json file manually using the OpenAPI documentation within the Knowledge

Builder, the button Export as OpenAPI 2.0 is available above the list of the services.

CLI

The same export is provided by means of the command line interface:

bridge-64.exe -exportBuiltInRequestAPI {filename} {serviceID}

As REST API endpoint

By means of the script resource, a REST endpoint can be created which returns the API doc-

umentation. The script resource requires a GET method with Output media type

application/json; charset=utf-8

and a script with the following content:

function respond(request, parameters, response) {
// Here, the internal ID of the service configuration object needs to be inserted, NOT the value of the ’Service ID’ attribute
var service = $k.Registry.elementWithID(’<ID der Service-Konfiguration>’)
var openAPI = service.callBehaviour(’asSwaggerObject’)
delete openAPI.definitions.Context
delete openAPI.definitions.RenderContext
// Extract the service base path from the request
openAPI.basePath = /(http[s]?:\/\/)?([∧\/\s]+)(\/.*)\/.+/gm.exec(request.url()).pop()
response.setContents(JSON.stringify(openAPI, null, ’\t’))
response.setCodeOk()

i-views 5.3

337/534

}

1.10 Reports and printing

You can use the printing component to use document templates (ODT/DOCX/XLSX/RTF files)

with KPath expressions on objects or object lists and then use them to generate an adapted

output file, which can be either printed or stored.

The adding of the printing component via the Admin tool creates configuration schemas for

objects (“print template”) and lists (“print template for lists”) in the semantic network. The ex-

istence of this component is prerequisite for the print function being available in Knowledge

Builder or via the REST interface.

1.10.1 Create print templates

In Knowledge Builder, print templates are created in the “Technical -> Printing component”
area. Each print template object contains a print template document (ODT, DOCX, RTF) and

a relation that specifies to which objects the print template is to be applied.

The following example shows an ODT print template for objects of the “Task” type.

The following chapters explain how print template documents are created.

1.10.1.1 Create RTF templates

The RTF template files can contain evaluable KPath expressions with the key wordsKPATH_EXPAND

andKPATH_ROWS as well as calls for registered KScripts with the key wordsKSCRIPT_EXPAND

i-views 5.3

338/534

and KSCRIPT_ROWS. The path expressions or the name of the script to be called are always

placed between angle brackets and after the key word, separated by a space.

KPATH_EXPAND

The KPath expression after this key word should return a single semantic object or a simple

value (date, string etc.). In the evaluation the original expression is replaced by the result.

The formatting of the expression is retained, and breaks in the value are converted into line

breaks.

Example:
The template is:

Sender:
<KPATH_EXPAND @$address$/rawValue()>

After the evaluation the output file says:

Sender:
intelligent views gmbh
Julius-Reiber-Str. 17
64293 Darmstadt

KSCRIPT_EXPAND

As an alternative to the path expression, KSCRIPT_EXPAND can be used to call a registered

KScript. The output of this script (script elements with <output>) is transferred to the doc-
ument. Scripts are registered in the Knowledge Builder in the folder TECHNICAL/Registered

objects/Scripts

Example:
The template is:

<KSCRIPT_EXPAND aScriptWithOutput1to9>

After the evaluation the output file says:

123.456.789

KPATH_ROWS

This expression must be in a table. The KPath expression after this key word must return a

list of semantic objects. During evaluation the table row of the KPATH_ROWS expression is

evaluated once for each result of the KPath expression. This allows tables to be completed

dynamically. By the way, it does not matter which column contains the KPATH_ROWS expres-

sion.

Example:
The template is:

Parts (<KPATH_EXPAND topic()/∼$hatParts$/size()>
pieces)

Note

i-views 5.3

339/534

<KPATH_EXPAND topic()><KPATH_ROWS
topic()/∼$hatPart$/target()/sort(@$name$, true)>

<KPATH_EXPAND
topic()/@$note$>

After the evaluation the output file says:

Parts (3 pieces) Note

RTF print

ODT print Replaces RTF print

Conversion service Optional service

KSCRIPT_ROWS

In case of KSCRIPT_ROWS the objects for the table rows are determined via a registered

KScript. The name of the registered script is specified directly after KSCRIPT_ROWS. The script

must be of the KScript type and return the objects for output.

Example:
The template is:

Column1 Column2

<KSCRIPT_ROWS allPersons><KPATH_EXPAND
@$lastname$>

<KPATH_EXPAND @$firstname$>

After the evaluation the output file says:

Column1 Column2

Meier Peter

Schulze Helmut

1.10.1.2 Create ODT documents (OpenOffice)

Printing using the ODT format (Open Document Text, open standard) has many advantages

compared to the RTF format:

• The embedded script instructions are not part of the text, and are instead filed in special
script elements. This ensures that the formatting is not destroyed by lengthy scripts.

• The ODT format supports a large set of format instructions (comparable with MS Word)
that RTF cannot process.

i-views 5.3

340/534

• As a format, RTF does not have a uniform standard (MS Word can, for example, “do
more” than the standard).

• Editing of the RTF templates is highly fragile. MS Word, above all, tends to supplement
the templates with control elements (for example, the cursor position current during

the most recent editing), preventing the scripts from being reliably identified.

ODT templates can be created using OpenOffice or LibreOffice. They are created the same

way as RTF templates are created, with the only difference being that the path/script instruc-

tions are saved in script elements, as the following diagram shows.

The script field can no longer be integrated in LibreOffice 5. As an alternative to this, the

“Input field” can be used:

Insert > Field command > Other field commands (alternative keyboard shortcut Ctrl+F2)

The input field is found there on the “Functions” tab.

i-views 5.3

341/534

“Note” is equivalent to the previous “Script type”; after clicking on insert, another window

opens in which the script can be entered.

Available script types

There are the following script types:

• KPath : analogous to KPATH_EXPAND
• KScript : analogous to KSCRIPT_EXPAND
• KPathRows : analogous to KPATH_ROWS
• KPathImage : for embedding images
• ScriptFunction: Calls a function of a registered script. A string with the following format
is expected as text:

ScriptID->Functionname()
The function call is automatically expanded by two arguments: the semantic element

and the variables determined by the environment

i-views 5.3

342/534

An example of a script that was called:

function headerLabel(element, variables)
{

return element.name().toLocaleUpperCase();
}

• ScriptRowsFunction: Analogous to ScriptFunction. Table rows are generated for the
returned objects, analogous to KPathRows.

• ScriptImageFunction: for adding bitmap images
• ScriptSVGImageFunction: for adding SVG drawings
• DataPath: The “script for generating JSON contents” must be set on the print template.
The corresponding key can now be used to access the values of the JSON object.

Example of generating the JSON object:

function templateData(element)
{

return {
name: element.name(),
idNumber: element.idNumber(),
someData: { idString: element.idString() }

}
}
To access the value idString, for example,

someData.idString

must be set as text.

• DataRowsPath: In table rows or sections (Libre Office only), DataRowsPath can be used
to transform an array of objects in the templateData JSON to a table or sequence of

sections in the printed document. Each object in the array is transformed into a new

row with identical formatting as the row the DataRowsPath element is placed in. This

allows having lists of variable length in the printed document. DataPath and DataCon-

ditionPath elements in the same table row or section as a DataRowsPath element are

interpreted relative to the path of the DataRowsPath element.

function templateData(element) {
return {

rowData: [
{ name: "Element 1", someValue: 123 },
{ name: "Element 2" }

]
}

}

• DataConditionPath: Like DataRowsPath elements, DataConditionPath can be placed
in table rows or sections. Unlike DataRowsPath elements, DataConditionPath can ref-

erence anything in the templateData JSON, not only arrays of objects. When the refer-

enced property in the templateData JSON is a JavaScript falsy value (false, undefined,

i-views 5.3

343/534

null, 0 or an empty String) or an empty Array, the table row or section the DataCondi-

tionPath element is placed in is removed from the printed document.

File attributes or URLs can be used for embedding images. When URLs are used, an attempt

is made to load an image from the address specified.

Embedded images are always sourced in their original size (at 96d dpi). If another size should

appear in the printout, a frame with the required dimensions (absolute dimensions in cm

must be used!) must be built around the script element. The resulting embedded image is

then fit into the frame so that the frame dimension is not exceeded while retaining the image

aspect ratios.

1.10.1.3 Create DOCX documents (Micrsoft Word)

DOCX templates can be created using Microsoft Word 2007 or higher.

They are created the same way as RTF templates are created, with the only difference being

that the path/script instructions are saved in text content control elements.

To insert the control elements, it is first necessary to activate the developer tools in Word. To

do so, go to theOfficemenu, open theWord options, go to the Popular commands category

and activate the option Show Developer tab in the ribbon. Now go to the Developer tools

tab and activate Design mode.

To add KScript/KPath expressions, insert a Text-only content control element. The text of

the control element is replaced by the calculated text. Go to the properties of the control

element (via the context menu on the closing bracket) and specify the KScript or KPath under

Title. If you leave the title empty, the text of the control element will be used instead. Enter

the script type under Tag. The available script types are all the types available in ODT, with

the exception of KPathImage.

i-views 5.3

344/534

1.10.2 Create print templates for lists

Print templates for lists are saved in the “TECHNOLOGY/Print components” area in the Knowl-

edge Builder. Each “Print template for lists” object contains a print template document (XLSX)

and a relation that specifies to which objects the print template is to be applied. Optionally,

an object list can be specified that should be used for generating the output. This allows the

format of the list that the user sees on the screen, and the format of the list that was output,

to be different.

When the attribute “Document (print template)” was not created, then when a document

is generated, an Excel file is generated that contains one spreadsheet with the data in the

object list and the column headings from the object list configuration, i.e. an Excel file does

i-views 5.3

345/534

not necessarily have to be specified as the print template.

The following example shows a print template for lists with objects of the “Task” type.

XLSX templates can be created using Microsoft Excel 2007 or higher. These templates only

function with object lists.

Creating the Excel file

A standard Excel file is used as a template, andmust include an additional spreadsheet called

“Data”. This spreadsheet is subsequently filled with the object list data, and this without

headings and beginning with cell A1.

i-views 5.3

346/534

The other spreadsheets can reference data from the “Data” sheet in formulas. i-views ensures

that all formulas are calculated again as soon as the completed Excel file is next opened using

Excel.

1.10.3 Document format conversion with Open / LibreOffice

The output format of the print operation corresponds to the template used. If you would like

to receive a different output format, you have to set up a converter.

To do so, you need an installation of LibreOffice or OpenOffice Version 4.0 or above on the

computer that is to perform the conversion. This is usually located in the same place as the

bridge or Job-Client that also executes the print operation.

In the configuration file (bridge.ini, jobclient.ini, etc.) you also have to specify the path to

the "soffice” program which is part of the LibreOffice/OpenOffice installation and located in

the "program" subdirectory there. This must be specified as an absolute path; relative paths

(..\LibreOffice\etc.) are not possible here.

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

Conversion service

If you do not want to keep a LibreOffice/OpenOffice installation on all workstations or server

installations fromwhich formats are to be converted, an appropriately converted REST bridge

can perform the conversion.

To do so, the .ini file of the REST bridge must have the following format:

[Default]
host=localhost

[KHTTPRestBridge]
port=3040
volume=cardAdmin

i-views 5.3

347/534

services=jodService

[file-format-conversion]
sofficePath="C:\Program Files (x86)\LibreOffice 4.0\program\soffice.exe"

In the Admin tool, you enter the address at which the conversion service can be reached

under system configuration/components/conversion service.

Example:

http://localhost:3040/jodService/jodconverter/service

Document formats

To ensure output formats are available, appropriately configured objects of the “Converter

document format” type must be available in the network.

The important thing is that not all formats can be converted into all formats. The most

important ones are:

Name Exten-

sion

Mime type

Portable Document Format pdf application/pdf

OpenDocument Text odt application/vnd.oasis.opendocument.text

Microsoft Word doc application/msword

1.11 Tagging

The tagging component allows objects from the semantic network (persons, topics, etc.) to

be found or be created in documents.

Tagging requires:

• A configured tagging component in the semantic network
• A tagging software (Intrafind, OpenNLP) that finds potential objects in a text

Tagging is performed in three steps

1. The document text for tagging is defined (e.g. the value of a text attribute)

2. The text is passed on to the tagging software, which analyzes the text and delivers a

series of tags

3. The configuration is used to search for existing objects in the semantic network for each

tag, and to create any potentially new objects. The objects are linked with the document

by means of a relation.

i-views 5.3

348/534

1.11.1 Configuration

To use tagging, you need to use the Tagging component which can be added in the Admin

tool. This component sets up the required schema.

Following that, you can configure it in Knowledge Builder under “Technical” > “Tagging.”

Every tagging configuration consists of:

• An interface configuration of the tagging software to be used (intrafind, OpenNLP)
• Configuration of the text extraction that determines the text to be tagged in a document
• Tag configurations that determine how objects are found, created and linked in the se-
mantic network

1.11.1.1 Tagging configuration

The tagging configuration bundles all the information required for tagging.

It is however mandatory to specify the tagger interface to be used.

Specification of the text extraction to be used is optional. Alternatively this can also be deter-

mined dynamically (see the corresponding sub-chapter).

Furthermore, it is possible to specify an adjustment script that can be used to influence tag-

ging. Additional adjustments can also be made in the configurations for tags and for text

extraction.

Newly created adjustment scripts contain commented-out function bodies. In order to acti-

vate them you only need to remove the comment signs.

1.11.1.2 Interface configuration

The Intrafind interface has the following setting:

Configura-

tion name

Freely selectable name

i-views 5.3

349/534

Parameter (optional) This is transferred to Intrafind using the interface, and controls

tagging

URL URL of the Intrafind tagger

Update-

URL

(optional) URL of the Intrafind List Service, used for export of known tags,

see also 1.11.1.5.

In the case of OpenNLP, only the URL of the REST service is required along with the optional

name.

The interface “Internal tagger” is only intended for test purposes / internal demos for which

connecting an external system is unwanted. This tagger makes no claim to returning results

that make sense.

1.11.1.3 Text extraction

If the text to be tagged is not determined dynamically, e.g. because only the text of a very

specific attribute type or the text of a document is to be extracted, text extraction must be

configured.

This configuration can be added on the “Text extraction” tab.

Configura-

tion name

Freely selectable name

apply to Object type to which this configuration applies. Is used if no explicit text

extraction is specified during the tagging configuration.

Script for

text extrac-

tion

Optional script for determining text

To specify the attribute types to be tagged, one or more text part extractions (hierarchically

sorted on the left side) are added to the text extraction. In each text part extraction, the

attribute type to be tagged is stored under “extracts text from.”

i-views 5.3

350/534

In addition to strings, blobs can also be used as text part extractions. Text is extracted from

these and forwarded to the tagging interface. To do this, text extraction must be configured

in the client (bridge or KB) (see chapter i-views services > Text extraction).

The optional script has three arguments

textDoc-

u-

ment

$k.TextDocumentOutputs the text to be tagged

ele-

ment

$k.SemanticElementThe element whose text is to be extracted

at-

tributes

$k.Attribute

[]

Array of attributes of the element. The attributes are collected ac-

cording to the configuration.

The following example writes the values of the attributes in sequence:

function extractText(textDocument, element, attributes)
{

attributes.forEach(function(attribute) {
textDocument.println(attribute.valueString());

});
}

1.11.1.4 Tag types

The tag type configuration determines how objects are found, created and linked in the se-

mantic network. To do this, you can specify a separate configuration for each tag type pro-

vided by the tagging interface. You can create a new configuration for the tagging configura-

tion in the hierarchy view on the left side.

By default, the interfaces provide the following tag types:

i-views 5.3

351/534

Intrafind PersonName, Location, TFIDF

OpenNLP NP

A tag configuration can apply to one or more tag types.

The configuration offers the following settings:

Adap-

ta-

tion

script

Script to affect tagging. The template contains a row of functions that are com-

mented out and can be activated.

Ap-

ply

to

Type in the semantic network that corresponds to the tag type. If objects are to be

searched/created and no additional configuration information is specified, this type

is used.

Con-

fig-

u-

ra-

tion

name

Freely selectable name

Search

for

ex-

ist-

ing

ob-

jects

Search that contains the text of the tag as the searchString parameter and searches

for one suitable object in the semantic network.

Several searches can be specified, e.g. to keep the individual searches more com-

pact.

If there are several hits, query search must return the suitable hit. If several hits

of different quality are found, the highest quality hit is used. If no best hit can be

determined, no object is assigned.

i-views 5.3

352/534

Cre-

ate

tag

ob-

jects

au-

to-

mat-

i-

cally

If no object was found and this option was activated, new objects are created.

You have to ensure that the search for existing objects find these as new objects are

created every time tagging takes place.

If no adaptation script applies here, an object of the specified type is created for

“apply to” and the text of the tag is set as its name.

Tag

re-

la-

tion

type

This relation type is used to link documents to the objects found by the tagger.

Tag

type

The tag types specified above. If no tag type is defined, the configuration applies to

all types of tags.

Uses

ex-

port

Here, an export configuration can be specified which can be used to export all tags

of the type or a subset thereof. Refer to the next section for details.

1.11.1.5 Export of known tags

There is an export function used to save information from the network in a tagging service,

e.g. Intrafind. This is currently only supported for Intrafind, where it performs the following:

One, or several, lists can be generated that are then saved to the tagging interface. Each list

export assigns naming attributes (e.g. name, synonym) to the semantic elements for export.

The tagger then searches for these names in texts, and can deliver the suitable semantic

element as well. For example, the list of known organizations can be exported this way, and

the tagger can identify them reliably.

i-views 5.3

353/534

The Intrafind list export is configured for every tag type and is also influenced by the tag type

configuration. Generation configuration options:

Con-

fig-

ura-

tion

name

Freely selectable name

Nam-

ing

at-

tribute

(Optional) attribute that identifies the object. Multiple specifications possible. If no

attribute has been specified, the name attribute is exported by default.

Ob-

ject

filter

(Optional) A search can be specified here that specifies the set of objects. If no

search has been specified, all types that are assigned in the tag type configuration

by means of Apply to are exported.

Intrafind-specific matching options. These have a direct influence on the performance of the

tagging service:

Ob-

serve

up-

per/lower

case

Case-insensitive matching is activated by default. Case-sensitive matching can

be activated here.

i-views 5.3

354/534

Ignore

dia-

critics

(um-

lauts,

etc.)

[Presumably] This option is used to ignore characters with accents or umlauts,

e.g. Geräte will match with Gerate.

Pho-

netic

match-

ing

[Presumably] For example, match “photography” with “fotografie.”

Language-

dependent

match-

ing

This option activates the linguistic processing of the names transferred. In do-

ing so, it is important that the data is maintained correctly according to lan-

guage in the semantic network, as every language must be processed using its

own linguistics.

Performing the export

There are three relevant buttons to performing the export:

• the zigzag arrow (found at the export config or the "top" tagging configuration) "re-
freshes" the configuration cache, such that the newly changed configuration will have

an effect

• the floppy disk symbol found at the export config opens a dialog to save the exported
list to a directory. The same symbol found at the top tagging configuration will export

all lists at once. (hint: you have to select an existing directory, and the files will be written

into it)

• the up-pointing arrow (found at the top tagging configuration if configured) is used to
upload all lists via the intrafind list service. This option is only possible, if the list service

was installed for the given environment, i.e. if the list service is configured. See also "In-

terface configuration" -> "Update-URL" above on how to configure that. After entering
the correct credentials, the upload will take place (this may take a while with spinning

cursor as feedback). On success, the response will indicate whether the service was

restarted and how many files were uploaded.

1.11.1.6 Overlapping filter group

The tagger may deliver several tags for one text passage. In some cases, the user explicitly

allows this overlap and have several tags displayed.

The overlap filter group does the following:

• All tags types that are summarized into a group like this must be free of overlaps.
• Within a group, a script can be used to specify a prioritization to influence the decision
about which tag is displayed in the end

• In order to allow overlaps, at least two groups like this must exist
• All tag types without a group are summarized in the “Default” overlap filter group.

Prioritization with script

i-views 5.3

355/534

/**
* When there are conflicting tags (e.g. overlapping), this function can influence the conflict resolution by building a sort key.
* The sortOrder compares the array from left to right, lower numbers are sorted before higher ones. If something larger is to have a higher priority, it therefore needs to be negated.
* e.g.: [-1, 3] < [0, 0] < [1, -3] < [1, -2]
*
* @param {$k.Tag[]} tags
* @param {$k.TaggingContext} taggingContext
* @returns {integer[]} an array of numbers that is used to sort the conflicting tags.
**/
function tagSortOrder(tag, taggingContext)
{

var smallestSpanReducer = function(minPos, span){return Math.min(minPos, span.start)};
var positionMinimum = tag.spans().reduce(smallestSpanReducer, Number.MAX_VALUE);
return [-tag.tagTypePriority(), -tag.canonicalText().length, positionMinimum];

}

A script must return a list of integers, whereby the first element in this list has the most

influence. In principle, it functions the same ways as sorting by several columns, meaning

that the second element is only used when the same value occurs in the first element.

Default prioritization

If no script has been specified, or the tag type is grouped in the implicit “Default” group, then

the following prioritization is used:

• Order of the tag types - higher priority first
• Longer tags given preference
• Position within the overlap (meaning in the case of “a red wall”, “a red” is given prefer-
ence over “red wall”, because it is closer to the front)

Also compare the script template.

1.11.2 View configuration

Two views are available for the display:

• Markup view
• Tag list

The markup view can be used in both the Knowledge Builder and in the ViewConfiguration

Mapper. The view can be used everywhere that other views such as properties or hierarchies

can be used.

The view has a permanently integrated tag button in the Knowledge Builder. There is an

integrated action type “Tag” in the ViewConfiguration Mapper, which can also be used in a

custom button.

The tag list is only available in the View-Configuration Mapper and is the content of a panel

(e.g. as a sub-configuration of a panel with a fixed view) there. If a markup view with tag

buttons was configured in another panel, its panel should be linked to the tag list panel

using the relation “Influenced” so that the tag list is updated after tagging.

i-views 5.3

356/534

Both views have the obligatory configuration setting “Tagging configuration used”, which con-

nects the view to the tagging configuration.

1.11.2.1 Debug Log

The KB can output debug information during the tagging process. The information is writ-

ten to the #tagging channel (see manual for documentation regarding channels) and can be

output to a file, for example.

To do so, create a .txt file in the directory of the KB and rename it “kb.ini”. Then add the

following content:

[Default] logTargets=tagging [tagging] type=file format=plain channels=tagging loglevel=DEBUG file=tagging.log maxLogSize=10 maxBacklogFiles=1

This creates a “tagging.log” file where you can view the tags found by Intrafind for the tag

types. This makes it possible to identify which strings are suggested by Intrafind as tags, and

also which tag types (e.g. signifterm/tfidf or organization) are used to find them.

1.11.3 Tagging by Script

Tagging can also be performed by script. To do so, create an object of the type $k.TaggingConfiguration.

The tag(context) function is used to perform the tagging. Tagging is controlled by an object

of the type $k.TaggingContext. Because it is stateful, a new one must be created every time

tag() is called. The TaggingConfiguration object is stateless and can be reused.

var document = $k.Registry.elementAtValue("RDF-ID", "opennlp-testdocument");
var configElement = $k.Registry.elementAtValue("tagging.name", "opennlp tagger config");
var tagger = $k.TaggingConfiguration.from(configElement);
var context = new $k.TaggingContext();
context.setSource(document);

i-views 5.3

357/534

tagger.tag(context);
$k.out.print("Found " + context.tags().length + " tags");

1.11.4 Required software

The Intrafind tagger must be purchased and installed separately. The corresponding In-

trafind List Service can be provided by i-views.

The OpenNLP connection is made using a REST interface to OpenNLP provided by i-views.

1.12 Development support

1.12.1 Dev tools

Different tools are available to facilitate development.

• K-Infinity plug-in: Offers support or JetBrains’s products This includes the synchroniza-
tion of source files, KJavascript and KPath support.

1.12.2 Dev service

The Knowledge-Builder provides the option of allowing access from external applications.

This allows, for example, synchronization with development environments or specific ele-

ments of an application to be opened from the browser.

The Dev service must be started in the Knowledge-Builder for this. To do so, start by opening

the Settings and in the Personal tab, going to Dev tools. A port can now be specified here at

which the service should be able to be reached. The service can be started and stopped

manually using the buttons next to it. If the “Automatic start” checkbox is activated, then the

service is automatically started with the Knowledge-Builder.

If the Knowledge-Builder features an ini file (the default name is “kn.ini”), then it can save the

settings permanently. The settings can also be entered manually in the ini file:

[DevService]
autostart=true
port=3050

1.13 Rule engine

1.13.1 What are rules?

Allgemein ausgedrückt können mit Regeln ein Element des Wissensnetzes (=Referenzobjekt)

mit einer zweiten Menge von Elementen des Wissensnetzes (=Vergleichsmenge) über das

Ablaufen von Relationen, den Vergleich von Werten und das Erfüllen von weiteren Bedingun-

gen miteinander verglichen werden, um schließlich eine Ergebnismenge zum Referenzobjekt

zu erhalten. Die Ergebnismenge ist dabei eine Teilmenge der Vergleichsmenge. Die Elemente

der Ergebnismenge können zusätzlich gewichtet werden.

i-views 5.3

358/534

Auf Produktwelten bezogen, sind verschiedene Use Cases vorstellbar. Mit Regeln kön-

nen Fachexperten zum Beispiel definieren, welche Produkte aufgrund von Eigenschaften

zueinander passen (z.B. Stecker zu Steckverbinder, Zubehör zu Produkten, etc.), aber auch

welche Teile von Produkten (Merkmale, Komponenten, Varianten, etc.) zueinander passen,

um ein vollständiges valides Produkt zu ergeben (Konfigurator). Weitere Use Cases für

Regeln sind, dass Produkte aufgrund von Eingaben eines Kunden empfohlen werden sollen,

dass ausgedrückt werden kann welche Produkte zu einer Serie gehören oder auch aufgrund

welcher Eigenschaften und Bedingungen zueinander ähnliche Produkte gefunden werden

sollen.

In dieser Dokumentation werden die Regeln anhand des Beispiels potenzielle Freunde zu

einer Person zu finden erklärt.

1.13.2 Where can rules be configured?

Regeln können in i-views über die Regelkomponente konfiguriert werden. Nach Installa-

tion im Admin-Tool befindet sich die Regelkomponente unter dem Namen „Regelwerk“ im

Technik-Bereich. Ein Klick auf „Regelwerk“ öffnet im rechten Bereich des KB auf dem ersten

Tab die Regelsätze. Um Regeln zu erstellen benötigt man zunächst einen Regelsatz, der die

darin enthaltenen Bedingungen zusammenfasst.

1.13.3 How can rules be configured?

1.13.3.1 Rule set

Bevor die einzelnen Regeln definiert werden, muss ein Regelsatz angelegt werden, der die

Regeln enthält und die Verwendung der Regeln definiert. Wann ein Regelsatz angewendet

wird, wird über die Vergleichs- und Referenzmenge definiert (siehe nächstes Kapitel).

Ein Regelsatz kann aus filternden und/oder gewichteten Regeln, Ableitungen, Gruppen und

Abzügen bestehen. Um einen neuen Regelsatz zu erstellen, klickt man im Reiter „Regelsatz“

auf „Neu erstellen“ und muss hier dem Regelsatz einen Namen geben.

In unserem Beispiel geben wir dem Regelsatz den Namen „potenzielle Freunde“, weil wir zu

einer Person unter verschiedenen in diesem Regelsatz zusammengefassten Regeln poten-

i-views 5.3

359/534

zielle Freunde finden wollen.

Der neue Regelsatz ist damit erstellt. Es können nun noch optional eine detaillierte Beschrei-

bung und ein Registrierungsschlüssel (zum Beispiel zur Wiederverwendung in einer View-

Konfiguration) gesetzt werden.

1.13.3.2 Comparative amount / Reference amount

Jeder Regelsatz braucht zwingend eine Vergleichs- und eine Referenzmenge. Eine Vergle-

ichsmenge besteht immer aus Objekten. Diese Objekte können entweder über eine Struk-

turabfrage definiert werden (Vergleichsobjekte, Referenzobjekte) oder es kann ganz einfach

der Typ der Objekte eingegeben werden (Vergleichstyp, Referenztyp). Ist keine Referenz-

menge gesetzt, ist es dieselbe wie die Vergleichsmenge.

Die Referenzmenge ist die Menge an Objekten, aus der ein Objekt gewählt werden kann,

für das der Regelsatz verwendet wird (ausgehende Menge). Die Vergleichsmenge definiert,

woher die Ergebnisse entstammen dürfen.

In unserem Beispiel wählen wir hier sowohl für die Vergleichs- als auch für die Referenz-

menge alle Objekte des Typs Person aus.

i-views 5.3

360/534

1.13.3.3 Filter/Weighting

Im nächsten Schritt müssen wir uns entscheiden, welche Regeln wir unter „Filter“ setzen und

welche Regeln wir unter „Gewichtung“ setzen. Filternde Regeln filtern Objekte aus der Ver-

gleichsmenge aus, sodass sie nicht in der Ergebnismenge auftauchen. Gewichtende Regeln

verleihen den Objekten der Ergebnismenge, je nachdem wie viele Regeln zutreffen oder wie

stark gewichtet sind, eine Gewichtung untereinander, sodass die Objekte in der Ergebnis-

menge nach diesem Gewicht sortiert werden können (Qualität).

Wenn wir nun filternde Regeln erstellen wollen, klicken wir auf „Filter“ und dann auf „neues

Unterelement erzeugen“. Hier muss zunächst ausgewählt werden, welches Element des

Bausatzes zum Regelwerk verwendet werden soll. Es wird zwischen filternde Ableitung, fil-

ternde Gruppe, filternder Abzug und Regel unterschieden.

Bei gewichtenden Regeln wird zwischen gewichtender Ableitung, gewichtender Gruppe,

i-views 5.3

361/534

gewichtendem Abzug und Regel unterschieden. Gewichtet wird dann, wenn Treffer mehr

oder weniger gut sein können.

Angenommen wir haben 3 Regeln, wobei Regel 1 die Gewichtung 1, Regel 2 die Gewichtung

2 und Regel 3 die Gewichtung 3 hat, dann gibt es insgesamt 6 Anteile (1+2+3) = 100%. Das

heißt für die einzelnen Regeln erfolgt eine Gewichtung wie folgt:

Regel 1 = 1/6 = 17%

Regel 2 = 2/6 = 33%

Regel 3 = 3/6 = 50%

Die Gewichtungsangabewird im Reiter „Regeln“ bei „Gewichtung“ als Anteil an der Gesamtqual-

ität angegeben.

Zu beachten ist hierbei auch der Unterschied zwischen Und-Gruppen und Oder-Gruppen:

Bei Und-Gruppen müssen alle enthaltenen Regeln zutreffen. Trifft eine Regel nicht zu, fällt

die Qualität unter 100% und erhält damit am Ende als Konsequenz eine Qualität von 0%.

Im Grunde spielen bei Und-Gruppen Gewichte also keine Rolle. In Oder-Gruppen fallen die

Qualitätswerte wie oben beschrieben ins Gewicht. Die anteiligen Gewichte der Kindelemente

werden aufaddiert.

1.13.3.4 Rule types

Jeder Regelsatz besteht aus mindestens einer Regel. Jede Regel hat einen Namen und kann

eine Beschreibung erhalten. Zu Testzwecken kann sie auch auf „deaktiviert“ gesetzt werden.

Es gibt 5 verschiedene Regeltypen:

• Attributvergleich
• Kardinalität
• Relationsziel
• Relationszielvergleich
• Vergleich durch Suche

Sobald ein Regeltyp ausgewählt ist, wird die entsprechende Konfiguration zu diesem Regel-

typ sichtbar (Regellogik).

Bei „Ausdruck“ wird die Regel als Prädikatenlogik abgebildet. Sie dient nur der Information

und kann nicht bearbeitet werden.

i-views 5.3

362/534

1.13.3.4.1 Attribute comparison

Ein Attributvergleich vergleicht entweder ein Attribut der Vergleichsmengemit einemAttribut

der Referenzmenge oder das Attribut der Vergleichsmenge muss als Bedingung einen festen

Wert erfüllen. Für den Vergleich der Attribute, bzw. den Vergleich zu einem festen Wert muss

ein Vergleichsoperator gewählt werden (< , =, >, != , <= , >=).

Will man zumBeispiel ausdrücken, dass nur dieMenschen als potenzielle Freunde vorgeschla-

gen werden, die mindestens 50 Sympathiepunkte haben, so muss das Vergleichsattribut

„Sympathiepunkte“ sein und der Referenzwert „50“.

Hinweis: Nicht alle Operatoren machen für alle Attributtypen Sinn (z.B. können Intervall-

Attribute auch überschneidende Operatoren haben). Hier ist der Regeleditor in der aktuellen

Version noch nicht fertig.

„Gilt für alle Eigenschaften" muss angehakt werden, wenn das zu vergleichende Attribut

mehrfach vorkommt und alle Werte gleich sein sollen. Ist es nicht angehakt, reicht es der

Regel, wenn einer der Werte gleich ist. Die Bedingung gilt nur in einer Richtung. So müssen

alle Attributwerte des Vergleichsobjektes denen des Referenzobjektes entsprechen, aber

nicht alle Attributwerte des Referenzobjektes auch denen des Vergleichsobjektes.

1.13.3.4.2 Cardinality

Mit dem Regeltyp „Kardinalität“ kann das Vorkommen einer bestimmten Eigenschaft am Ver-

gleichsobjekt gezählt werden. Die Eigenschaft muss über „Eigenschaftstyp“ angegeben wer-

den. Mit dem Kardinalitätsoperator gibt man an, ob die Eigenschaft kleiner gleich, exakt

gleich oder größer gleich dem bei „Kardinalität“ eingegebenen Wert vorkommen soll.

1.13.3.4.3 Relation target

Beim Regeltyp „Relationsziel” wird über eine Vergleichsrelation geprüft, ob das Relationsziel

der Vergleichsrelation in der Referenzmenge enthalten ist. Die Vergleichsrelation kann dabei

transitiv unter Angabe eines Minimums und Maximums abgelaufen werden.

i-views 5.3

363/534

„Fehlende Eigenschaft zulassen” ist ein Metaattribut an der Vergleichsrelation. Es muss ange-

hakt werden, wenn man möchte, dass die Regel auch erfüllt ist, wenn das Vergleichsobjekt

die Vergleichsrelation gar nicht besitzt.

1.13.3.4.4 Relation target comparison

Der Relationszielvergleich ist der am häufigsten verwendete Regeltyp. Hiermit kann geprüft

werden, ob das Relationsziel sowohl das Ziel der Vergleichsrelation, als auch das Ziel der Ref-

erenzrelation ist. In unserem Beispiel können wir darüber abgleichen, ob Start- und Zielper-

son das gleiche Hobby haben.

Alternativ zu einer Referenzrelation kann auch ein festes Referenzobjekt angegeben wer-

den. Möchte man in unserem Beispiel ausdrücken, dass die Wohnorte der Personen in

Deutschland liegen sollen, so muss man als Vergleichsrelation „liegt in“ und als Referenzob-

jekt „Deutschland“ angeben.

„Fehlende Eigenschaft zulassen” ist ein Metaattribut an der Vergleichsrelation. Es muss ange-

hakt werden, wenn man möchte, dass die Regel auch erfüllt ist, wenn das Vergleichsobjekt

i-views 5.3

364/534

die Vergleichsrelation gar nicht besitzt.

„Gilt für alle Eigenschaften” muss angehakt werden, wenn die zu vergleichende Relation

mehrfach vorkommt und alle Relationsziele gleich sein sollen. Ist es nicht angehakt, reicht es

der Regel, wenn eines der Relationsziele gleich ist. Die Bedingung gilt nur in einer Richtung.

So müssen alle Relationsziele des Vergleichsobjektes auch ein Relationsziel des Referenzob-

jektes sein, aber nicht alle Relationsziele des Referenzobjektes auch ein Relationsziel des

Vergleichsobjektes.

1.13.3.4.5 Comparison by structured queries

Um die ganze Mächtigkeit von i-views auch in den Regeln verwenden zu können, hat man

schließlich auch noch die Möglichkeit eine Strukturabfrage für den Vergleich zweier Objekte

und/oder zweier Werte zu nutzen. Dazu wählt man den Regeltyp „Vergleich durch Suche“.

Wichtig hierbei ist, dass das Vergleichsobjekt durch den vordefinierten Bezeichner „compar-

isonObject“ und das Referenzobjekt durch den vordefinierten Bezeichner „referenceObject“

kenntlich gemacht werden. Der Vergleichswert muss durch den vordefinierten Bezeichner

„comparisonValue“ und der Referenzwert durch den vordefinierten Bezeichner „reference-

Value“ kenntlich gemacht werden. Möchteman, dass beim Testen des Regelsatzes die Tabelle

zur Erklärung der Ursachen entsprechend befüllt ist, müssen die Bezeichner gesetzt sein.

Wenn die Regel nicht vergleicht, sondern generelle Aussagen trifft, dann können die Param-

eter weggelassen werden.

Eine Vergleichssuche, die die Schuhgrößen beider Personen vergleicht und dabei ausdrückt,

dass sich diese um maximal 5 unterscheiden darf, würde wie folgt aussehen:

1.13.3.5 Derivation

Mit einer filternden oder gewichtenden Ableitung können - ausgehend von Vergleichs- und

Referenzobjekten - weitere Objekte abgeleitet werden, auf die dannwiederumRegeln angewen-

det werden können. In der Produktwelt ist ein häufiger Anwendungsfall, dass Merkmale von

Komponenten im Vergleich berücksichtigt werden sollen.

Um die abgeleiteten Objekte zu ermitteln, kann entweder jeweils eine Relation ausgehend

vom Vergleichs- und/oder Referenzobjekt angegeben werden oder die abgeleiteten Objekte

können über eine Strukturabfrage ermittelt werden. Wie auch bei dem „Vergleich durch

Suche“ müssen dabei die vordefinierten Bezeichner verwendet werden. Beispiel:

i-views 5.3

365/534

Angenommen, wir wollen als erste Bedingung für unsere Suche nach potenziellen Freunden

ausdrücken, dass beide Personen aus einem Ort kommen sollen, der in Deutschland liegt,

dann müssen wir hierzu eine filternde Ableitung erstellen, die - von einer Person ausgehend

- die Stadt ermittelt. Zu der Stadt kann man dann in einer darunterliegenden Regel eine

Bedingung ausdrücken.

1.13.3.6 Group

Eine filternde oder gewichtende Gruppe hat entweder den Gruppentyp „und“ oder „oder“.

Eine „und“-Gruppe besagt, dass alle Regeln in dieser Gruppe zutreffen müssen. Eine „oder“-

Gruppe besagt, dass nur eine der Regeln in der Gruppe zutreffen müssen, damit das Vergle-

ichsobjekt als Ergebnis angezeigt wird. Ist keine Gruppe gesetzt, gilt per Default, dass alle

Regeln zutreffen müssen („und“-Gruppe). Zu beachten ist das unterschiedliche Verhalten bei

angegebenen Gewichtungen der enthaltenen Regeln (Siehe Kapitel Gewichtungen).

1.13.3.7 Subtraction

Ein filternder Abzug zieht alle Objekte von der Ergebnismenge ab, die als Ergebnis aus den

darunter befindlichen Regeln hervorgehen.

Ein gewichtender Abzug zieht den Qualitätswert einer enthaltenen Regel vom Gesamtergeb-

nis ab, wenn die Regel zutrifft. Wird zum Beispiel die Regel Sympathiepunkte < 5 erfüllt und
die Gewichtung der Regel beläuft sich auf 33% (Anteil von 1/3), so wird das Ergebnis nur noch

67% betragen.

i-views 5.3

366/534

1.13.4 Testing rules

Zur Kontrolle der Ergebnisse kann die Suche geöffnet werden:

Hier muss ein Objekt ausgewählt werden, für welches der Regelsatz angewendet werden

soll. Die Ergebnistabelle zeigt alle Ergebnisse unter Angabe von Qualität, dem gerade aus-

gewählten Referenzobjekt, dem gefundenen Vergleichsobjekt und den Ursachen.

Hinweis: Solange keine gewichtete Regel enthalten ist, erhalten alle Treffer 100%.

Die Treffererklärung lässt sich per Klick auf Graph auch grafisch visualisieren:

i-views 5.3

367/534

Ein Klick auf „Ursache“ öffnet die einzelnen Ursachen imDetail in einer Tabelle.

i-views 5.3

368/534

1.13.5 Executing rules

Regelsätze können an verschiedenen Stellen verwendet werden. Doch damit ein Regelsatz

verwendet werden kann, muss dieser zunächst gespeichert werden.

Sobald man auf den Speichern-Button klickt, wird der Regelsatz in eine Such-Pipeline umge-

wandelt und als solche gespeichert. Zur Identifikation der Such-Pipeline wird der Reg-

istrierungsschlüssel verwendet. Es kann nur gespeichert werden, wenn ein Registrierungss-

chlüssel angegeben ist. Bei jeder Änderung am Regelsatz muss erneut gespeichert werden,

damit sich die Such-Pipeline aktualisiert.

Im Viewconfigmapper kann die Such-Pipeline dann zumBeispiel als Suche in einer Zielauswahl

verwendet werden, um die Ergebnismenge einzuschränken. Die Ergebnistabelle und die Tr-

effererklärung kann ebenfalls verwendet werden, um sie beispielsweise in einer Webapp

darzustellen.

2 Admin Tool

You can use the Admin tool to create new semantic networks, manage all semantic networks

of a mediator and configure individual semantic networks.

2.1 Admin tool configuration

Like the Knowledge Builder, the admin tool can be startet with English or German user in-

terface (UI). The preset UI language ist German. To start the admin tool with English UI, a

configuration needs to be done using an ini file.

The content of the ini file "admin.ini" for starting the admin tool with English UI is as follows:

[Default]
language=eng

Please obey that without further configuration, the ini file needs to be located in the same

directory as the admin tool itself to take effect.

Note: If a new Knowledge Graph is created using the admin tool, the system attributes and

system relations are created in the same language as the admin tool has been started with.

i-views 5.3

369/534

2.2 Launch window

After the Admin tool (Windows: admin.exe, Mac OS: admin, Linux: admin-64.im) has started,

the Start window appears.

2.2.1 Server

The URL of the server is entered in the free text field Server. (If no protocol is specified, the

protocol cnp:// is used). Valid URLs use one of the protocols [cnp://,cnps://,http:// or https://]

followed by [computer name or IP address]:[Port number]. This format corresponds to the in-

terface setting on the mediator.

If the mediator that is used to administrate the semantic networks is running on the same

computer as the Admin tool, it can also be addressed using the computer name localhost.

If the field remains blank, then the semantic networks are accessed which are in the direct

subfolder volumes relative to the position of the Admin tool. No mediator is required for this

type of access.

Entries entered once in the free text field are saved. The ... button allows them to be selected

from a list in a separate window.

The Administrate button is used to access the server administration, for which authenti-

cation using the server password is required.

2.2.2 Knowledge network

The semantic network that is to be administrated is specified in the free text field Semantic

network.

Entries entered once in the free text field are saved. The ... button allows them to be selected

from a list in a separate window. To display all semantic networks, the user may be prompted

to enter the server password.

2.2.3 Information

You can use the Info button to retrieve version-specific information in a separate window via

the Admin tool.

i-views 5.3

370/534

Specifically, you can retrieve:

• The version number of the Admin tool (Build),
• The publication status of the Admin tool (Release state),
• The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

• The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

• The language setting active in the operating system (Locale),
• The fonts provided in the Admin tool (Fonts),
• The semantic network components including version numbers supplied with the Admin
tool (software components) and

• The small talk packages including version number used in the Admin tool (Packages).

Information on the network version and volume information is not decisive here.

The information is output in an invisible text field, which has a context menu that can be

activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

i-views 5.3

371/534

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-

board of the operating system. This key can be entered into the initialization file of amediator

(default file name mediator.ini) and thus restricts this mediator s access via an Admin tool to

Admin tools with this specific key.

The OK button enables you to return to the start window.

2.2.4 Manage, New and Next

New forwards to semantic network generation.

Administrate forwards to the server administration.

Next forwards to the individual network administration. The entries user name and pass-

word are used for this for logging in with an administrator account.

2.2.5 End

The End button closes the Admin tool.

2.3 Create a new knowledge network

A new semantic network is created via a separate network creation window. It can be

reached via the New button on the start screen. Any inputs in the Server and semantic

network free text fields are ignored.

2.3.1 Server

The name or the IP address of the computer is specified in the free text field Server on which

the mediator is running, and which should be used to create the new semantic network. If

i-views 5.3

372/534

this cannot be reached using the default port, then a correct port number must also be

named. The input form in this case is [Computer name or IP address]:[Port number].

If the mediator that should be used to create the new semantic network is running on the

same computer as the Admin tool, it can also be addressed using the computer name local-

host.

If the field remains blank, the semantic network is generated in the Volumes subfolder in

direct relation to the position of the Admin tool.

2.3.2 New knowledge network

The name of the semantic network is specified in the free text fieldNew semantic network.

The characters allowed for this purpose are specified by the file system of the operating

system on which the semantic network is to be stored. To ensure that the data can also be

stored in different file systems, the following applies:

• 64 characters maximum
• No blank spaces at the start or end
• Characters permitted: upper and lower scale Latin letters, numbers, spaces !@#$%&’()+-
.[]∧_‘{}∼Œœ and ASCII characters 160-255

• The following character sequences are not allowed: AUX, CON, NUL, PRN as well as
COM0-COM9 and LPT0-LPT9

A name must be specified.

The name can subsequently be changed only during copy processes of the semantic network

or by changing file and directory names. If you make a change, keep in mind that the name

of the semantic network might be used in initialization files and that the license might have

been adapted to this.

2.3.3 Password (mediator)

The mediator supports authentication via a password. If a password has been set for the

mediator that will be used to create the new semantic network, that password must be en-

tered in the Password free text field, which is located between the New semantic network

and License fields. If no password has been assigned, the free text field must remain empty.

2.3.4 License

A semantic network must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can work with it. You can use the ...

button to access the file system of the operating system in order to load a license key (file

name: [License name].key).

2.3.5 User name

The name of the first user registered in the semantic network is specified in the User name

free text field. The type and quantity of permitted characters is not restricted.The Adminis-

trator default setting is simply a suggestion. This field must not remain empty.

i-views 5.3

373/534

The name can be changed later on in the Admin tool or the Knowledge Builder. The user

created in this way automatically has administrator rights.

2.3.6 Password (user)

In the Password free text field, you can enter a password for the first user registered in the

semantic network. This password will be required later on when this user attempts to log in

to the Knowledge Builder or the Admin tool for the semantic network.

2.3.7 Ok and abort

The OK button generates the semantic network, factoring in the data entered. The Cancel

button cancels the process. In both cases, the system returns to the start screen.

2.4 Server administration

The overall network administration allows the administration of all semantic networks of a

mediator, or the local subfolder volumes respectively. It can be reached via the Administrate

button on the start screen. A corresponding entry in the server field of the start screen is

necessary for this. Any entries in the semantic network of the start screen are ignored.

If the semantic networks to be administrated are addressed using a mediator, the correct

mediator password must also be specified in a separate window.

The overall network administration window is comprised of a network overview in the

form of a table, amessage field and amenu line.

i-views 5.3

374/534

2.4.1 Network overview

The network overview in the form of a table provides details about

• the name (volume)
• the number of users currently active (clients),
• the date and time of the last backup (last backup) and
• the last status message (status) of the respective network.

The individual columns can be sorted by clicking on the head of the column.

The data are only updated when triggering operations, and are therefore not always up-to-

date. A manual update can be forced at any time using the menu item Server –> Update.

2.4.2 Message field

The Message field outputs all status reports for all networks. Status reports are created

when activities are triggered in the Admin tool. They are lost when the Admin tool is closed.

To prevent this, they can be exported via the menu option File –> Administration log. The
Message field can be edited, but changes are ignored during export.

2.4.3 Menu line

Themenu line consists of the following menu tabs:

2.4.3.1 File

Save administration log saves all entries in the message window in a text file (default file

name: admin.log). You can freely choose the name and storage location in a saving dialog.

This operation requires the Admin tool to be connected to a mediator.

Log off closes server administration and opens the log-in window again.

Exit closes server administration

2.4.3.2 Server

Update reloads the data collected in the network overview in the whole network admin-

istration window.

Re-import ini file makes the server import its ini file again. Here, not all options can be

updated during operation. The server outputs a message about updated options.

Download log generates a copy of the mediator log file usually stored in the folder of the

connected mediator (default file name: mediator.log). You can freely choose the name and

storage location of the file in a saving dialog. The mediator log file keeps a log of all the

mediator s activities from its first commissioning.

Server connections shows the numbers and IP addresses of all software components (ex-

cept blob service) currently registered in semantic networks via the mediator in themessage

field and groups them according to semantic networks. The number is generated sequen-

tially by the mediator and re-assigned whenever a new software component registers.

i-views 5.3

375/534

2.4.3.3 Transfer

Download volume creates a copy of the semantic network selected in the network overview

and saves it locally in the volumes subfolder that is located relative to the position of the Ad-

min tool. A new name can be assigned to this copy in a separately appearing free text field.

Copy volume creates a copy of the semantic network selected in the network overview and

saves it in the same folder as the original network. A new namemust be assigned to this copy

in a separately appearing free text field.

Upload volume creates a copy of a selected local semantic network and saves it in the vol-

umes subfolder in the location relative to the connected mediator. A new name can be as-

signed to this copy in a separately appearing free text field. The local semantic network,

which must be stored in the volumes subfolder that is relative to the position of the Admin

tool, is selected in a separate selection window.

Replace volume creates a copy of the selected local semantic network and uses it to over-

write the semantic network selected in the network overview. In the process, the copy is

given the name of the semantic network it has replaced. The local semantic network, which

must be stored in the volumes subfolder that is relative to the position of the Admin tool, is

selected in a separate selection window.

As a result of the copy processes initiated by transfer operations, the block allocation of the

clusters and blobs within the semantic network copies is redefined, and their space con-

sumption is optimized in the process. The resulting compression effect is identical to the one

achieved by the operationManage -> Compress volume.

With the exception of the Copy volume operation, all these operations require the Admin

tool to be connected to a mediator.

2.4.3.4 Administrate

Open Admin tool logs on to the selected volume with the Admin tool. No authentication in

the volume is required - mediator authentication is sufficient.

This makes it possible to access the user management of the volume if the administrator

password has been lost.

Create backup creates a backup of the semantic network selected in the network overview

and saves it in the backup folder, which lies in a parallel position relative to the position of this

semantic network. There a separate subfolder is created for each backup; its name contains

the time, precise to the second, at which this copy was created.Every backup is a full copy of

the original network.

Before the backup is created, a separate window asks whether the user wants to wait until

the copy process is complete. If applicable, further use of the Admin tool is blocked until

this time. Otherwise the copy process starts in the background, and there is no message

regarding the process or completion of the copy process.

Restore backup creates a copy of a selected backup and saves it in the same folder as the

semantic networks shown in the network overview. A new name must be assigned to this

copy in a separately appearing free text field. To select the backup, which must be stored

in a subfolder of the backup folder, which in turn is parallel to the position of the semantic

networks displayed in the network overview, two separate selection windows must be nav-

igated: in the first, the semantic network must be selected; in the second, the version must

be selected from a list sorted by creation date.

i-views 5.3

376/534

Delete backup deletes a selected backup. To select this backup, which must be stored in

a subfolder of the backup folder, which in turn is parallel to the position of the semantic

networks displayed in the network overview, two separate selection windows must be nav-

igated: in the first, the semantic network must be selected; in the second, the version must

be selected from a list sorted by creation date.

The block assignment of clusters and blobs within the original semantic network is not mod-

ified when a semantic network copy is created. The copy process initiated by the backup

operations therefore creates no compression effect.

Delete volume deletes the semantic network selected in the network overview.

Compress volume reduces the amount of space required by the semantic network selected

in the network overview. This is done by removing unused interior blocks. The copying

processes for clusters and blobs first move all unused blocks to the file end and then release

them in the file system of the operating system.

Update volume storage updates the version of the block file system of the semantic net-

work selected in the network overview. If the semantic network is addressed via amediator,

the version it contains is used; otherwise, the version supplied in the Admin tool is used. The

update makes it possible to save index structures more quickly. It is possible for semantic

networks whose i-views core component is older than 4.2.

2.4.3.5 Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-

ing to a programming terminology reading) from the semantic network and thereby mini-

mizes the memory usage of the semantic network. Use of the garbage collection requires

that the semantic network that is to be cleaned up is activated via a mediator.

Start launches a new garbage collection for the semantic network selected in the network

overview or continues a paused garbage collection. No confirmation is sent when the pro-

cess is completed. You can determine its progress via the Statusmenu option.

Pause interrupts the execution of the active garbage collection for the semantic network

selected in the network overview.

Stop terminates the execution of the active garbage collection for the semantic network se-

lected in the network overview.

Status writes the current status of the garbage collection for the semantic network selected

in the network overview to the status column of the network overview and to the mes-

sage field. If garbage collection is active, feedback on its progress is provided in percent.

2.5 Individual network administration

Individual network administration allows you to manage an individual semantic network. It

can be reached via the Start button on the start screen. This requires the corresponding

entries in the fields Server, Semantic network, User and Password of the start screen.

2.5.1 User authentication

To access the network administration window the user needs to log on with administrator

rights.

If you no longer have access to the semantic network, you can access the semantic network

through authentication on the server by logging on to the server administration.

i-views 5.3

377/534

2.5.2 Individual network administration window

The network administration window has a menu list with a multilevel structure on the left,

and an operation window on the right. The content of the operation window depends on the

menu option selected in the menu list.

The Back button returns you to the start window.

The Exit button closes the Admin tool.

If the semantic network to be administrated is addressed without a mediator, other users

cannot access the semantic network via the Knowledge Builder or another instance of the

Admin tool for as long as the network administration window is open.

i-views 5.3

378/534

2.5.2.1 Manage the data

Create backup creates a backup of the semantic network and saves it (on the server) in

the backup folder, which lies in a parallel position relative to the position of this semantic

network. There a separate subfolder is created for each backup; its name contains the time,

precise to the second, at which this copy was created.Every backup is a full copy of the original

network.

Before the backup is created, a separate window asks whether the user wants to wait until

the copy process is complete. If applicable, further use of the Admin tool is blocked until

this time. Otherwise the copy process starts in the background, and there is no message

regarding the process or completion of the copy process.

Restore backup replaces the current semantic network with a backup (afterwards you are

logged off automatically). The backup is selected according to the time of the relevant

backup.

Delete backup deletes an individual backup of this semantic network.

The block assignment of clusters and blobs within the original semantic network is not mod-

ified when a semantic network copy is created. The copy process initiated by the backup

operations therefore creates no compression effect.

Download creates a copy of the semantic network and saves it locally in the volumes sub-

folder that is located relative to the position of the Admin tool. A new name can be assigned

i-views 5.3

379/534

to this copy in a separately appearing free text field.

Upload volume transfers a locally stored network and replaces the current semantic net-

work with this network (afterwards you are logged off automatically)

2.5.2.2 Information

2.5.2.2.1 Jobclient

In order to relieve the workload on the Knowledge Builder for specific, processor-intensive

processes such as indexing, and querying semantic networks and executing scripts, some

of these processes can be optionally performed by Job-Clients while others are exclusively

performed as jobs by Job-Clients (a software service). To do so, the user interface of the

Knowledge Builder or a script must be used to trigger a job, or the conditions for triggering

it must be defined. Moreover, at least one Job-Client must be configured and started which

can perform jobs of this job type (job pool). The Admin tool largely functions as an observer

in this case. Jobs not completed appear in the Knowledge Builder under the entry Tasks in

the Technology category. In order to use the Admin tool to manage Job-Clients, the Admin

tool must be connected to a mediator.

The Job-Clients overview table shows the following for each job-client that is currently run-

ning:

• its name in the format [Job-Client-Name]@[Mediator-Name] (name),
• its job-client number (ID),

i-views 5.3

380/534

• its IP address (IP),
• the name of the mediator connected to it (server),
• the process number assigned by the operating system (process),
• the job types assigned to it (pool),
• its work status (status) and
• the number of jobs it has completed (completed).

The Job-Client number is generated sequentially by the mediator and a new number is as-

signed with each new log-in. The Job-Client name and the job types assigned to the Job-Client

are defined in the initialization file for the respective Job-Client (default file name: jobclient.ini)

under the key name or the key jobPools respectively. Each job type of a Job-Client is shown

in a row of its own in the Job-Client overview, so that a Job-Client regularly takes up several

rows.

The individual columns of the Job-Clients overview can be sorted by clicking on the head of

the column. Right-clicking a row also opens a context menu:

• Display information displays all data listed in the selected row, with the exception of
the job type and the completed number of jobs, in a new window. Added are

– the date and time of the last time the Job-Client was started (startUpTime),

– the maximum working memory capacity available for use by it in bytes (max Mem-

ory),

– the name of its log file (logFileName) and

– its specific name, under which it can be forced to shut down (a concatenation of

the string “jobclient” and the Job-Client number) (shutDownString).

• The data there can be copied to the clipboard of the operating system (Copy to clip-
board button) or be exported to any location as a text file that can be given any name

using a saving dialog (Save button).

• The operation triggered using the menu item Display information can, alternatively,
be performed by double-clicking a row in the Job-Clients overview.

• Remove Job-Client ends the Job-Client selected in the Job-Clients overview.
• Remove all Job-Clients ends all Job-Clients listed in the Job-Clients overview.

The job pools overview in the form of a table lists all job types that are assigned to at least

one Job-Client in the Job-Clients overview. For each job type,

• its name (name),
• its technical name used in the Job-Client s initialization file (JobPool),
• the number of uncompleted jobs of this job type (ToDo),
• the number of failed jobs of this job type (failed) and
• the number of Job-Clients available to it (Job-Clients)

are named.

The individual columns of the job pools overview can be sorted by clicking on the head of

the column. Right-clicking a Job-Client also opens a context menu:

• Empty job pool deletes all uncompleted and failed jobs of the job type selected in the

i-views 5.3

381/534

job pools overview. This operation is only possible when no Job-Client is running.

• Configure error messages to ignore allows specific error messages to be blocked
when executing jobs of the job type selected in the job pools overview. If an error

message is blocked this way, the job related to the error is not factored in when de-

termining the number of failed jobs in the job pools overview. This operation is only

possible when there are already jobs of the job type selected in the job pools overview

waiting to be processed, or that were already processed.

• The error messages to be blocked are administrated in a separate window:
– All error messages to be blocked are listed in the alphabetically sorted error mes-

sage list. An error message is blocked when its output text matches a text in the

error message list.

– + allows input of an error message to be blocked using a separate window. The

error message appears in the error message list.

– ... allows the error message selected in the error message list to be changed.

– - deletes the error message selected in the error message list.

2.5.2.2.2 Performance

Client

Record client performance data starts and ends the collection of diverse key performance

indicators that are coupled to activities by the software components connected to the seman-

i-views 5.3

382/534

tic network. These key performance indicators can be used for the performance analysis.

Interval sets the required time period in seconds until a software component sends another

data packet with key performance indicators to the Admin tool. It cannot be changed after

recording starts. The preset is 10 seconds.

The key performance indicators are output in nested list items in the key performance indi-

cator overview. Clicking on the triangle symbols to the right of the categories allows listed

subitems to be expanded and collapsed. Alternatively, this can be implemented using a con-

text menu, which can be accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.
• Expand fully opens all directly and indirectly listed subitems in the list item selected.
• Contract fully collapses all listed subitems in the list item selected.

Double-clicking on a list item allows all key performance indicators stored below it to be

shown at a glance in a separate window. There, they can be copied to the clipboard of the

operating system (Copy to clipboard button) or be exported to any location as a text file that

can be given any name using a saving dialog (Save button).

Update refreshes the key performance indicators shown in the key performance indicator

overview.

Reset deletes the key performance indicators shown in the key performance indicator

overview.

Copy to clipboard copies the key performance indicators shown in the key performance

indicator overview to the clipboard of the operating system.

Server

i-views 5.3

383/534

Check performance starts a test process that evaluates the performance of the mediator

connected. This sends four requests to the mediator, and the responses sent to the Admin

tool are evaluated. Measurements are taken of

• the times until a small file is send back (roundtrip: Blob) and
• the result of an index search request (roundtrip: RPC) and
• the average transmission rate when sending several 1MB files (throughput: Blob (1.0 MB))
and

• the average transmission rate when sending several 100 KB files (throughput: Blob
(100.0 KB)).

The test results are written to the results list provided. The individual columns of the table

can be sorted by clicking on the head of the column.

Copy to clipboard copies the test results in the results list to the clipboard of the operating

system as plain text.

2.5.2.2.3 Version information

This menu item can be used to retrieve version-specific information for the semantic network

and Admin tool.

i-views 5.3

384/534

Specifically, you can retrieve:

• The version number of the Admin tool (Build),
• The publication status of the Admin tool (Release),
• The version number of the semantic network (the network version), the name of the
semantic network and the mediator used (volume information),

• The maximum system memory in bytes that can be used by the Admin tool (Memory
limit),

• The version number and the digital finger print of the execution environment used by
the Admin tool (VM version),

• The language setting active in the operating system (Locale),
• The fonts provided in the Admin tool (Fonts),
• The semantic network components installed in the semantic network and their version
numbers (software components) and

• The small talk packages including version number used in the Admin tool (Packages).

The information is output in an invisible text field, which has a context menu that can be

activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

i-views 5.3

385/534

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

The Copy button copies all information to the clipboard of the operating system.

The Copy RSA key button copies the unique key for each compiled Admin tool to the clip-

board of the operating system. This key can be entered into the initialization file of amediator

(default file name: mediator.ini) and thus restricts this mediator s access via an Admin tool to

Admin tools with this specific key.

2.5.2.3 System configuration

2.5.2.3.1 User

The user administration compares the ones in the Knowledge Builder, with the exception

that no links between users and objects of the user-generated subnet can be processed.

The user overview in the form of a table shows, for every user registered in the semantic

network,

• the user name (user),

i-views 5.3

386/534

• the object of the user-generated subnet the user is linked to (linked to),
• which status the user currently has (status),
• on which date and at which time the user logged into the semantic network using the
Knowledge Builder(log-in date) if the user is still logged in, and

• which method was used to encrypt the password (password type).

The individual columns of the table can be sorted by clicking on the head of the column.

The status provides information about whether a user has administrator rights, whether a

user with administrator rights does not have a password and whether a user is logged into

the semantic network using the Knowledge Builder. Names of users with administrator rights

without a password are marked in red.

Create creates a new user. User name (obligatory) and password (optional) are defined in a

separate window.The type and quantity of permitted characters is not restricted.

Change password changes the password of the user selected in the user overview. The

new password is entered two times in two windows that appear consecutively.

Log out logs out the user selected in the user overview from the semantic network following

a security confirmation. To ensure this operation has its effect, this user must be currently

logged into the semantic network using the Knowledge Builder.

Delete deletes the user selected in the user overview following a security confirmation. At

least one user with administrator rights must remain.

Rename allows a new user name to be assigned for the user selected in the user overview

by means of a free text field in a separate window. If the free text field remains blank, no

renaming occurs.

Notification uses a free text field in a separate window to send a message to the user se-

lected in the user overview. The message is buffered in the semantic network and appears

to the user addressed in a separate window in the Knowledge Builder as soon as the user

uses it to log into the semantic network. The user cannot reply to this message.

Administrator assigns the administrator rights to the user selected in the user overview ,

or takes them away. A user must have a password to obtain administrator rights. Once the

user has administrator rights, deleting the password is then possible. At least one user must

have administrator rights.

Operations opens a new window in which the user selected in the user overview can, from

a list of operations, these being

• Create backup,
• Delete backup,
• Restore backup,
• Garbage collection,
• Copy,
• Download log,
• Download volume,
• Upload volume,
• Delete volume,

select those operations that this user may execute within the scope of individual network

i-views 5.3

387/534

administration in future, without input of the mediator password. To confirm the selection,

the correct mediator password must be entered in the free text field Server password for

operations.

The Operations operation can only be selected by a user with administrator rights. Its use

also requires that a mediator password has been set.

The field Administrators specifies the number of all users with administrator rights regis-

tered in the semantic network.

The field Users specifies the number of all users without administrator rights registered in

the semantic network.

The field Active specifies the number of all users currently logged into the semantic network

using the Knowledge Builder.

2.5.2.3.2 Blob storage

Attribute values of attributes with the attribute value type file (called blobs) can also be stored

in a blob store outside the semantic network. The advantage of this is that they can be

managed independently of the semantic network and can thus be managed in a different

system environment. To store blobs in a blob store, the blob store must be set up and

connected to a configured blob service (a software service).

Create generates a new blob store. Using the name format [semantic network ID]+[blob store

ID], the blob store overview appears in the text field above it.

i-views 5.3

388/534

Delete deletes the blob store selected in the blob store overview.

The numeric field Deletable files shows the number of blobs no longer required in the blob

store overview of the selected blob store. Blobs are no longer required when their respec-

tive attributes have been deleted from the semantic network or if the connection between

blob service and blob store has been removed using the Admin tool.

Delete deletes all blobs that are no longer required in the blob store selected in the blob

store overview.

You can identify a blob service in the free text field URLs. This is done by entering the net-

work address of the initialization file of the corresponding blob service (default file name:

blobservice.ini) stored under the interfaces key including the prefix http. If the blob service is

supposed to be addressed via several network addresses, these can be entered in comma-

separated form.

Alternatively, the blob service integrated in the mediator can also be addressed. In the initial-

ization file of the mediator (default file name: mediator.ini), the value truemust be set under

the key startBlobService and the free text field URLs must be left blank. The internal check-

box to the right of the free text field URLs indicates whether the integrated blob service or

an external blob service is addressed. The blob service integrated into the mediator is not

configured via the mediator initialization file but via a separate initialization file (default file

name: blobservice.ini).

Add connects the blob store selected in the blob store overview to the blob service identi-

fied via the free text field URLs. To do so, the blob service must be active. If linking is suc-

cessful, the blob store using the name format [semantic network ID]+[blob store ID] appears in

the text field below, the overview of registered blob stores.

Update updates the overview of registered blob stores. To do this, a blob store must be

selected in the blob store overview.

Remove interrupts the connection of the blob store selected in the overview of registered

blob stores to the blob service and removes the blob store from the overview. In doing so,

all blobs stored in the blob store irrevocably lose their internal references to the respective

attributes in the semantic network and can no longer be retrieved in the semantic network.

To ensure removal is successful, the blob store selected in the overview of registered blob

storesmust also be selected in the complete blob store overview.

All blobs stored via a blob service are stored in a subfolder called blobs that is located relative

to the position of the blob service. The internal assignment of every blob to its blob store and

its semantic network is established using an SQLite database.

2.5.2.3.3 Components

Semantic networks consist of semantic network components. In addition to the basic func-

tions, they basically provide the semantic network with additional interfaces and user inter-

faces for user data that can be displayed in the browser (web front-ends).

Publication status components (Release States), of which there are three variants (Preview,

Release Candidate, Release) are a special subgroup of semantic network components. If such

a component is installed in the semantic network, only software components with suitable

publication statuses are able to access the semantic network.

i-views 5.3

389/534

The Software list provides an alphabetical list of all semantic network components supplied

with the Admin tool and their respective version numbers. If they need a separate license,

there is also a note as to whether this is included in the current license of the semantic

network. Publication status components do not have a version number.

If you right-click on a semantic network component, a context menu appears. Themenu item

Add standard component available there has the same functions as the button of the same

name.

Add standard component installs the semantic network component selected in the soft-

ware list in the semantic network. A separate window informs of the installation status.

Some semantic network components require other semantic network components installed

in the semantic network. Most installed semantic network components (except for publica-

tion status components) appear as separate entries in the Technical category in Knowledge

Builder. Only one publication status component can be installed at a time.

Write license template generates a template whose content is to be completed for the com-

ponent license configuration file to be used to generate the license key, and stores it at a loca-

tion of your choice via a saving dialog (default file name: [semantic network].componentLicenseTemplate.ini).

Irrespective of the configuration of the semantic network just administered, configuration

placeholders are specified for the components KEM, i-views core and Knowledge Builder. The

version number of the respective semantic network component supplied in the Admin tool

is pre-entered in every configuration placeholder.

The semantic network list alphabetically lists all semantic network components installed in

the semantic network with their respective version numbers. An installed semantic network

component for which a newer version is provided in the Admin tool is highlighted in red. The

i-views 5.3

390/534

optional Knowledge Builder component is pre-installed in a new semantic network by default.

The text fields Name and Version show the name and the three-digit version number of the

installed semantic network component selected in the semantic network list.

Add generic component adds a generic model component or a generic software compo-

nent to the semantic network list. The component type is selected in a separate window.

Generic components allow bundling of project-specifically created semantic network exten-

sions and simplify their installation (removal) and version monitoring via the Admin tool. The

name and version number of a generic semantic network component installed in the seman-

tic network can be freely assigned in the corresponding text fields.

Update (the name changes to Renew, if it can be deactivated) updates the installed semantic

network component selected in the semantic network to the version supplied in the Admin

tool. If the language of the currently running Admin tool differs from the language of the Ad-

min tool with which the semantic network component was originally installed in the semantic

network, identifiers of all elements and element types of this semantic network component

are also updated. Depending on the semantic network component, the update of the old

identifiers either adds new identifiers in the language of the Admin tool that is currently run-

ning (the respective applicable language version is then displayed depending on the language

setting in Knowledge Builder) or replaces the old identifiers with new identifiers.

Remove removes the installed semantic network component selected in the semantic net-

work list. If semantic network components in the installed status in Knowledge Builder have

an entry in the Technical category, they leave their own subnet after they have been removed,

which has to be removed manually. Semantic network components can only be removed if

no other semantic network components that depend on the semantic network component

to be removed are installed. The two semantic network components i-views Core and View

Configuration offer basic functions and cannot be removed.

Boost libraries 1.18.0

This configuration menu appears only if the boost libraries semantic network component is

installed.

With the exception of the blob service and the mediator, all the software components can

interpret JavaScript. In order to improve the scope and speed of interpretation of reg-

ular expressions embedded in JavaScript, it is possible to transfer their interpretation to

the Boost.Regex library. Under Windows and Linux, the library (file name in Windows:

boost_regex.dll, file name in Linux: libboost_regex.so) must be in the same directory as the

transferred software component. In Mac OS the library is integrated in the file of the trans-

ferring software component.

The boost libraries semantic network component makes it possible to ensure that access to

the Boost.Regex library is possible.

i-views 5.3

391/534

If the Boost libraries required for all incl. Admins option is selected, all software compo-

nents apart from the Admin tool can only access the semantic network if they can access the

Boost.Regex library.

If the Boost libraries required for all apart from Admins option is selected, all software

components apart from the Admin tool can only access the semantic network if they can

access the Boost.Regex library. The only ones excepted from this access lock are users with

administrator rights who access the semantic network via the Knowledge Builder.

If the Boost libraries not required, logging only option is selected, each software compo-

nent enters a corresponding warning in its respective log file, if available, if it cannot access

the Boost.Regex library during start-up. Access to the semantic network remains possible

regardless.

Knowledge portal

This configuration menu appears only if the Knowledge portal semantic network component

is installed.

The Knowledge portal semantic network component enables a semantic network to operate a

knowledge portal (of a front-end that can be displayed via browser). The configuration of the

display and control elements of this front-end is performed in the Knowledge Builder on the

relevant element types via an editor specially provided by the semantic network component

for that purpose and with the help of the XML markup language. To make maintenance

easier, and for the logical regulation of XML documents, it is possible to install schemas in

the DTD format, on the basis of which the XML documents can be validated.

In the front-end, a distinction is made between an edit view and a presentation view, each of

i-views 5.3

392/534

which have exclusive display and control elements. Separate DTD schemas are maintained

for both views. Each of the control elements explained below exists for every view.

The Select button can be used to access the file system of the operating system in order to

load a DTD schema file for the relevant view and install it in the semantic network. The default

file name for edit view DTDs is editConfig.dtd, and the default file name for presentation view

DTDs is viewConfig.dtd.

Reset deletes the DTD schema installed for the relevant view from the semantic network.

Display shows the DTD schema installed for the relevant view in a separate window. There

it can be copied to the clipboard of the operating system (Copy to clipboard button) or

exported to any location via a saving dialog as a text file with a name of your choice (Save

button). The window also features a context menu of its own, which can be opened by right-

clicking:

• Search allows a string to be input in a separate window, and next appears in accordance
with the read direction in relation to the position of the cursor set by clicking the mouse.

The query is case-sensitive.

• Mark all marks the entire text. Alternatively, the mouse pointer can be used to mark
any text segment.

• Copy copies the selected text area to the clipboard of the operating system.

Conversion service

This configuration menu appears only if the print component semantic network component

i-views 5.3

393/534

is installed.

The print component allows selected semantic elements to be integrated into an electronic

document that can be saved. To do so, a document template in the formats ODT, DOCX or

RTF must be imported into the semantic network using the Knowledge Builder and be linked

to the semantic element to be integrated into a document. This layout of this document

template is created in an external Office program. You can use KScript and KPath to define

placeholders to be filled out by elements of the semantic network.

The conversion service is a function of the print component. If the context menu item Print is

used to generate a document in the Knowledge Builder, then along with the original format of

the imported document template, diverse other output formats can be selected into which

the document template can be converted. To ensure this conversion functions, a suitably

configured bridge (a software service) must be started and be linked to the print component,

and a version of LibreOffice or OpenOffice must be installed.

The bridge is suitably configured using its initialization file (default file name: bridge.ini). The

value jodServicemust be added in the section [KHTTPRestBridge] under the key services. More-

over, a new section [file-format-conversion]must be created and be stored there using the key

value pair sofficePath=“[File path]/soffice.exe“ with a correct path name for the location of the

LibreOffice or OpenOffice start file.

The bridge is linked to the print component using the free text fieldURL. The network address

of the bridge is entered there in the format http://[Bridge-IP-Number]:[Bridge-Port]/jodService/jodconverter/service.

The path section /jodService/jodconverter/service has historical reasons and activates the pre-

defined jodService.

i-views 5.3

394/534

Check starts a test process. The test process uses REST to send a test document to the bridge

defined using the network address and expects that a properly converted test document is

returned. The test result is output in a separate window.

The free text field Timeout is used to define how many seconds to wait for the return of the

converted test document before generating an error message. The preset is 20 seconds.

2.5.2.3.4 Licence

A semantic network must have a valid license so that Knowledge Builder and other software

components (with the exception of the Admin tool) can work with it.

The Status field specifies whether the license is currently valid or invalid. If it is invalid, a

reason is also stated. Reasons for an invalid license can be exceedance of the validity date or

maximum number of allowed registered users.

The Customer field describes the client for whom the license was issued. In addition to the

name, address and department may also be listed.

The Components field displays the content of the component license configuration file [se-

mantic network].componentLicenseTemplate.ini used to generate the license key. This specifies

• The licensed versions of individual components (version),
• The maximum number of registered users with administrator rights (maxAdminUsers)
and

• The maximum number of registered users without administrator rights (maxUsers)

i-views 5.3

395/534

The Partner field contains the name of the partner via which the license is forwarded.

The Valid to field contains the date on which the license expires.

The Valid for networks field contains a list of names of all networks to which the license is

restricted. This can be entered using a regular expression.

The Valid for servers field contains a list of all IP addresses and port numbers that can be

used to reach a mediator connected to the semantic network.

The fields Partner, Valid to, Valid for networks and Valid for servers can be left blank.

All fields have a context menu that can be activated by right-clicking.

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Add / Renew makes it possible to load a new license key (file name: [License name].key) via

the file system of the operating system.

2.5.2.4 Maintenance

2.5.2.4.1 Client caches

To improve performance, software components accessing the semantic network often fall

back on their own buffers (cache). These buffer the schema and configuration data of the

semantic network so they can access them more quickly if they need to use them later on.

i-views 5.3

396/534

Reset client caches deletes these buffered data. This makes sense if they are obsolete due

to changes to the schema or the configuration. This operation requires that the semantic

network is activated via a mediator.

2.5.2.4.2 Garbage Collection

Garbage collection is a procedure that deletes objects that are no longer referenced (accord-

ing to a programming terminology reading) from the semantic network and thereby mini-

mizes the memory usage of the semantic network. Use of the garbage collection requires

that the semantic network that is to be cleaned up is activated via a mediator.

i-views 5.3

397/534

Start launches a new garbage collection for the semantic network or continues a paused

garbage collection. No confirmation is sent when the process is completed. You can deter-

mine its progress via the Refreshmenu option.

Pause interrupts the execution of the active garbage collection for the semantic network.

Stop cancels the execution of the active garbage collection for the semantic network.

Refresh writes the current state of the garbage collection for the semantic network to the

neighboring text field. If garbage collection is active, feedback on its progress is provided in

percent.

i-views 5.3

398/534

2.5.2.4.3 Maintenance

Perform maintenance now checks

• the license (license)
• indexes (indexes),
• registered objects (the registry),
• rights (access rights),
• triggers (trigger) and
• installed semantic network components (active components)

for faults. Over the course of the check, the statistics for property frequencies per object

(metrics) that can be viewed using the Knowledge Builder are updated.

Any faults found are collected in a fault overview in the form of a table. For each fault,

• a short description, if relevant including the cluster ID and the frame ID (format cluster
ID/frame ID) of the faulty object (in the terminology interpreted by the program) (notifi-

cation),

• the superordinate semantic element affected by the fault (object),
• its type (type),
• the severity of the fault (priority) and

i-views 5.3

399/534

• the first point in time at which it was identified in the form of a date (date)

are output. The individual columns of the table can be sorted by clicking on the head of the

column.

Details displays all data listed in the fault overview of the selected fault in a new window.

The time of the first point in time at which it was identified and date and time of the last time

it was identified are added. The data there can be copied to the clipboard of the operating

system (Copy to clipboard button) or be exported to any location as a text file that can be

given any name using a saving dialog (Save button). The operation triggered using the De-

tails button can, alternatively, be performed by double-clicking a fault in the fault overview.

Remove deletes the fault selected in the fault overview. This does not effect the first point

in time at which the fault was identified.

2.5.2.4.4 Maintenance information

This menu option can be used to call up a chronologically orderedmaintenance history of

all essential administration processes in the semantic network since its creation. It contains

backup and transfer processes, component installations and updates, and the execution of

maintenance scripts and garbage collection, each with the time and date.

Themaintenance history has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

i-views 5.3

400/534

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Copy to clipboard copies the entiremaintenance history to the clipboard of the operating

system.

Add comment allows a note to be entered via a free text field in a separate window. It is given

a timestamp and added to the maintenance history. Notes added to the maintenance

history cannot be deleted.

2.5.2.4.5 Maintenance message

The Set button activates a maintenance block that prevents all users from accessing the

semantic network via the Knowledge Builder. To do this, a maintenance notification must be

written.

The maintenance notification is written in the free text fieldMaintenance notification. It is

displayed as an error message shown to all users who try to access the semantic network via

the Knowledge Builder when the maintenance block is active.

The Reset button removes the previously set maintenance block and deletes the mainte-

i-views 5.3

401/534

nance notification.

2.5.2.4.6 Maintenance script

Select maintenance script can be used to access the file system of the operating system in

order to load a maintenance script (file name: [Maintenance script].kss). Maintenance scripts

are produced on a case-specific basis in the programming language Smalltalk and permit

operations that cannot be implemented using the predefined functions of the Admin tool or

using the KEM or JS interfaces.

If the maintenance script has a description, this description is output in an invisible text field

under the Select maintenance script button after the maintenance script has been loaded.

This text field has a context menu that can be activated by right-clicking:

• Select All selects all the text. Alternatively, the mouse pointer can be used to mark any
text segment.

• Copy copies the selected text area to the clipboard of the operating system.
• Find Again searches for the selected text area and finds its next occurrence in according
to the read direction.

• Find allows a string to be input in a separate window, and its next occurrence in accor-
dance with the read direction in relation to the position of the cursor set by clicking the

mouse. The query is case-sensitive.

Execute maintenance script starts the maintenance script. A separate window tells you

i-views 5.3

402/534

when the maintenance script was executed and, depending on the script, offers additional

execution information or permits script-specific execution options.

2.5.2.5 XML import/ -export

2.5.2.5.1 Schema and configuration

Along with subnets generated by the user and imported using components (schemas with

useful data), a semantic network, by extension, is also comprised of diverse other modules

(configurations) that extend, configure or work with this subnet in functional terms. Schemas

and configurations are referred to jointly as configurations within the context of this menu

item.

Numerous configurations of a semantic network can be systematically exported and im-

ported.

The configuration overview is a list providing an overview of all configuration types in a

semantic network that can, in principle, be transferred by means of the operations described

in the following. Able to be transferred by principle are

• individual, registered mappings of data sources (mappings of data sources)
• individual search fields configured by administrators and are user-defined (queries)
• individual data source access settings for use for mappings of data sources (data
sources)

• the print configuration (print configuration)

i-views 5.3

403/534

• the set of all modules defined within the category Determination of view configuration
(view configuration determination)

• individual index filters (index filter)
• individual index configurations (indexes)
• the LDAP authentication (LDAP)
• the license for the semantic network (license)
• individual, registered collections of semantic objects (collection of semantic elements)
• individual, registered scripts (scripts)
• the working folder (organizing folder)
• the set of all modules defined within the triggers category (Triggers)
• individual subnets (semantic network) and
• the set of all modules defined within the rights category (access rights).

The configuration overview also manages all configurations specifically intended for ex-

port. Configurations intended for export appear as an expandable list of subitems of their

respective configuration types. If these configurations require other configurations for suc-

cessful export, these other configurations are, in turn, listed in the form of an expandable list

of subitems of the respective configurations. Configuration types without their own config-

urations are marked in italics, configuration types with their own configurations are marked

in bold and show the number of configurations assigned to them in brackets. Configuration

und configurations of each configuration type are sorted in alphabetical order respectively.

Expanding and collapsing lists of subitems in the configuration overview is carried out by

clicking on the triangle symbols to the left of the listed items. Alternatively, this can be imple-

mented using a context menu, which can be accessed by right-clicking a list item:

• Expand opens all directly listed subitems in the list item selected.
• Expand fully opens all directly and indirectly listed subitems in the list item selected.
• Contract fully collapses all listed subitems in the list item selected.

Add adds a configuration of the configuration type selected there to the configuration

overview. If more than one configuration exists in the semantic network for the configura-

tion type selected, then a selection option follows in a separate window. Selection is carried

out there by either clicking individually on the respective configurations in a list, or collectively

by using the Select/deselect all button.

Remove either deletes all configurations of the configuration type selected in the configu-

ration overview or the configuration selected in the configuration overview.

Add all adds all configurations existing in the semantic network to the configuration

overview and distributes them among the respective suitable configuration types.

The ... buttons can be used to access the file system of the operating system in order to load

a maintenance script (file name: [Maintenance script].kss). Maintenance scripts are produced

on a case-specific basis in the programming language Smalltalk and permit operations that

cannot be implemented using the predefined functions of the Admin tool or using the KEM

or JS interfaces.

If a maintenance script loads, the file name of the maintenance script selected appears in

the text field positioned to the left of the respective button. If configurations are imported

afterwards, then the maintenance script is executed. If configurations are exported after-

i-views 5.3

404/534

wards, the maintenance script is also exported and only executed when these configurations

are imported. The exact time of execution of the maintenance script in relation to the import

process depends on which of the two ... buttons was used to load it. It is either before the

import process starts, or after the import process finishes.

Export exports the configuration selected in the configuration overview. An export as one

single archive file in the archive format tar or as individual files in a folder can be selected.

The export method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive
file (file name: [Semantic network].tar) or the folder respectively (no default name). The

archive file or the folder respectively is created in the same folder as the Admin tool. Al-

ternatively, Select can be used to open a saving dialog to define any name and location

used to save the archive file or the folder respectively.

Import imports configurations to the semantic network after confirming a prompt. An im-

port from one single archive file in the archive format tar or from individual files in a folder

can be selected. The import method is selected in a separate window:

• The free text fields File or Directory can be used to specify the name of the archive
file (file name: [Semantic network].tar) or the folder respectively (no default name). The

archive file or the folder respectively is searched for in the same folder as the Admin

tool. Alternatively, Select can be used to access the file system of the operating system

to select an archive file or a folder respectively from any location.

• If the archive file or the folder to be imported respectively is selected, an overview of the
configurations it contains appears in an additional window. This overview can be copied

to the clipboard of the operating system (Copy to clipboard button) or be exported to

any location as a text file that can be given any name using a saving dialog (Save button).

The Import button starts the import process. The window also features a context menu

of its own, which can be opened by right-clicking:

– Search allows a string to be input in a separate window, and next appears in accor-

dance with the read direction in relation to the position of the cursor set by clicking

the mouse. The query is case-sensitive.

– Mark all marks the entire text. Alternatively, the mouse pointer can be used to

mark any text segment.

– Copy copies the selected text area to the clipboard of the operating system.

Save saves the configurations currently selected in the configuration overview for this se-

mantic network as an XML file. A saving dialog is used to define a name and the location of

the XML file (default file name: instruction.xml).

Load accesses the file system of the operating system to load a previously saved selection of

configurations for this semantic network from an XML file (default file name: instruction.xml).

Update adds the attribute types equipped with the Boolean attribute value type

• XML: Export all objects
• XML: Export direct objects
• XML: Do not export type and all subtypes and
• XML: Do not export subtypes

to the knowledge network if they do not yet exist in it. These attribute types are required to

select which elements and element types found in this configuration should be exported or

i-views 5.3

405/534

not exported respectively in the event of exporting a configuration of the configuration type

semantic network. To do so, these attribute types are attached to suitable object types using

the Knowledge Builder and are given suitable attribute values.

If nothing else has been configured using these attribute values, then this applies for every

object type that the object type itself is exported, not, however, its objects. If an object or

object type is exported, all attributes and relations directly connected to it and their attribute

or relation types respectively are also exported.

3 View Configuration Mapper

3.1 Introduction

View configurations can be transported into a web front-end and be displayed here in a

straightforward way using the ViewConfiguration Mapper (VCM for short). To do so, the JSON

generated in the view configuration is transported to the front-end via the REST interface in

i-views and is translated into HTML there using mustache templates.

In addition, standard interactions such as content maintenance are supported directly, and

the option is provided to execute user-specific actions in the front-end that were defined in

the view configuration using VCM.

The ViewConfiguration Mapper is a single-page application that runs in the client s browser.

It uses ractive (ractive.js.org) for an interactive and reactive application that is based on mus-

tache templates. (mustache.github.io/) .

3.2 Configuration

The usual procedure involves activation of the ViewConfiguration Mapper components in the

semantic network and the creation of a modification project, into which vcm is integrated.

In order to modify the look & feel, making changes in CSS alone may be sufficient. vcm

supports LESS (lesscss.org/). The templates can also be changed or supplemented for more

complicated modifications.

Grunt (gruntjs.com/) is used as the TaskRunner, and as a PackageManager Bower (bower.io/).

More detailed information and a list of the Grunt tasks is available in the README.md in the

project.

i-views 5.3

406/534

3.2.1 View configurations for the View Configuration Mapper

The View Configuration mapper interprets all view configurations created in i-views. How-

ever, there are several differences between processing in the Knowledge Builder and in the

View Configuration Mapper, which this chapter will discuss.

3.2.1.1 Panel confoguration

If the web application is supposed to be based on a panel configuration, the application must

be linked to the panel configuration.

To do this, an object of the main window panel is appended to the application. All other

panel configurations can then be appended to this object. Additional panels (e.g. dialog

panels) are optional. However, if they are used in the web front-end, they must be connected

to the application in this way. It does not suffice to merely define it e.g. as a target window

of an action because it would not be taken into account for the display of the application

otherwise.

3.2.1.2 Apply in

In order to determine a suitable view configuration for a semantic element, it is necessary to

look to the type of the element and to the context in which the view configuration is to be

used. This context is determined via the “apply in” relation. If a view configuration is to be

used in vcm, it should therefore be ensured that the relation was sourced accordingly.

3.2.1.3 Style

To influence the display of a view, it is possible to use so-called “styles”. They can be used,

for example, to configure whether a heading is to be displayed, or whether data should be

highlighted in a specific way.

The setting for the styles for the display in the web front-end by means of the view configura-

tion mapper are available on the “View configuration mapper” tab. The prerequisite for this

is that a view configuration mapper component has been installed in the KB.

In total there are multiple setting options for the styles (see figure):

i-views 5.3

407/534

There are a number of Style elements that are already defined in i-views. The following sec-

tion explains what these elements are and how these style elements are created in the Knowl-

edge Builder so that they can then be linked to individual elements of the view configuration

of an application.

In the view configuration, you first have to select the element with which one or more style

elements are to be linked. Depending on the type of the view configuration element, various

tabs are available for configuring the styles (“Actions and styles” -> “Styles” or just “Styles”).

Once you have chosen this tab, you can either define a new style element or link and

existing style element . When defining a new style element it is first necessary to assign it

a configuration name. You can then configure it on the right side of the editor.

The following section describes the individual configuration options for style elements:

Name Attribute

type

Configuration type Description

class String CSS class Styling through specifi-

cation of a predefined

CSS class in the CSS of

the ViewConfiguration

Mapper or in the “view-

configmapper.config.GET”

script

i-views 5.3

408/534

class (script) Reference to

script

Definition of CSS styling in

the form of a script return

value

collapsed Boolean

dateFormat String

datetimepickerOp-

tions

Reference to

script

downloadRequest String

editCustomButtons Boolean

editStageToggle Boolean

extra Reference to

script

Can be used to create a

user-defined behavior for

an action with the help

of the script and render

mode. Example: A script

that returns URL attribute

values is usedwith the “ex-

ternal” renderMode and

with a parameter specifi-

cation in the “href” line

to define an external web

link for the action of a but-

ton.

extra String

extraDateFormats String

groupColumnGrid String Group The expected input is

a string of figures sep-

arated by a space or

comma. Each figure

defines the quantity of

columns if the maximum

is 12 columns.

hideFilters Boolean Hides the table query fil-

ters in the table header

hideLabel Boolean Hides the label of a view

configuration element (la-

bel on the tab of an alter-

native remains)

i-views 5.3

409/534

href String Hyperlink Link to a website or folder

path as per the HTML

standard. Alternatively,

you can enter a parame-

ter name in curly brackets

which is then equipped

with a URL under “extra”

by means of a script.

localAction Boolean Limits the effect of an ac-

tion to the current panel

numberFormat String

readOnly Boolean Properties The properties of the view

configuration element can

only be read in the appli-

cation, not edited. That is

why no “Edit button” is dis-

played.

renderMode Selection Property See the “RenderModes”

sub-chapter

renderMode String Property See the “RenderModes”

sub-chapter

style String Here you can define CSS

properties that are only

used for those views that

are linked to this style.

style Reference to

script

Here you can use a script

to define CSS properties

that are only used for

those views that are linked

to this style.

target String

tooltip String Context help Note that is displayed dur-

ing mouse hover

vcmDetailed Boolean

vcmMarkRowClick Boolean

vcmPluginCalen-

darOptions

Reference to

script

VCM plugin Default values that can be

defined by script, e.g. start

date when the calendar

view is called

vcmPluginChartDat-

aColumns

String VCM plugin

i-views 5.3

410/534

vcmPluginChart-

DataMode

String VCM plugin This is used if the data

of the underlying table is

to be read out either by

row (“rows”) or by column

(“columns”) for the chart

to be displayed; if not

specified, the default data

mode is “rows”

vcmPlugin-

ChartHeight

String VCM plugin Absolute height of a chart

in pixels (e.g.: “300px”)

vcmPluginChartLa-

belColumn

String VCM plugin

vcmPluginChartOp-

tions

Reference to

script

VCM plugin Script that can be used

to control the display of

components of the chart:

Display of keys, scaling of

axes etc.

vcmPluginChart-

Type

Selection VCM plugin Selection options for the

“chart” RenderMode (ap-

plicable for tables):

• bar
• doughnut
• line
• pie
• pole
• radar

vcmPlugin-

ChartWidth

String VCM plugin Absolute width of a chart

in pixels (e.g.: “380px”)

vcmStateContext Selection Selection options:

• global
• page
• none

vcmStateContext String

vcmTruncate String

Beachten Sie, dass es zu einzelnen View-Konfigurationselementen eigene Style-Möglichkeiten

gibt, die entsprechend als Unterkapitel an den jeweiligen View-Konfigurationselementen erk-

lärt werden. So ist zum Beispiel die Möglichkeit gegeben, bei Eigenschafts-Darstellungen die

Aufteilung eines Labels und seines Wertes anzupassen.

i-views 5.3

411/534

3.2.1.3.1 Definition of style attributes

You can define your own style attributes in addition to those predefined by the application.

You can create the attributes of the styles under View configuration -> Attribute types.

To ensure the style attribute is also written to the JSON output, an addition must be added to

the attribute in the schema. You get to the schema by clicking on “Schema” in the menu

of the attribute. In the schema, you then have to maintain the attribute “Property key” and

enter the name of the attribute there.

“Objects of style” must be entered in this “defined for” field. You add an entry by clicking on

the Plus icon (“Add” button). Once you have entered “Style” as the search term, a list appears

fromwhich you select the entry “Style” (view configuration). Following that, you have to select

the additional tab page in which the new style element is supposed to be displayed.

In the JSON output, the key and value pairs (StylePropertyKey -> Style property) are output as
an array under additionalConfig.

Example

Configuration of the type String for style value

Configuration of the type Additional string for style value

Configuration of the type Display banner attribute

Configuration of the object One style configuration of the type Style

i-views 5.3

412/534

JSON output:

"properties": [{
"values": [{ ... }],
"label": “First name",
"additionalConfig": {

"jsonKey1": ["jsonValue1"],
"jsonKey2": ["jsonValue2"],
“Display banner": ["true"]

},
"viewId": "ID34304_461524079",
"schema": { ... }

}

3.2.1.3.2 Render modes

RenderModes can be used to apply additional predefined style properties.

RenderModes are available in the styles in the view configuration on the “view configuration

mapper” tab, once via drop-down menu and additionally via input line. Here the freely se-

lectable value entered via the input line takes precedence, which means that it overwrites a

value that was selected via drop-down.

The following renderModes are available in the drop-down menu:

render-

Mode

Explanation Applica-

bility

bread-

crumb

Displays the hierarchy and path navigation Hierarchy

calendar Displays date information in a calendar view; the basis for this

is a table containing the attributes of the value type time, date,

date and time, flexible time or interval with the date and time

type.

Table

chart Displays the data from a table in a chart. Under vcmPlugin-

ChartType you can select the type of chart. Under vcmPlugin-

ChartOptions you can use a script to format the chart more

precisely, e.g. axis scaling, display of keys etc.

Table

download Link to file download Action

i-views 5.3

413/534

edit Subordinate properties can be edited Group

external Generates an external link in connection with href; can be

used, for example, in combination with icon and tooltip.

For dynamic links, an identifier in curly brackets can be used

in the href attribute. If the extra script provides a JavaScript

object with a value for the identifier, this is entered automati-

cally.

You can, for example, trigger a Google search for the name of

the current object in the following manner:

href: https://www.google.com/search?q={search}

extra script

function additionalPropertyValue(element, context) { return { search: element.name() }
}

Action

grid In combination with the groupColumnGrid property, the layout

can be divided according to a preconfigured grid with 12 units.

Depending on the quantity of elements, it is possible to de-

fine the relative distribution by specifying the available units.

Example: 5 3 4

Group

html Shows the string without masking String

property

markdown Converts text sections equipped with mark-ups into text with

highlights by means of in-line formatting

Text or

string

attribute

i-views 5.3

414/534

medialist Displays the table entries as an HTML text link; displays the

element with their icons

Table

multiline Necessary to display the input field for a string in multi-line

view in an edit view.

Property

nolink The relation target is not linked, but instead shown only as

text.

Relation

property

panel Has the effect of displaying as an expandable group Group

pre Displays the string as a pre-formatted and scrollable text String

property

table Table view Group

timeline Display of a data record in the form of a timeline; can be ar-

ranged vertically or horizontally.

Script-

generated

view in

group

transla-

tions

Displays language variants (with the relevant flag icons in case

of the string attribute)

Property

The renderModes available in the input line are related to Bootstrap. They include the fol-

lowing renderModes, for example:

i-views 5.3

415/534

render-

Mode

Explanation Applicabil-

ity

email Creates a link to the email address String

property

image Displays an icon on the action Action

jumbotron Highlighted display.

See getbootstrap.com/docs/4.1/components/jumbotron/

Group

well Creates a box with a compressed effect.

See getbootstrap.com/docs/3.3/components/#wells

Group

3.2.1.3.3 Usage of CSS

The view configuration mapper supports the use of Cascading Style Sheets (CSS). In addition

to that, it includes a predefined set of CSS properties to which you can refer in the style of

the views. It also offers you the option to define your own CSS properties.

The predefined set is based on the CSS classes defined the front-end framework bootstrap

(getbootstrap.com/docs/3.4/css/). To use these, they can be referenced in a style using the

class property (e.g. "h1" as the value for a heading).

Separate CSS properties can be defined using the following values:

• The attribute style or style (script) is available on a style. Here you can define a CSS that
applies only to views to which this style is linked.

• CSS properties that are supposed to apply to entire applications can be defined in the
script “viewconfigmapper.config.GET.” If separate CSS classes are defined there, you can

access these in the styles via the class attribute.

3.2.1.4 Execute in

When you create a user-defined action, you can also fetch the relation “execute in.” This has

the effect that the returned data is not applied to all VCM contents but that the change only

relates to a certain view. This view must be set as the relation target of “execute in.”

i-views 5.3

416/534

3.2.2 Login configuration

3.2.2.1 JWT authentication

3.2.2.1.1 Modify the login form

The login form can be modified using the following translation key:

Key Description

login.form.title Title of the form

login.form.message Descriptive/welcome text

login.form.username.label Label of the user name field

login.form.username.placeholder Placeholder of the user name field

login.form.password.label Label of the password field

login.form.password.placeholder Placeholder of the password field

3.2.3 The View Configuration Mapper component

To use the ViewConfiguration Mapper, activation of the corresponding components first in

the Admin tool is a prerequisite.

i-views 5.3

417/534

The component ensures the specific properties required are created in the view configura-

tion and also creates all REST services that the vcm requires. (Please note: All requests are

preconfigured so that they expect an authentication. The attribute Password and Login is

required for an authentication on the object of the user, with its schema generated by the

component. Linking the user in the settings for the Knowledge Builder is not necessary for

this.)

These are, specifically:

• action

i-views 5.3

418/534

• blob
• config
• element
• topicIcon
• viewconfig-static

“action” and “element” perform all communication between the ViewConfiguration Mapper

and i-views. “blob” and “topicIcon” are responsible for delivery of the media data within a

network. “viewconfig-static” defines the area of the REST bridge in which the VCM front-

end files (scripts, templates, etc.) are found. “config” is called during the initialization of

vcm to configure basic configurations (such as language and start topic). All REST services

are preconfigured so that modifying them is not always required. However, modifying the

“config” request is recommended:

function respond(request, parameters, response){

//Personalize your viewconfigmapper configuration here

var options = {

"application" : "viewConfigMapper",

"user" : {

"login" : $k.user().name()

},

"startElement" : $k.rootType().idString(),

"language": getRequestLanguage(request),

translations: getTranslations()

};

response.setText(JSON.stringify(options, undefined, "\t"));

}

Values to be modified are

• application: The application configured in the view configuration for the ViewConfigu-
ration Mapper. This is, by default, “viewConfigMapper” and therefore does not have to

be modified.

• user: User configuration. The current version of vcm only reads the configured name
of the user for display in the front-end.

• startElement: ID or internal name of the topic that should be displayed initially when
the start screen is called up. The root type of the semantic network is preconfigured.

This should be modified.

• language: The language of the browser making the request is preconfigured. This

i-views 5.3

419/534

attribute should be configured for specific language settings. The relevant I18N set-

tings are foreseen in the front-end templates and can also be expanded in the attribute

“Translations”. Modifications to this should be made in these templates. At this point,

only the language is being defined.

• translations: I18N templates are located in the front-end and should bemodified there.
Their function can be extended at this point.

3.2.4 Create a project with the View Configuration Mapper

To easily create an adjustment project, a project template is available in the Git under gitlab.ivda.i-

views.de/product/viewconfigmapper/grunt-init-viewconfigmapper.git. The README.md file

of the project explains all further steps. Initialization requires certain parameters. For exam-

ple, you will be asked for the basic path of the request and the name of the application. This

data should be available when first called.

3.2.5 Modify templates

The project template contains the directories components/ and partials/ in the webroot/ di-

rectory. Both directories contain examples of ViewConfigMapper components and partials.

You can add new templates here. The basic templates of ViewConfigMapper remain avail-

able, so you only need to create templates for special adjustments.

The js/ directory contains a JavaScript file where the ViewConfigMapper is initialized.

var vcmOptions = {
config: {

router: {
urlRewrite: true

},
application: "{%= name %}",
ajaxBasePath: "{%=ajax_base_path %}",
instanceId: "vcm_{%= name%}"

},
partials: partials,
components: components,
translations: translations

};

var vcm = new ViewconfigMapper("#viewconfigmapper", vcmOptions);

The ViewConfigMapper receives the configuration settings, partials, components and trans-

lations. The position in which the content is to be rendered is also specified (in this example:

<div id=viewconfigmapper"/>). For partials and components it is only important that they
are located in the relevant directories, because there are grunt tasks that extract the files and

unload them to separate JavaScript files.

Values for application, ajaxBasePath and instanceId would be set during the initialization call

of the project template.

i-views 5.3

420/534

3.2.6 Operate the frontend

The front-end can be built using grunt. The files required for operation are found in the

/webroot directory following generation. It is accessed, if not configured otherwise, using the

start screen index.html.

In the most straightforward case, the files are found locally and can then only be used on the

client side.

There are several ways to make the front-end accessible. The component ViewConfiguration

Mapper automatically generates a REST service that can deliver static files. This can be used

by placing the files in the webroot directory in the corresponding directory in the REST bridge

being used (default is viewconfig-static). After this, the front-end can be addressed in the

default configuration via HOST:PORT/viewconfig/viewconfig-static/index.html. In addition, it

is also possible to deliver the files using a corresponding server.

3.3 Actions

This chapter describes all VCM-specific options for setting actions and script parameters

(context, actionResponse).

VCM supports standard interactions, such as the editing of contents without these having

to be configured separately. However, it is possible to define user-defined actions in a view

configuration, which can then also be executed in VCM.

There are two types of user-defined actions:

• Standard action with user-defined return value
• Script action

Selection is made via a drop-down menu.

For a script action, you have to select “Script” in this menu and create a “Script” under the

“Script” entry in the list.

i-views 5.3

421/534

To determine the return value of an action, a script can be created for both action types

under the entry “Script (Action Response).”

Example of a typical return script:

function actionResponse(element, context, actionResult){
var actionResponse = new $k.ActionResponse();
actionResponse.setFollowup("show");
actionResponse.setData({

elementId: actionResult.idString(),
viewMode: "edit"

});
return actionResponse;
}

Possible follow-ups:

• show - The transferred contents are loaded and displayed on the entire page.
• refresh - All components update their contents.
• reload - The page is reloaded.
• update - The transferred contents are loaded and displayed in the view specified in
“execute in.” An error occurs if “execute in” is not set.

You can also define your own follow-ups. However, in that case the interaction with the

front-end must be adapted as VCM is not designed for this by default. On the other hand,

however, it is also possible to overwrite the current reactions to a follow-up in your own

adaptation project.

Additional possible return values:

• elementId - ID of the element to be displayed
• viewMode - At present only read and write mode are distinguished, whereby read mode
is assumed and write mode is only displayed for viewMode: “edit."

i-views 5.3

422/534

You can also define your own values here and adapt the front-end accordingly.

3.4 Viewconfig elements

3.4.1 General

3.4.2 Alternative

An alternative view is a collective view for other views. That is, this type of view can be

used to group views that show data for a shared object (e.g. a Properties view with the life

data of an artist or a table view that lists the works of the artist). Unlike in a group view, the

summarized views are not shown simultaneously, but instead in alternating order (e.g. via

tabs).

To group views, the corresponding views are appended to the alternative view as subviews.

Their position decides the order in which they are displayed. Hence, the arrow buttons can

be used to change their positions.

The “Configuration” tab features options for specifying the general display of the list:

i-views 5.3

423/534

La-

bel

The value entered here appears as the heading of the alternative

De-

fault

al-

ter-

na-

tive

By default the first attached view is displayed. If you prefer the view on the third

tab to be displayed first, for example, you can specify this view here. The front-end

remembers the last displayed view within a session, so that the user always lands on

the tab they looked at most recently if they look at one alternative view several times

within a session.

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

Script

for

la-

bel

As an alternative to the “Label,” the title of the alternative can be determined in a

script.

Script

for

vis-

i-

bil-

ity

This script is used to define whether the alternative should be displayed, and under

what conditions.

Actions can be configured for the alternative in the “Menus” tab, while the “Styles” tab al-

lows certain display options to be selected. The “KB” tab features options that only apply to

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used to

configure for which object types the alternative view is to be used and in which application

contexts.

An alternative view should be used when several views are based on the data of an object or

type, but are to be displayed not simultaneously but alternatively.

3.4.3 Group

A group view is a collective view for other views. That is, this type of view can be used to

group views that show data for a shared object (e.g. a properties view with the life data of

an artist or a table view that lists the works of the artist). To group views, the corresponding

views are appended to the group view as subviews. Their position decides the order in which

they are displayed. Hence, the arrow buttons can be used to change their positions.

i-views 5.3

424/534

The “Configuration” tab features options for specifying the general display of the list:

Label The value entered here appears as the header of the group

Configuration

name

The configuration name can be used to identify views and panels.

Script for label-

ing

As an alternative to the “Label,” the title of the group can be determined

in a script.

Script for visi-

bility

This script can be used to specify whether the group is supposed to be

displayed.

The “Menus” tab lets you configure actions for groups, while the “Styles” tab lets you se-

lect certain display options. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure

for which object type the group view is to be used and in which application contexts.

A group view is to be used when several views, which are based on the data of an object

or type, are to be displayed simultaneously and grouped. In contrast to this, there is the

alternative that displays the contained views for an object alternatingly (e.g. as tabs).

In the web front-end, there are different options for displaying grouped views. If not config-

ured differently, the views are arranged vertically. You can use a style to enable horizontal or

grid arrangement:

i-views 5.3

425/534

To do this, the style object is created on the group view and the value “grid” is selected as the

“renderMode” and the desired grid configuration is entered under “groupColumnGrid”.

The example view has the grid "4 8 0." The total of summands must always be twelve.

If you select “panel” as the “rendering mode,” you get an expandable group.

The popular Bootstrap rendering mode values "jumbotron" and "well” are also supported for

the group.

3.4.4 Hierarchy

A hierarchy view is a hierarchical representation of the configurable aspects of an object.

i-views 5.3

426/534

The configuration is performed in the Knowledge Builder by creating a hierarchy view.

i-views 5.3

427/534

The “Configuration” tab provides options for determining the general display of the hierarchy:

Label The value entered here appears as the heading of the hierarchy

Script

for label

As an alternative to “Label,” the title of the hierarchy can be determined in a

script.

Config-

uration

name

The configuration name can be used to identify views and panels.

i-views 5.3

428/534

Relation

(ascend-

ing)

Relation

(de-

scend-

ing)

Struc-

tured

query

(ascend-

ing)

Struc-

tured

query

(de-

scend-

ing)

Script

(ascend-

ing)

Script

(de-

scend-

ing)

The hierarchy view starts with an object as the basis. This object is passed

to the hierarchy either by the context element on the higher-level panel or by

influencing it from another panel.

Which nodes and branches should be shown for this object can be configured

in both ascending and descending order. A relation defined in the network can

be selected as a connection between the nodes, however a structured query

or even a script can too. A combination of these three types is possible, i.e.

it is possible to specify a relation in a descending order, for example, and a

structured query in an ascending order. Specifying both directions in optional,

however it is also possible to configure the ascending order or the descending

order only. In the first case, the object on which the hierarchy is based would

be the node at the bottom. And in the second case, the base object of the

hierarchy would then be the root node of the hierarchy.

Sort

down-

ward

The hierarchy is sorted in ascending order by default. Activating the checkbox

reverses this sort order.

Action

(selec-

tion)

The action that should occur when a user selects an element in the hierarchy

can be configured at this point.

Display

the hi-

erarchy

root

banner

This checkbox is used to define whether the root element banner should be

displayed in the hierarchy view. This configuration is only taken allowed for in

the Knowledge Builder.

Hide

details

view

By default, a details view is displayed for a selected node (also see Action (se-

lection)) and can be deactivated using this option.

Primary

sort

criterion

The sort criterion is used to determine the aspect used to sort the hierarchy

elements on one level.

Sec-

ondary

sort

criterion

Like “Primary sort criterion,” except this is only used if the position computed

from “primary sort criterion” is the same for two or more attributes.

i-views 5.3

429/534

Script

for visi-

bility

This script is used to define whether the list should be displayed.

Script

for sort-

ing

This script is used if “Script for sorting” was selected as the primary or sec-

ondary sort criterion.

Deny

manual

sorting

This option is used to disable the option of allowing the user to re-sort a hier-

archy. This option is only used in the Knowledge Builder.

It is possible to configure actions and styles on the entire hierarchy, or to only apply them at

node level. This is why there is a “Hierarchy” tab with the sub-items “Menus” and “Styles” and

a “Nodes” tab with the same subitems. Actions can be configured for the list in the “Menus”

tab, while the “Styles” tab allows certain display options to be selected. The “KB” tab features

options that only apply to the Knowledge Builder and are not used in the web front-end. The

“Context” tab can be used to configure for which object types the hierarchy view is to be used

and in which application contexts.

3.4.5 Properties

A Properties view is a list of the attributes and relations of an object.

The “Configuration” tab features options for specifying the general display of the list:

i-views 5.3

430/534

Sort downward Generally the contained attributes/relations are displayed in

the order specified by the order of the included property view.

As it is however possible to specify higher-level types (e.g.

“User relation”) here, the properties grouped in this way are

sorted by name in ascending order. You can change this order

by activating the “Sort downward” check-box.

Label The value entered here appears as the heading of the list

Initially expanded If there are a great many properties, they are not displayed

directly in the Knowledge Builder, but instead in expandable

form. Activating this option expands them directly.

Configuration name The configuration name can be used to identify views and pan-

els.

Primary sort criterion Generally the contained attributes/relations are displayed in

the order specified by the order of the included property view.

This option can be used to change this behavior. The available

values are “Position”, “Script for sorting” and “Value”. In case

of “Value”, sorting is performed by attribute value, and not by

the name of the attribute.

Secondary sort criterion Like “Primary sort criterion,” except this is only used if the po-

sition computed from “primary sort criterion” is the same for

two or more attributes.

Script for label As an alternative to the “Label,” the title of the list can be de-

termined in a script.

Script for visibility This script is used to define whether the list should be dis-

played.

Script for sorting This script is used if “Script for sorting” was selected as the

primary or secondary sort criterion.

Actions can be configured for the list in the “Menus” tab, while the “Styles” tab allows certain

display options to be selected. The “KB” tab features options that only apply to the Knowledge

Builder and are not used in the web front-end. The “Context” tab can be used to configure

for which object types the Properties view is to be used and in which application contexts.

For the read view, the Properties view can be used on its own, but it is often also used in

group or alternative views. In order to allow object properties to be modified, a Properties

view must be included in an Edit view.

The attributes and relations to be displayed for an object can be configured. For that pur-

pose, it is necessary to add property views to the Properties view which can be used to select

the relevant attribute/relation and determine in detail how these should be displayed.

3.4.5.1 Styling of a property view

Für individuelle Eigenschaften-Konfigurationen kann es vorkommen, dass die Aufteilung des

Layouts geändert werden muss, weil für eine darin befindliche Eigenschafts-View andere

Platzverhältnisse benötigt werden (Label vs. Eigenschaftswert). Dies lässt sich durch eine

Anpassung mit einem neuen Style unter "Style" > "Viewconfiguration-Mapper" > "class" er-

i-views 5.3

431/534

reichen.

Für den "class"-Eintrag gibt es die Klasse "list", die die Aufteilung zwischen Label und darzustel-

lendem Eigenschaftswert bestimmt. Voreingestellter Wert ist "list-5-6". Die Eigenschaften-

View ist in ein gedachtes Raster von zwölf Einheiten unterteilt, wobei die letzte Einheit für die

Aktion an einer Eigenschaft reserviert ist. Daraus ergibt sich ein Eintrag mit "list-N-M", wobei

N+M = 11 ist. N steht für die Breite des Labels, M steht für die Breite des Eigenschaftswerts.

Wenn beispielsweise das Label einer untergeordneten Eigenschaft aufgrund der Benennung

mehr Platz benötigt, kann unter "class" der Wert "list-8-3" eingegeben werden.

Wenn das Label gar nicht dargestellt werden soll und durch die Option "hide label" deaktiviert

ist, kann unter "class" der Wert "list-0-11" eingegeben werden.

3.4.6 Property

A Property view is a display configuration of an attribute or a relation to an object. A Property

view can only be used underneath a Properties view.

In the “Configuration” tab, there are options for determining the general display of the at-

tributes/relations:

Sort downward Since there can be several attributes/relations of a type for ob-

ject, these are sorted in ascending order of property value if

there are several. This option reverses the sort order. For

“Property,” you can also select a higher-level attribute type

(e.g. user relation). The sort order of the subordinate attribute

types, however, is determined via the sorting configuration of

the corresponding Properties view. The Property view can only

be used to influence the sorting within the same attribute.

i-views 5.3

432/534

Action (selection) The action configured here is executed if the property value is

selected in the front-end (e.g. by clicking).

Apply to/apply in At this point, you can specify the context in more detail so that

different configurations of a property can be used in a Proper-

ties view.

Label A property is displayed as a name and value pair on the front-

ends. The name of the configured property is used by default.

You can use “Label” to display a value other than the name.

Property The attribute/relation type of the displayed object is deter-

mined here. It is possible to specify a higher-level attribute

type. For example, if “User relation” is selected, this displayed

list shows all relation values for this object that are subordi-

nate to this user relation. The sort order of these properties

can be configured in the Properties view.

Show new properties If no attribute of this type exists on the displayed object yet,

the attribute would not be listed in the default view. You can

use this option to configure that a placeholder with an input

field for the value of the new attribute is displayed if no at-

tribute value exists yet.

Show additional proper-

ties

If the configured attribute may occur several time, you can use

this option to specify that a new placeholder for an additional

attribute value is displayed automatically.

Display filter This script can be used to filter the existing attributes of this

types that only specific ones of these are taken into account in

the display.

Configuration for em-

bedded meta proper-

ties/configuration for

metaproperties

If an attribute contains a meta property, a view can be placed

here to determine how these meta properties are displayed.

The only difference with the embeddedmeta properties is that

they appear indented under the attribute.

Configuration name The configuration name can be used to identify views and pan-

els.

Script for label Instead of using the “Label,” the displayed attribute name can

be determined in a script.

Script for visibility This script can be used to specify whether this property is sup-

posed to be displayed.

Script for sorting This script can be used if there are several values of a property

for an object.

There are additional options for relations:

i-views 5.3

433/534

Display relation target By default, the attribute value of the name of the relation tar-

get object is displayed as a link. This option is used to display

the configured properties of the relation target. The view used

for this purpose can be determined via its context, i.e. for “ap-

ply in” the corresponding view, the property view should be

specified.

Relation target view By default, a link or relation target editor is displayed in edit

mode. However, it canmake sense to display e.g. a drop-down

list with pre-filtered relation targets instead. These alternative

views can be configured here.

Relation target filter To assist users with their selection of a suitable relation target,

a filter query can be placed here.

Relation target type filter If several object types have been defined as the target of a

relation, a filter on the displayed types can be configured at

this point.

Script for relation target

identifier

By default, the name of the relation target object is displayed.

This can be adapted here by means of a script.

In the “Menus” tab, you can configure additional actions for the property, while the “Styles”

i-views 5.3

434/534

tab lets you select certain display options. The “KB” tab features options that only apply to

the Knowledge Builder and are not used in the web front-end. You can use the “Context” tab

to trace in which view the Property view is used.

3.4.6.1 Relation target filter

Umden Benutzer in seiner Auswahl eines geeigneten Relationsziels zu unterstützen, kann bei

Relationszielfilter eine Abfrage zur Filterung der möglichen Relationsziele angebracht wer-

den. Klickt der Nutzer im Frontend auf die Lupe, so erhält er eine gefilterte Auswahl.

Soll zum Beispiel die Auswahl von Events, für die sich eine Person interessiert, nur auf die

Events beschränkt werden, bei denenMusikgruppen auftreten, die die Person kennt, somuss

die Abfrage zur Filterung der möglichen Relationsziele diese Bedingung enthalten.

In der Abfrage kan wie gewohnt das Zugriffselement - in diesem Beispiel die Person -

übergeben werden.

Standardmäßig werden Relationsziele als einfache Tabelle mit Name dargestellt. Ist eine

definierte Tabelle gewünscht, kann diese erstellt und per Relation "anwenden in" mit der

Eigenschaft - in diesem Beispiel "Event" - verknüpft werden.

3.4.6.2 Styling of a property view

A property in a properties-list is displayed by default as follows:

i-views 5.3

435/534

The label of a property is on the left side and the value is on the right side. As all view

configurations a property view can be styled, too. In the following you can see how to style a

property with an example.

For example, if you want to display the values right-aligned, you must first create the appro-

priate css class:

.text-align-right .property-value {text-align: right;}

This must then be passed as style to the individual properties for which this class should

apply:

The result of the four styled properties

3.4.7 Edit

And edit view is used to manage attributes or relations.

i-views 5.3

436/534

In the process, all child configurations of the properties type are displayed as form fields. An

edit viewmay contain exactly one child view. This should be a properties configuration. How-

ever, it is also possible to use a group view to use several Properties views. Changes can be

synchronized with the semantic network by means of a Save button.

The “Configuration” tab features options for specifying the general display of the edit view:

Edit

mode

switch-

able

This option makes the form mode “switchable”. That means Properties are first

shown only in read mode. A Switch button can then be used to switch to edit

mode.

Only

custom

but-

tons

This option can be used to configure custom buttons for switching over and

saving. For this purpose, a menu with actions must be configured.

Custom buttons

If the option Only custom buttons is active, then users can configure their own buttons for

switching and saving. When doing so, a separate ActionResponse with defined follow-ups

must be configured on the respective action:

Action Follow-up

Save edit-save

Switch to read mode edit-state-read

Switch to edit mode edit-state-edit

i-views 5.3

437/534

Example of a user s own save button:

function actionResponse(element, context, actionResult) {
var actionResponse = new $k.ActionResponse();
actionResponse.setFollowup("edit-save");
return actionResponse;

}

3.4.8 Table

A table view is a display configuration of a list of objects. A table view can be used indepen-

dently at different points and its content depends on the context.

The “Configuration” tab features options for specifying the general display and behavior.

Action

(selec-

tion)

The action configured here is executed if a row is selected in the front-end (e.g.

by clicking).

i-views 5.3

438/534

Num-

ber of

rows

(page

size)

This specifies the maximum number of rows that are displayed on one page.

Auto-

matic

search

Options:

• Automatic search
• Automatic search up to limit
• No automatic search

Label A table is displayed with the heading in the front-ends. By default, the name is

generated from the context. You can use “Label” to display a value other than

the name.

Config-

uration

name

The configuration name can be used to identify views and panels.

With-

out

column

filter

Here you can determine whether a column filter is supposed to be displayed

between the table header and table content. The column filter can be used to

filter the query result for the column by entering a term.

Script

for

label

Instead of using the “Label,” the displayed attribute name can be determined in

a script.

Table

of

This references the view whose results are displayed in the preceding table. This

can be a query, of a query result view or another table.

On the “Sorting” tab, you can configure the sort response using the columns.

The “Table” tab has two sub-items: “Menus” and “Styles.” In the “Menus” tab, you can con-

figure additional actions for the table, while the “Styles” tab lets you select certain display

options that affect the entire table. In the next tab, “Columns" > "Styles" you then select the
display options for columns accordingly.

The columns of the table are defined using sub-configurations, which are explained in the

next section. The order of the columns can be changed using arrow buttons in the tree view

on the left side.

The column view represents the configuration of an entire column. Here you can influence

the display and the response (e.g. filtering).

The content of the cells (“column element”) in turn is defined by the sub-configuration as

described in the next section.

i-views 5.3

439/534

Label Column name displayed

Column

width (%)

Width of the column in percent of the width of the table

Configuration

name

The configuration name can be used to identify views and panels.

Hide This is used to hide a column. It is nonetheless calculated in the back-

ground and can be used e.g. for sorting.

Cannot be

sorted

In the default setting, the columns can be sorted by clicking on the

header. This function can be deactivated here.

Script for label Instead of using the “Label,” the displayed attribute name can be de-

termined in a script.

Script for pre-

processing input

fields

The text that was specified in the column filters can be influenced via

a script here.

Standard opera-

tor

This is where the default is selected from the possible filter operators

If nothing is configured, the first one in the list is selected.

Search text The text for column filtering can be specified in advance here.

i-views 5.3

440/534

The column element sub-configuration determines the content of the column. The content

is typically derived from the elements to which this table refers.

Prop-

erty

The property of the element to be displayed in this column

Struc-

tured

query

mod-

ule

As an alternative to “Property,” the content to be displayed can also be deter-

mined using a structured query.

Script As an alternative to the first two method, the content to be displayed can also be

derived from the element via a script.

Hide This is used to hide the column element. This is nonetheless calculated in the

background and can be used e.g. for sorting or filtering.

High-

light

This lets you choose if the content of the column element is to be highlighted by

underlining it.

i-views 5.3

441/534

Use

hits

Allows the use of all meta properties of a search result (“hit”), such as quality,

cause etc.

If the search results are processed further by a script, JavaScript object

$k.SemanticElement or $k.Hit is forwarded.

Con-

figu-

ration

name

The configuration name can be used to identify views and panels.

3.4.8.1 Menus in tables

Menus can be configured at different points of a table. The selection of the configuration

location determines whether a menu is available for the entire table, for the column of the

table or for every column element:

Configuration location Menu with actions for the ele-

ment

Table:

"Table" tab > “Menu” tab
Actions for the entire table:

i-views 5.3

442/534

Column:

“Menus” tab

Actions are displayed in the col-

umn description of a table:

i-views 5.3

443/534

Column:

Menu as a subelement of a column

Actions are output in every row in a

column:

Menu in a separate column:

Menu element in the same col-

umn as the column element to be

displayed:

i-views 5.3

444/534

Column element:

“Menus” tab

The action is output after every

value:

Output for one object per column

element:

Output for several objects per col-

umn element, e.g. in the dis-

play of target objects of a relation.

The target objects are comma-

separated (configuration as shown

on the left). In this case, you

should preferably use icons to

save space; alternatively, the la-

bel can be replaced with a tooltip

(mouse-over display).

Note: For relation targets, the link

to the target object can be sup-

pressed by using the “no link” style

attribute.

i-views 5.3

445/534

3.4.9 Search

A search view allows search pages to be created on which the search query and the search

results are displayed at the same time. If the search does not have any parameters, or only

optional ones, then the search is run immediately and the results displayed directly. If there

are obligatory parameters, then the search is only run following a user input.

If, for example, only a search slot is supposed to be displayed in the title of a page and

the results of this search then are then to be displayed further down the page, this can be

achieved by configuring a search field element and search result aspect (view). Furthermore,

facets can be created as well. These three configurations are described in more detail in the

subsections of this chapter.

If a search with facets needs to be configured, the functional chain regarding panels influ-

encing each other has to be obeyed: Search field aspect / action –> facet –> search result
view.

A search view is created in the Knowledge Builder for a simple search page.

i-views 5.3

446/534

The “Configuration” tab provides options for determining the general display of the search:

QueryThis is where you configure the query that is to be executed when the query is exe-

cuted.

Pa-

ram-

e-

ter

name

Name of a search parameter. All parameters that are configured in the search must

also be configured at this point to ensure no errors occur in the search.

ScriptIf the parameter value is to be determined via a script, this has to be configured here.

i-views 5.3

447/534

Value

de-

ter-

mi-

na-

tion

Here you specify how the parameter value is to be determined.

• “Script” (value determined via script)
• “Script, can be overwritten” (the value is determined via script, but is overwritten
by user input on the front-end)

• “User input (optional)” (the parameter value is copied from the user input if it is
set. It is displayed to the user as optional in the front-end. Please note that the

search is then configured in such a way that this parameter does not have to be

set)

• “User input (obligatory)” (the user must enter a value in the front-end, otherwise
the search is not executed)

• “User input (deactivated if blank)” (the parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is

executed)

TypeData type of the parameter

La-

bel

Name of the parameter in the front-end

Or-

der

The order in which the parameters are displayed in the front-end

La-

bel

The value entered here appears as the heading of the search

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

Script

for

la-

bel

As an alternative to the “Label,” the title of the group can be determined in a script.

Script

for

vis-

i-

bil-

ity

This script can be used to specify whether the group is supposed to be displayed.

i-views 5.3

448/534

Script

for

ta-

ble

con-

fig-

u-

ra-

tion

As an alternative to “Table”, a script can be used to determine the table displayed at

this point.

Ta-

ble

The search results are displayed in the front-end in the table configuration that is con-

figured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows

certain display options to be selected. The “KB” tab features options that only apply to the

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used

to configure for which object types the search view is to be used and in which application

contexts.

3.4.9.1 Search field view

A search field element is used, for example, if only a search slot, and no search results, is to

be displayed in a certain place. Configuration takes place as for the search view but without

the configuration for displaying the results.

i-views 5.3

449/534

The “Configuration” tab provides options for determining the general display of the search

field:

QueryThis is where you configure the query that is to be executed when the query is exe-

cuted.

Pa-

ram-

e-

ter

name

Name of a search parameter. All parameters that are configured in the search must

also be configured at this point to ensure no errors occur in the search.

ScriptIf the parameter value is to be determined via a script, this has to be configured here.

i-views 5.3

450/534

Value

de-

ter-

mi-

na-

tion

Here you specify how the parameter value is to be determined.

• “Script” (value determined via script)
• “Script, can be overwritten” (the value is determined via script, but is overwritten
by user input on the front-end)

• “User input (optional)” (The parameter value is copied from the user input if it is
set. It is displayed to the user as optional in the front-end. Please note that the

search is then configured in such a way that this parameter does not have to be

set)

• “User input (obligatory)” (The user must enter a value in the front-end, otherwise
the search is not executed)

• “User input (deactivated if blank)” (The parameter is set for the search if there
was no user input. Otherwise the parameter is deactivated when the search is

executed)

Query

for

pro-

posed

val-

ues,

script

for

pro-

posed

val-

ues

Proposed values are possible elements or strings that are offered to users in a list at

the search slot. These in turn can be selected as search string input (also known as

“type ahead”).

For configuration, a query or a script can be placed on the parameter. If a structured

query is used, the names of the elements found are displayed as default values on

the front-end.

In this example, only subjects belonging to "product class" would be listed as proposals,

represented by their primary name.

In detail, a query allows to define which attributes of the element should be used (it

doesn’t have to be the primary name in every case).

A search pipeline can be used to combine arbitrary conditions (structured queries)

with arbitrary attributes (queries). A search pipeleine needs a ’searchString’ parameter

for input.

A script (see template in the semantic network) can also be used to deliver la-

bels/strings as fixed values only (that is, without a mandatory reference to the se-

mantic network). The "elementId" and "iconLocator" keys are optional.

TypeData type of the parameter

La-

bel

Name of the parameter in the front-end

Or-

der

The order in which the parameters are displayed in the front-end

La-

bel

The value entered here appears as the heading of the search

i-views 5.3

451/534

Con-

fig-

u-

ra-

tion

name

The configuration name can be used to identify views and panels.

Script

for

la-

bel

As an alternative to the “Label,” the title of the group can be determined in a script.

In the “Menus” tab, you can configure actions for the search field element, while the “Styles”

tab lets you select certain display options. The “KB” tab features options that only apply to

the Knowledge Builder and are not used in the web front-end. The “Context” tab can be

used to configure for which object type the search field element is to be used and in which

application contexts.

Search field elements can be combined with search result views and facet views. To ensure

that the results of a search from a search field element are shown in a search result or facet

view, the actions must be configured accordingly. The simplest option is to configure the

panel that contains the search field element so that the actions are executed in a panel that

contains a facet view or a search result view.

If you want to connect all three views to each other, you activate the actions of a search

field element in a panel that contains a search result or facet view as described above or you

configure this panel so that the other result view panel is influenced by this panel.

i-views 5.3

452/534

3.4.9.2 Facet view

Display

Configuration

A facet view can be created as a sub configuration of a panel, but not within another view

configuration elements. The panel of the facet view needs to influence the search result

panel.

i-views 5.3

453/534

QueryHere a query must be configured when the facet view is not linked with a search field

view. If, for example, the facets are intended for influencing a search result table

containing employees, the query must output the employees as source for the facets.

If the facet view is linked to the search field view, no query needs to be defined.

La-

bel

The title to appear above the facet view in the front-end.

Con-

fig-

u-

ra-

tion

name

Configuration names can be used to identify views and panels.

Script

for

la-

bel

As an alternative to a permanent label, the title can also be set via a script (to be found

in the tab "Extended").

In order to configure facets, it is necessary to create facet views and attach them to the facets

view. These can be arranged in multiple hierarchical orders.

i-views 5.3

454/534

i-views 5.3

455/534

Query

for

de-

ter-

min-

ing

the

par-

ent

term

In case a term hierarchy is needed, the parent term must be configured by this query.

The child element is used as input element here fore. In the query, the label "parent-

Term" identifies the parent element.

Note:

• For the facet hierarchy to be able of being built up, the "query for term detection"
needs to be configured for comprising both terms and parent terms. The herein

contained parent terms are subsequently used for building up the hierarchy by

means of the "query for parent term detection". Therefore, testing the queries is

advised.

• At the moment, only terms of the same type can build a hierarchy.
• As usual in hierarchies, you can not display infinite loops.

i-views 5.3

456/534

Query

for

de-

ter-

min-

ing

the

term

Structured query that is used to form the facet. This query is obligatory when the

standard behaviour comes into account or when it is set dynamically (which means

that it keeps empty in case of static mode).

The query must be specified as follows: For narrowing down the search results, facets

can be defined for relation targets. The input element type is equal to the type of

the search results from the query of the query view. The terms to be found must be

identified by the label "term".

In principle, everything is possible like in all structured queries. It is also possible that

the label "term" is used several times within one structured query. In this case, the

behaviour of the terms specified by the values of "Term operator".

Hide

from

num-

ber

of

terms

The facet is hidden if the search results underlying the facet exceed this number.

La-

bel

Ideally, a label is always specified. If not set, the name of the input element of the

query is used.

Dis-

play

child

terms

ini-

tially

If the facet has a hierarchical structure, you can use this option to define whether the

sub-facets should be displayed initially. Per default, the child elements are displayed

after the parent element has been selected.

Con-

fig-

u-

ra-

tion

name

Views and panels can be identified via a configuration name.

Dis-

play

blank

terms

If no results are found for the facet, it is hidden by default. This option ensures it is

displayed nonetheless.

i-views 5.3

457/534

Max-

i-

mum

num-

ber

of

terms

Describes the maximum number of terms the facet can have. per default, all terms

are displayed.

Do

not

dis-

play

term

num-

ber

In the front-end, the number of found terms is displayed right behind the facet title.

This option deactivates this.

Term

op-

er-

a-

tor

At this point it is possible to configure how the terms are linked to each other. You can

use the “And” or the “Or” logic that applies on the search result regarding the selected

facets.

i-views 5.3

458/534

Term

type

If no term type is selected (default behaviour), the terms will be detected by the query

of the facet configuration. In the query, relation targets or attribute values can be

defined for terms. Additional to the default behaviour following settings are available:

• Dynamic: The value range of the terms are detected automatically. The values
used for term detection must be identified by the label "terrmValue" within the

"Query for term detection".

• Static: All terms to be displayed must be configured indiviudally. For every term
a query needs to be configured that specifies the possible hits of the main query.

Example of a static facet:

Each term of the facet needs a label for display:

The query within the tab "Extended" defines the applicable criteria for the facet:

i-views 5.3

459/534

Sort

terms

in

de-

scend-

ing

or-

der

By default, the terms found for a facet are sorted in ascending order. This option

reverses the sort order.

Sort

terms

by

num-

ber

The facet terms are generally sorted in alphabetical order; with this option, they are

sorted by the number of results found.

Faceting for attribute values

Search results can be faceted concerning predetermined attribute values, for which the term

type "static" must be set. If the term type "static" is chosen, the terms must be added as a

subconfiguration within a facette by clicking on the button "link new". For this purpose, the

configuration is built up as follows:

1. As usual, the structured query of the facette contains the elements to be filtered, including

the identifier "term" at the property:

Example of a query for term identification with attribute values as terms

2. The facette itself has a further facette with a query for a more detailed definition of the

terms. The structured query for the terms then only contains the conditions for the proper-

ties of the elements:

Example of a query of a static term (predetermined attribute value)

Note: The labeling of the facet term sub-configutaion is obligatory. If no label is set, the facet

term will not be displayed.

3.4.9.3 Search result view

A search result view is used if a view is supposed to display only the results of the search,

and not the search parameters. If the configured search has no parameters, it is enough to

i-views 5.3

460/534

configure one search result view. If there are parameters, the search result view should be

linked to a search field element.

It can be created in the Knowledge Builder.

The “Configuration” tab provides options for determining the general display of the search:

Query This is where you configure the query that is to be executed when

the query is executed.

Label The value entered here appears as the heading of the search

Configuration

name

The configuration name can be used to identify views and panels.

Script for label As an alternative to the “Label,” the title of the group can be deter-

mined in a script.

Script for table

configuration

As an alternative to “Table”, a script can be used to determine the

table displayed at this point.

Table The search results are displayed in the front-end in the table config-

uration that is configured here.

Actions can be configured for the search in the “Menus” tab, while the “Styles” tab allows

certain display options to be selected. The “KB” tab features options that only apply to the

i-views 5.3

461/534

Knowledge Builder and are not used in the web front-end. The “Context” tab can be used

to configure for which object types the search view is to be used and in which application

contexts.

3.4.10 Graph configuration

A graph configuration is used to display objects in a graph. A first introduction to the use

of graphs in the Knowledge Builder can be found under Knowledge Builder > Basics > Graph
editor.

Details on the setting options for the different views that are required when embedding a

graph in the front-end are explained under Knowledge Builder > View configuration > View
configuration elements > Graph.

A Graph view and a Graph configuration view are required for display.

The panel in which the graph is to be displayed contains a graph view (“V:Graph”). Up to ver-

sion 5.1, the context element (called start semantic element) was optional and displayed in

the graph when the application started. From version 5.2, it is obligatory to assign a context

element in order to avoid triggering an error message. The object itself is not important, it is

not displayed by default.

The graph view only has to contain a link to the graph configuration. The setting for the size

of the graph field via the Width and Height fields is optional but usually available.

The Graph view ensures that the graph is displayed in full. The Graph configuration is used

to determine which nodes and relations are to be displayed.

i-views 5.3

462/534

A node category must be created for every type whose objects (or types) are to be displayed.

These are displayed by default as a key in the graph.

The graph displays objects that are directly attached to the type or its subtype. Use Adapt to

concrete type to display subtypes separately in the key without having to create them individ-

ually as node categories.

In order to display types instead of objects, a checkmark must be placed by the Apply to

subtypes box in the Context tab.

In the Nodes tab you can go to Menus and assign a satellite menu in order to continue

working in the graph (see Knowledge Builder > View configuration > Actions > Actions for the
ViewConfiguration Mapper > NN-Expand/NN-Hide/NN-Pin actions).

In order to display the relations between the nodes, a link is required under each node cat-

egory. Here the relations to be displayed for this type are specified. The relations can be

specified via a prompt, a script or via the direct specification of the relation. User relation can

be assigned if all relations (apart from system relations) are to be displayed.

i-views 5.3

463/534

For more details see the vcm-plugin-net-navigator chapter

3.4.11 Text

The text view can be used to display text that is either statically specified or calculated via a

script.

Text Static, multilingual text

Script for text Script for calculation of the text

Label Optional heading

Script for label Optional script for calculating the heading

Example of a text script:

function text(element)
{

return “Through a script in the network" + $k.volume() + " generated text";
}

i-views 5.3

464/534

3.4.12 Image

Displays an image saved in the knowledge network that is either statically specified or calcu-

lated by means of a script.

Im-

age

Static image

Script

for

im-

age

Script for calculation of the image. A blob attribute is expected as the return value.

Dynamic blobs (e.g. through download by means of HTTP client) are not possible.

Label Optional heading

Script

for

label

Optional script for calculating the heading

Width

/ height

Fixed width / height of the image

3.4.13 Script generated HTML

This view generates HTML via a script. Both Knowledge Builder and ViewConfigMapper show

this unfiltered. Hence, the script developer is responsible for ensuring that user contents

are not output unfiltered. The display options in Knowledge Builder are very limited (e.g. no

CSS).

For more complex HTML you should use a script-generated view instead.

The following arguments are transferred to the script as parameters:

ele-

ment

$k.SemanticElementThe element in the context of which the view is displayed

docu-

ment

$k.TextDocument Document on which HTML is output

There are two approaches for outputting HTML:

• Output the HTML source code using the print() function of the document
• Structured output using an MXL writer

The example below illustrates the use of an XML writer for outputting a heading:

/**
* Render the semantic element on the document.

i-views 5.3

465/534

* @function
* @param {$k.SemanticElement} element The element to render
* @param {$k.TextDocument} document Target document
**/
function render(element, document)
{

var xmlWriter = document.xmlWriter();
xmlWriter.startElement("h1");
xmlWriter.characters(element.name());
xmlWriter.endElement("h1");

}

3.4.14 Scriptgenerated view

A script-generated view allows custom view components to be defined. The data are gener-

ated by a script and passed on using JSON. Displaying this is the job of the front-end.

view-

Type

Freely selectable identifier that is output in JSON. This is used for assigning the cus-

tom components in the front-end.

ScriptDelivers the data that are output in the JSON.

Two parameters are passed to the script:

el-

e-

ment

$k.SemanticElementThe element in the context of which the view is displayed

view object Prefilled object with the view data. Configuration elements such as styles

are already included in this.

The following script provides the data for a view that the plugin vcm-plugin-timeline contains:

/**
* Get json object to modify.
* @function
* @this $k.View
* @param {$k.SemanticElement} element
* @param {object} json object
* @returns {object} modified json object
**/

function customizeView (element, view) {
view.options = {
layout: ’vertical’

}
view.events = $k.Registry.type(’election’).allInstances().map(function (election) {

i-views 5.3

466/534

return {
elementId: election.idString(),
name: election.name(),
date: election.attributeValue(’electionDate’).toString()

}
})
return view

}

3.5 Bookmarks and history

Due to the fact of the ViewConfig-Mapper being a single-page application, the address of the

application keeps always the same (http://xxx/yyy/index.html) - irrespective which content is

being visualised or which panel is being displayed.

By means of defining bookmarks, the application designer in person is able to define a

schema which builds up specific addresses for the currently shown content. For the user,

this in turn grants direct access to a specific application state and the usage of forward and

backward navigation in the browser is possible. Furthermore, bookmarking improves index-

ability of the application by web search engines.

3.5.1 Bookmark Resource

The definition of bookmarks has its starting point at the bookmark ressource. The book-

mark ressource is situated within the REST service for the ViewConfig-Mapper. The book-

mark ressource automatically is co-created when the ViewConfig-Mapper component is be-

ing added. Keep in mind that the ressource has to be configured to run without any authen-

tication. This is because the ressource creates redirects which must work prior the moment

of login (prior loading of the application) as well.

i-views 5.3

467/534

The ressource allows the definition of any desired amount of "path patterns" - thus address

patterns that can be used by the application from that point on. Path patterns must not

overlap. This means, a specific address must be relatable to exactly one specific path pat-

tern. Furthermore, overlap with other ressources must be avoided (e. g. "action" or static

ressources as well).

A path pattern consists of static and variable parts. Dynamic parts are written in curly brack-

ets (see chapter concerning REST ressources):

Further examples:

• help/{topic}
• performance/{company}/{year}

Following the definition of a path pattern, parameters have to be defined for the variable

part. Parameters are meta-attributes of the path pattern attributes. A parameter normally

represents an element of the knowledge network and is shown in forms of the ID of the

element when the address is being created (e. g. ID1527_373749).

By defining a "parameter conversion" script the default behaviour can be modified. This

comes into account for following:

• representing elements in addresses in a more meaningful way
• using external IDs (e. g. part number) for addressing content
• using stable IDs that keep valid even if internal IDs change

A common use case is the indication of an object name instead of the objects’ ID:

i-views 5.3

468/534

In this example, the variable (e. g. optionalElement.name()) is accessed in the function "iden-

tifier()", in combinationwith assignment of the variable (e. g. $k.Registry.elementAtValue(’name’,

parameterValue)) in the function "element()":

/**
* Returns an (element-) identifier for the parameter
* @function
* @param {$k.SemanticElement} optionalElement The element for which the identifier shall be returned (optional)
* @returns {string}
**/

function identifier(optionalElement) {
if (optionalElement)

return optionalElement.name()
else

return undefined
}

/**
* Returns an element for the given parameter value
* @function
* @param {string} parameterValue The parameter value
* @returns {$k.SemanticElement}
**/

function element(parameterValue) {
return $k.Registry.elementAtValue(’name’, parameterValue)

}

Composite parameters allow addressing of elements by means of structured descriptions (e.

g. {chapter}/{version}). For each parameter fragment of the composite parameter theremust

i-views 5.3

469/534

be a corresponding Bookmark-Parameter object configured below the Composite-Parameter

object. The Composite-Parameter object requires a Parameter Conversion script, which han-

dles the multiple parameters.

Hint:

By using parameter conversion scripts, session varaibles can be transported as well. This

allows addressing an application state which itself is not defined solely by the displayed con-

tent.

Herefore the variable (e. g. $k.Session.current().getVariable("currentPersona")) can be ac-

cessed in the function "identifier()", in combination with assignment of the variable (e. g.

$k.Session.current().setVariable("currentPersona", parameters.persona)) in the function "ele-

ment()".

3.5.2 Link to Panels

Path patterns, as explained in the preceding chapter, can be linked to a panel (via the relation

"Path pattern" of the respective panel). This means that the pattern is going to be used for

construction of the address, as soon as the panel is activated (= visible).

Caution: When designing the application, it is important to observe that at no time more

than one panel with path pattern can be active simultaneously. Otherwise, the ViewConfig-

Mapper cannot decide which address pattern has to be used.

The element, which is visible in the active panel, is going to be used for parameter construc-

tion of the path pattern. It is necessary to ensure that the panel knows its element so that a

parameter can be constructed. A fixed view panel usually knows the element, so it should be

preferred instead of using a layout panel containing a fixed view panel. A layout panel only

knows the element if a context element is set.

If the element of another panel is to be considered for constructing parameters, the concern-

ing panel has to be linked to the parameter via the relation "Path pattern parameter".By this,

you can for example address a comparison view of two products (compare/product_A/product_B):

i-views 5.3

470/534

In order for the panel being able to show the needed content if activated via the path pattern,

it requires a "Script for context element". The script reads the previously set session variable

an gets the context element:

/**
* Returns a semantic element
* @function
* @this $k.View
* @param {$k.SemanticElement} element Existing semantic element
* @returns {semantic element or undefined}
**/

function contextElement(element) {
return $k.Session.main().getVariable(’comparison.left’)

}

Additionally, the option "Do not overwrite by external context element" must be activated.

In order to display the content in the previously mentioned panel, the session variables for

the comparison action of a menu within a view needs to be set first. For this purpose, a script

needs to be added:

i-views 5.3

471/534

The action script for setting the session variable is shown in the following example:

/**
* Performs a custom action. Can access the UI (open dialogs etc. with context.ui)
* @function
* @param {$k.SemanticElement} element
* @param {object} context Parameters defined by the environment
**/

function onAction(element, context) {
$k.Session.main().setVariable(’comparison.left’, element)

return element
}

As soon as the panel with the related path pattern is activated, it shows the content which

has been stored as the session variable by means of the action script.

When accessing a bookmark link by typing it into the browser input line, the configuration

principle "vice versa" comes into account:

1. The apropriate path pattern is determined

2. The concerning panel is being activated and, if applicable, is being equipped with an

element for indication. The indication of element itself is defined by the parameter

rules.

3. Panels, which are linked by parameters, are activated as well. If applicable, the element

is indicated additionally according the parameter rules.

i-views 5.3

472/534

4. The activation chains (see chapter about panel activation) are executed and the applica-

tion is visible in the desired state.

Hint: Dialogs can be addressed by means of the previously described mechanism as well.

When defining the path pattern for dialogs, it is important that both the content of the dialog

panel and the content underneath the dialog panel is defined by the bookmark link. This can

be done by linking of a parameter with a panel of the main window panel.

3.5.3 In-app navigation with bookmarks

By means of the in-app navigation with bookmarks, an action-based navigation can be real-

ized alternatively by using web links (panels are activated by an action and/or by exchange of

content between panels).

In this case, functionalities of the browser like "open in new tab" / "open in new window" are

available for the user. Furthermore, search engines can follow and index these links.

The definition is simply done by linking the action to the desired path pattern. If the pa-

rameter construction shall not (only) be executed by the element of the action, this can be

adjusted by means of the script "Parameter construction".

3.6 Plugins

In general, the following is to be documented:

• What are plugins for
• Code example for embedding plugins in the view config mapper should NOT be docu-
mented here, but in the chapter on creating adjustment projects

The following should be documented for each individual plugin:

• General description of its mode of function and a screenshot
• View configuration elements to which a plugin is bound (e.g. vcm-plugin-calendar ->
table view)

• Which plugin-specific styles are supported
• Plugin-specific actions (e.g. nn-expand for vcm-plugin-net-navigator)

i-views 5.3

473/534

3.6.1 vcm-plugin-calendar

The vcm-plugin-calendar can be used to display data in a calendar.

In order to display the data as a calendar, it is necessary to add a style element containing

the calendar renderMode to the table configuration. The value under Number of rows (page

size) specifies the maximum number of calendar entries that can be shown per view (in this

case per month). The table must contain the following columns:

• start: A date with which the calendar entry begins.
• end: End date of the entry (optional)
• title: The title of the entry
• allDay: Boolean value that specifies whether the entry applies to the whole day (op-
tional)

• Further options for columns can be found in the fullcalendar.io Event_Object documen-
tation.

It is also possible to configure a select action for the columns of the table. This action is then

executed when a calendar entry is clicked.

In addition, the vcmPluginCalendarOptions style attribute can be used to make additional

configurations.

Further information on the plugin can be found at fullcalendar.io.

3.6.2 vcm-plugin-chart

The vcm-plugin-chart is used to display data from a table configuration on the web front-end

in the form of a chart. Various chart types are available: Line, bar, pie, ring and radar charts.

Example of a bar chart:

i-views 5.3

474/534

Example of a pie chart:

3.6.2.1 Configuration

To generate a chart, it is necessary to create in a table configuration a style with the “chart”

option as its renderMode.

If, for example, you add an action with the “Display graphically” option to the underlying table

configuration, you can then display the relevant data record additionally in the Net-Navigator

by clicking on parts of the chart.

The plugin uses chart.js to generate the charts.

For vcm-plugin-chart there are multiple options for display adjustment that can be defined

by means of styles:

• vcmPluginChartDataColumns:
String with column numbers that are used as the data source. Default: columns 1-n

• vcmPluginChartDataMode:

i-views 5.3

475/534

’rows’ or ’columns’. Default: ’rows’

• vcmPluginChartHeight:
Specification of chart height in pixels. Default: ’auto’

• vcmPluginChartWidth:
Specification of chart width in pixels. Default: ’auto’

• vcmPluginChartLabelColumn:
Column number for labels. Default: 0

• vcmPluginChartOptions:
Options for adapting how keys are displayed and axes are scaled; they are transferred

to chart.js.

• vcmPluginChartType:
Specification of the chart type: line , bar , horizontalBar , radar , pie or doughnut .

Default: ’line’

The following example shows how to use a script for vcmPluingChartOptions in order to

disable the chart legend while scaling the axis to units of the size 1 and setting the axis origin

to 0 instead of 1:

function additionalPropertyValue(element, context) {

return {

legend: { display: false },

scales: { yAxes: [{ ticks: { stepSize: 1, beginAtZero: true } }] }

}

}

3.6.2.2 Configuration on basis of a scriptgenerated view

Charts can be display instead of tables using a script-generated view as well.

The prerequisite for this is that “chart” must be specified as the “viewType” in the configura-

tion tab of the script-generated view.

Furthermore, as is the case for the table configurations, a style must be assigned that uses

the property vcmPluginChartType to specify the preferred chartType (line’, ’bar’, ’radar’, ’pie’

or doughnut.’ Default: ’line’).

The following is an example script that counts jobs according to their status and shows the

set in a pie chart. Note that this script is an example of the “pie” chart type. Use the doc-

umentation for the chart.js to define the differences in the data formats of the other chart

types: https://www.chartjs.org/docs/latest/

function customizeView(element, view) {
var taskCount= $k.Registry.type(“job").allInstances().reduce(function (result, job, index) {

var status = job.attributeValueString(“statusJob");
result[status]= (result[status]||0)+1
return result;

i-views 5.3

476/534

}, {})

view.chartData = {
datasets: [{

data:Object.keys(jobsCount).map(function(key) {return jobsCount[key]}),
backgroundColor: [’red’, ’green’]

}],
labels: Object.keys(jobsCount)

}

view.type = ’pie’

return view;
}

This pie chart was generated using a script that uses the chart.js plugin.

3.6.3 vcm-plugin-html-editor

Web front-end

The vcm-plugin-html-editor makes it possible to edit HTML-formatted text. For this purpose

it uses the summernote WYSIWYG editor.

Configuration

i-views 5.3

477/534

A group is required for the view configuration of the HTML editor: In the “Context” tab, the

"vcm-plugin-html-editor" entry is required under “apply to”.

After the configuration of the group, a property configuration must be created. It must be

equipped with a style containing the “htmleditor” renderMode:

The property configuration also requires a string attribute that is supposed to contain the

text.

To ensure that the content can be edited from the web front-end, an additional style with the

i-views 5.3

478/534

“edit” render mode must be created in the higher-level group of the property configuration.

Alternatively it is possible to create a higher-level edit configuration for this purpose.

3.6.4 vcm-plugin-maps

The map plugin makes it possible to embed a map in the front-end. For this purpose the

objects to be displayed must have an attribute of the “geographical position” type.

The map can be configured as a script-generated view or as an object list.

For use via object lists, a style with the “maps” renderMode is applied to the “Table” tab in a

table view.

Columns are used to further configure the map. The columns with the labels “mapsLabel”

(contains the name of the object) and “mapsCoordinates” (contains the attribute with the

geographical coordinates) are obligatory because they are used to determine the objects for

display and its coordinates. Please note that this exact label must be used.

i-views 5.3

479/534

Optional columns and functions:

• “mapsPopup” - ensures that a pop-up with the contents of this column is called up when
the icon is clicked (accepts html). If a selection action is available, this column is deacti-

vated.

• “mapsTooltip” - displays the configured property as a tooltip.
• “mapsColor” - determines the color of the marking element on the map.
• “mapsIconLocator” - by default the icon of the type is used to display the objects on the
map. Here adjustments are possible by specifying a different icon location in the form

of the ID of the corresponding file attribute.

A selection action can be applied to the table; this action is activated when the marking

element is clicked.

3.6.5 vcm-plugin-markdown

The HTML output enabled by the VCM Markdown plug-in makes it possible to output Mark-

down texts.

It can be used by adding a style with the render mode markdown to one of the following

configuration elements:

• Static text: The Viewconfig property text of the configuration element is interpreted as
markdown.

To use the plug-in, the render mode called "markdown" must be entered on the “Style”

tab:

i-views 5.3

480/534

• Property: This has the effect that the value of the attribute is interpreted as markdown.

The view for the string attribute “Markdown” is configured using a property view:

i-views 5.3

481/534

Like a text object, the property also receives the render mode “markdown.”

After rendering, the text has the following visual highlights in the web front-end:

Further configuration of the plug-in is possible via the style attribute vcmPluginMarkdownOp-

tions.

The plug-in uses the module markdown-it

3.6.6 vcm-plugin-timeline

Events can be displayed chronologically on a timeline using the vcm-plugin-timeline plugin.

The timeline can be horizontal or vertical. The horizontal variant of the timeline provides two

additional buttons for scrolling when the timeline is wider than the space available. A scroll

bar should be provided by the browser for the vertical variant in this case.

i-views 5.3

482/534

3.6.6.1 Configuration

First, a “script generated view” has to be created and its view type attribute must be set to

“timeline.” In addition, a script must be placed on the view which provides data for the time-

line, for example:

function customizeView (element, view) { //other content
view.options = {
layout: ’horizontal’,
// layout: ’vertical’,
itemHeight: 130

}
view.events = element.relationTargets(’hasAlbum’).map(function (album) {
var obj = {}
var name = album.name()
var date = album.attributeValue(’releaseDate’)
if (date) { date = date.toString() } else { date = ” }
return obj = {name: name, date: date, elementId: album.idString()}

})
return view

}

This script can be used with the following parameters under view.options in order to modify

the appearance of the timeline:

• ’layout’: determines the direction of the timeline, either ’horizontal’ or vertical.’
• ’itemHeight’: Height of the elements on the time bar in pixels. If this is not set, all

elements receive the height of the element that requires the most space.

Under ’view.events’ an array has to be created which contain the results as objects. Each of

these requires the attributes name,’ ’date’ and elementId.

3.6.6.2 Styling

CSS rules are used to modify the default style of the timeline.

Depending on the alignment configured for the timeline, the following class hierarchy is avail-

able for this:

The text fields for the results can be modified using the following selectors:

.timelineVertical ul li

.timelineHorizontal ul li

The mark points for the results can be modified using the following selector:

.timelineVertical ul li::after

.timelineHorizontal ul li::after

i-views 5.3

483/534

3.6.7 vcm-plugin-net-navigator

The vcm plugin Net-Navigator visualizes elements in a graph-like view.

3.6.7.1 Configuration

The plugin can be configured by means of styles.

Styles of the view

Style Description

vcmPluginNetNavigatorOp-

tions

A JSON object for the view options. See below for details

extra Alternative to vcmPluginNetNavigatorOptions

Options

Option Description

vcmPluginNet-

NavigatorOp-

tions.categories.hideLabel

Show/hide category labels

i-views 5.3

484/534

vcmPluginNet-

NavigatorOp-

tions.categories.embeddedActions

Configure where actions are to be displayed. For true, they

are shown next to the categories

vcmPluginNet-

NavigatorOp-

tions.categories.compactActions

Combine actions in a menu

vcmPluginNet-

NavigatorOp-

tions.history.enabled

Activates/deactivates the navigation history

vcmPluginNetNaviga-

torOptions.enableEditing

Activates/deactivates the option of creating new links be-

tween elements in the graph

vcmPluginNetNaviga-

torOptions.nnOptions

Options for the Net-Navigator component

vcmPluginNet-

NavigatorOp-

tions.nnOptions.overload.maxExpandNodes

Number of nodes that can be opened simultaneously before

a query dialog regarding the relations to be opened appears.

The default value is 5.

Styles of nodes

ex-

tra

A JSON object for the node options. See below for details

Node options

color Overwrites the background color of the node

label Overwrites the label of the node

icon Overwrites the icon of the node

Styles of borders

ex-

tra

A JSON object for the border options. See below for details

Border options

color Overwrites the background color of the border

i-views 5.3

485/534

label Overwrites the label of the border

3.6.7.2 Actions

Nodes and relations can be supplemented with actions. These are arranged in a circle around

a node or the relations.

Actions are configured in the graph configuration within a node category or link.

Preconfigured actions

Action

type

Description

NN-

Expand

A small plus symbol can be used to display neighboring nodes (for which a con-

figuration exists)

NN-

Hide

Hide a node

NN-

Pin

Pin a node

i-views 5.3

486/534

Custom actions

A symbol image is always required for the display

3.6.7.3 Followups

The graph view reacts to the following follow-ups:

Follow-

up

Data Description

graph-

show

{elementId:

["ID123_456"]}

Displays the elements in the graph. Elements already dis-

played are hidden

graph-

join

{elementId:

["ID123_456"]}

Adds the elements to the graph. Elements already dis-

played are retained

graph-

hide

{elementId:

["ID123_456"]}

Removes elements from the graph

graph-

back

Moves one step back in the graph history

graph-

forward

Moves one step forward in the graph history

graph-

reload

Updates the elements in the graph.

Example: ActionResponse script which adds the root term to the graph view:

function actionResponse (element, context, actionResult) { var actionResponse = new $k.ActionResponse()

actionResponse.setFollowup(’graph-join’)
actionResponse.setData({
elementId: [$k.rootType().idString()]

})
return actionResponse

}

3.7 Special configuration

This chapter covers specific application cases in the ViewConfiguration Mapper which require

a combination of viewconfig element, search and/or script.

3.7.1 Display change history in a web frontend

Prerequisite: Change history recording has been set up

For changes to elements to be recorded, it is necessary to set up a meta-attribute with the

internal name “changeLog” of the “string” value type. See also the “ChangeLog Trigger” chap-

ter.

i-views 5.3

487/534

View configuration

The view configuration of ChangeLog entries for the web front-end can be implemented in

the form of a table via ViewConfiguration Mapper:

From the change history it is possible to read out values such as date, change, affected ele-

ment, modified properties etc.

For each of these values, it is necessary to create a column configuration that contains a script

as its column element. The script processes the entries as per the $k.HistoryChangeLogEntry

class and returns the relevant value, filtered by value type, for the column element (for syn-

tax, see JavaScript API). For script examples see the sections below.

As only one attribute element is generated for each semantic element of the ChangeLog

attribute type to be logged, all entries in the change history are written to the string as an

attribute value. Therefore, the entries of the string must be read out individually by means

of the script. To ensure that the entries are even available, it is necessary to activate (tick) the

“Use hits” option. For more information, see the “ Hit content model” chapter.

Please note:

1. In the view configuration, the ChangeLog entries can be handled like the “hits” for a

query. If the “Use hits” option is not activated, the semantic element is output with-

out properties and without the corresponding ChangeLog entry (result: as many empty

column elements as there are ChangeLog entries).

2. To ensure that the view configuration of the table is told for which attribute the ChangeLog

entries should be displayed, influence from another view is required, on the basis of

which the context element is forwarded to the table.

The output table in the web front-end looks like this:

i-views 5.3

488/534

In this example, an object called “Roadster” has been created, a relation has obtained the

“has equipment” relation for the “Folding top” object, and then the object has been renamed

“Cabriolet”. Due to the script, each row in the “Object” column displays the current name of

the object that was modified.

Script examples for the ChangeLog output

Change date

function cellValues (logEntry, queryParameters) {
return [convertToLocal(logEntry.timestamp())]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

function convertToLocal (date) {
return new $k.DateTime(date.valueOf() + (date.getTimezoneOffset() * 60 * 1000))

}

Change

function cellValues (logEntry, queryParameters) {
return [logEntry.eventTypeString()]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Object

function cellValues (logEntry, queryParameters) {
return [logEntry.topic() && logEntry.topic().name()]

}

i-views 5.3

489/534

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Property

function cellValues (logEntry, queryParameters) {
return [logEntry.propertyType().name()]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

Value

function cellValues (logEntry, queryParameters) {
var oldValue = logEntry.oldValue()
if (!oldValue) { oldValue = ” } else if (oldValue.length > 100) {

oldValue = oldValue.substr(0, 100) + ’...’
}
var newValue = logEntry.newValue()
if (!newValue) { newValue = ” } else if (newValue.length > 100) {

newValue = newValue.substr(0, 100) + ’...’
}
return [oldValue + ’ ’ + newValue]

}

function filter (elements, queryParameters, columnSearchValue) {
return elements

}

3.8 Installation

• Make ViewConfiguration Mapper available as a ZIP file via static REST resource
• Reference to VCM demo with sourcing option (link)
• Using (other) web server
• Productive operation/test operation

3.9 Extension project

i-views 5.3

490/534

3.9.1 Development environment

• Node.js/Webpack/etc.

3.9.2 Technical details

• Diagram showing information flow in the case of actions
• Component state

4 i-views services

4.1 General

4.1.1 Command line parameter

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher

priority.

-inifile <File name>, -ini < File name >

Name of the ini file that is used instead of the standard ini file.

4.1.2 Configuration file

Some settings can be specified by means of a configuration file (*.ini) . The structure of the

file is as follows:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

Below is a list of configurations that can be used for any service. For service-specific settings,

see the “configuration file” section of the relevant service.

Logging settings

loglevel = <LogLevel>

Configures the messages that should appear in the log:

• FATAL ERROR: Critical error messages only
• ERROR: Error messages only
• WARNING: Warnings and error messages only
• NORMAL (default value): All messages excluding debug outputs
• NOTIFY: All messages including several debug outputs

i-views 5.3

491/534

• DEBUG: All messages including all debug outputs

debug = true/false

Obsolete. Sets the log level to DEBUG for true, and to NORMAL for false. Only evaluated if

logLevel is not set

nolog = true/false

Obsolete. If true, logTargets=null. Only evaluated if logTargets is not set

channels = <Channel1> [,<Channel2>,...]

Names of channel filters. Channel filters are used to output only the log messages belong-

ing to the specified channel filters. The name of a channel filter indicates the topic area

to which the log outputs belong. To find out which channel filters are possible, use the -

availableChannels parameter in the command line.

channelLevels = <Channel1>:<Level1> [,<Channel2>:<Level2>,...]

Targeted configuration of the log level for the respective channel.

logTargets = <Name1> [,<Name2>,...]

Names of log targets. For the configuration, see the “Log targets” section.

logprefix = <Prefix1> [, <Prefix2>,...]

Additional data that are added for each log output:

• pid : Process ID of the application
• $proc$: ID of the current Smalltalk thread
• $alloc$: allocated memory on the VM (in megabyte)
• $free$: Free memory on the VM (in megabyte)
• $incGC$: Status of incremental GCs
• os : Information about the OS
• cmd : Command line
• $build$: Build version
• $coast$: COAST version

If the prefix is not contained in this list the prefix is output without change.

logTimestampFormat = <FormatString>

Formatting specification for the timestamp of the log entry, e.g. “hh:mm:ss”.

exceptionLogSize = <Integer>

Sets the maximum size for the StackTrace supplied with an error message.

i-views 5.3

492/534

Log targets

Log targets can be used to specify different targets for logging; it is possible to configure the

log level, channels, formatting and more for each of them. For each specified name from the

log targets list, a configuration must be specified in section [<configuration name>]

[Default]
logTargets=erroroutput

[erroroutput]
type=stderr
format=json
loglevel= ERROR

is an example that configures the output of all error messages in the JSON format in the

standard error stream.

The null log target is an exception: if logTargets=null is configured, no configuration section

needs to be created. If this section is missing, this has the same significance as the following

configuration

[Default]
logTargets=null

[null]
type=null

It is however possible to use null as the identifier for any log target configuration.

Generally it is possible, just as in the general configuration, to specify loglevel, debug, chan-

nels, channelLevels, logprefix and logTimestampFormat (see above). The configuration of the

log target always takes precedence; if none is specified, the general configuration is used.

In addition there are several other configuration options:

format = <Format>

Specifies the output format. Possible values:

• plain: Standard formatting in machine-readable form if possible
• json: Single-line output as JSON string, above all for machine processing

type = <Target type>

Specifies the type of the output. This configuration MUST be specified, otherwise the log

target is ignored. The following section contains the description and other configuration

options for the different types:

file

Output in a log file.

file = <File name>

Specifies the file name of the target file.

i-views 5.3

493/534

maxLogSize = <size>

The maximum size of the log file before the old log file is archived and a new one is written.

For values below 1,024, the output is to be understood in MB.

maxBacklogFiles = <amount>

Themaximum amount of archived log files. When a new one begins the oldest one is deleted.

transcript

Output to the transcript, can also be redirected to a log file and therefore accepts the same

configuration as file.

stdout

Output to the standard out stream.

stderr

Output to the standard error stream.

mail

Sends the log output via email.

[errorMail]
type = mail
loglevel = ERROR
;Sender address:
sender = mail@example.org
;Recipient address:
recipient = rec@example.org
;Mail server:
smtpHost = stmp.example.org
;Port of the mail server:
smptPort = 465
;If true, activates the secured connection (TLS/SSL).
;If true, the username and password must have been set.
tls = true
username = mail@example.org
password = 12345abc
;Amount of attempts to resend the email in case of failure:
retries = 3
;Waiting time between the attempts in seconds:
retryDelay = 5

mailfile

Like mail, however the outputs with a low log level are first collected and only sent via email

when an entry with a high level is logged.

mailSendLevel = <LogLevel>

Sets the log level from which the email is sent.

syslog

Output as UDP datagram to a syslog client.

i-views 5.3

494/534

format = <Format>

Unlike with other log targets, json and plain are not supported as format; instead, the syslog

version can be specified here:

• rfc5424: Formats the message as per RFC 5424. Most data are placed in the structured
data field in structured form. Only the actual log message is transmitted in the message

field .

• rfc3164: Formats the message as per RFC 3164. As this standard has no structured
data field, the corresponding data are placed at the beginning of the message field in

the same formatting. Please note: The timestamp is specified in the local time of the

sending computer as per the standard.

facility = <Integer>

The facility as an integer. For detailed information see https://tools.ietf.org/html/rfc5424#section-

6.2.1

targetHostname = <Hostname>

The host name of the target system. If not specified, localhost is used.

targetPort = <Integer>

The target port. If none is specified, the syslog standard port 514 is used.

hostname = <Hostname>

The host name of the sender. If none is specified, the host name of the system is read out.

appname = <Name>

Name of the sending application. If none is specified, the name of the EXE is used.

maxMessageSize = <Integer>

The maximummessage size in bytes. If none is specified, the maximum size for UDP is used.

To shorten the message, structured data is removed incrementally at first, and the message

is cut off if necessary. The message remains in the valid syslog format even after shortening.

null

For suppressing the log outputs. No options are read out.

4.1.2.1 Text extraction

To extract texts and meta-data from file contents, use of Apache Tika must be set up:

• Download the current Tika app (e.g. app-1.18.jar) from thewebsite http://tika.apache.org/ and
copy it into the directory of the Job-Client.

• Add the following entry to the configuration file (e.g. jobclient.ini or bridge.ini):

i-views 5.3

495/534

[text-extraction]
tikaJavaParams=-Xmx1024M
tikaJarPath=tika-app-1.18.jar
; Optional: Maximum size of the binary files,
; for which text is extracted
; extractedTextSizeLimit=100000
;
; Optional: Java path, the default value is ’java’
; extractorPath=C:\Program Files\Java\jdk-9\bin\java.exe

4.1.2.2 Macros

Within *.ini configuration files, further *.ini configuration files can be included:

$(include:Dateiname).

This allows information from several files (e.g. host name) being stored into one common

file.

• in one and the same line, the include instruction mustn’t be surrounded by further con-
tent; otherwise, the include instruction will not be recognized

• include corresponds to a textual replacement
• include can be nested: the included file turn may include further files
• the file name may consist of path specifications; within Windows, slashes / will be re-
placed by backslashes \ automatically

Including environment variables is possible as well:

$(env:Variablenname)

"$(env:USERDNSDOMAIN)" is translated into "I-VIEWS.COM" for example.

Note: This macro only can be used in key values, for categories / key names it will not be

replaced.

Example:

jobclient.ini $(include:../shared/ivcontent-host.ini) $(include:../shared/ivcontent-volume.ini) jobPools=lucene, KLuceneAdminJob [JNI] classPath=... bridge.ini $(include:ivcontent-host.ini) [KHTTPRestBridge] $(include:ivcontent-volume.ini) port=8815 ../shared/ivcontent-host.ini host=$(env:COMPUTERNAME).$(env:USERDNSDOMAIN) ../shared/ivcontent-volume.ini volume=ivcontent-master

4.1.2.3 Caching

The following excerpt shows an *.ini file example for caching:

; pre-fill corresponding fields in the login window host=demo-server.empolis.com user=peter volume=demo ; configure logging if needed logTargets=kb-log ; activate and configure file caching ; file caching speeds up data loading in subsequent sessions cacheDir=cache ; maxCacheSize sets the size limit of the file cache (in MB) ; default is 50 (MB) maxCacheSize=200 ; the language parameter forces the kb to use the given language ; without this setting, the language is specified by the OS ; possible values are "eng" und "ger" ; fallback is "ger" if the OS language is unsupported ;language=eng [kb-log] type=file file=kb.log

4.2 Mediator

i-views 5.3

496/534

4.2.1 General

The i-views server provides consistent and persistent data storage, and ensures that the data

on the i-views clients that are connected are up-to-date.

Data is managed in an object-oriented database that uses an optimistic transaction system

to allow cooperative work on the semantic network.

Functioning as a communication center, the i-views server ensures clients and services are

synchronized. As a basic mechanism, it makes a shared object space and active updates

available for this.

Technical data:

• Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (media-
tor.exe or mediator.im).

• Configurable TCP/IP server port for communication with the clients, standard in i-views
5.1 is 30064.

The i-views server can be operated in three modes:

1. Classic/Compact: The server starts as an individual process in this mode - the so-called

“mediator”.

2. Multiprocess: The server starts at least two processes in thismode. This results in higher

memory usage than in compact mode, however many jobs can be executed in parallel.

3. Distributed: The server components “stock” and “dispatcher” can be configured and

operated separately in this mode. This makes it possible to distribute the server com-

ponents across different computer nodes.

4.2.2 System requirements

The i-views server is platform-independent and runs on all popular operating systems, e.g.

Windows and Linux. Other systems on request.

OS Version Pro-

ces-

sor

Sup-

ported

64

Bit

VM

Win-

dows

All versions, servers and clients currently supported by

Windows

x86 Yes Yes

Linux RedHat, SLES, etc. (Kernel >= 2.4, glibc >= 2.5) x86 Yes Yes

Kernel >= 2.6, glibc >= 2.5 PPC No

ARM No

Mac OSX 10.9+ x86 Yes Yes

i-views 5.3

497/534

4.2.3 Operating modes

First, the following start parameters generally determine the mode in which the server is

started. Without parameters, the server starts in the compact “mediator” mode.

-stock

Starts the “Stock” server component, which is responsible for persistent data storage.

-dispatcher

Starts the “Dispatcher” server component, which is responsible for the synchronization of

the clients and for the distribution of “active updates”.

-server

Starts the complete server in the multiprocess mode.

4.2.3.1 Multi process mode (-server)

The start parameter -server automatically starts a stock and a dispatcher. The dispatcher

opens a server on the default port (30064). The port of the stock is selected automatically.

Authentication tokens between the two processes are generated automatically and do not

have to be configured.

Please note: It is important that all clients (Knowledge Builder, bridge, batch tool etc.)

have access to stock and dispatcher.

If this is only possible for certain ports, stock and dispatcher must be configured explicitly.

The local directory uses the same configuration files as the actual distributed mode

• dispatcher.ini configures the dispatcher process
• stock.ini configures the stock process

Other configuration files cannot be used at present.

4.2.3.2 Configuration of the Stock

The stock is responsible for storing the data on the hard drive. A simple is example of this is

the configuration file stock.ini

[Default]

0.0.0.0interfaces=cnp://0.0.0.0:4998

This configuration ensures that the stock listens on port 4998 and communicates via the

native Coast protocol.

The configuration file can contain the following entries:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

i-views 5.3

498/534

The following parameters can be used at this point:

port=<port number>

Starts the stock with port number <num>. Without this entry, port 30064 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated

form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several

values are permissible and are separated by a comma. Possible protocols are: http, https,

cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol

Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,

host and port. The host component is used tomanage which network address(es) is/are used

to access the server. For example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end

on volumes, this directory is used directly without creating an additional “volumes” directory

below it.

volumesDirectory=<Directory>

The semantic networks are stored in this directory. Here, “volumes” is entered as the default

value.

backupDirectory=<Directory>

Specifies the directory to which the semantic network backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value

is 20480. In some infrastructures you can specify

networkBufferSize=4096

to achieve a higher throughput.

flushJournalThreshold=<Number of clusters>

Specifies the maximum value that “changed cluster" + “index cluster" may reach in a saving

process. If the value for “changed clusters” has already been exceeded, no “index clusters”

are saved; these are kept with the journal instead.

A low value (e.g. 50) guarantees fast saving time but can potentially generate a large journal.

A value of “0” deactivates journaling. The default value is “2000.”

Note: A “flush” of the journal is executed after complete saving at the latest. This in turn is

triggered if:

i-views 5.3

499/534

• The mediator is closed
• The last client of the corresponding volume is logged off
• Saving is triggered by a full-save job (see jobs.ini)

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after

the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message

before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)

hash value. These two pieces of information then suffice for the mediator to check an au-

thentication request. During authentication on the server, the user name must be specified

as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini

file. The “password.update” entry is removed in this process.

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not

be used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting

the mediator is skipped

Changed

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

maxMemory=<Integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

i-views 5.3

500/534

baseMemory=<Integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<Integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs

are stored separately from the database on the hard drive, the following setting must be

entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-

low).

4.2.3.3 Configuration of the Dispatcher

The dispatcher is responsible for transaction control and coordination of several clients. A

simple configuration file is

[Default]

interfaces=cnp://0.0.0.0:5000

stockAddress=cnp://localhost:4998
stockAuthentication=dsfkhvqw3n9485z432504

This configuration opens a server on port 5000 to which clients can connect. The dispatcher

looks for the stock under localhost:4998. This address is also the address that clients use to

fetch data from stock

If dispatcher and stock are running on the same server, the dispatcher tells its clients its own

host name to ensure connections via the network work.

Token dsfkhvqw3n9485z432504 is used to authenticate the dispatcher on the stock. This

token must be set in the stock configuration using the "password.*” keys .

4.2.4 Installation

By principle, the i-views server does not require a specific installation, i.e. it can be started

ad-hoc from any directory.

However, it must be ensured that the necessary access rights (read/write/generate) have

i-views 5.3

501/534

been set for the server s working directory and all subdirectories.

4.2.4.1 Start parameter

A range of parameters can also be transferred to the mediator process when starting. Most

parameters can, however, also be specified in the mediator.ini, allowing the mediator to

be started using a simple command line. When doing so, the rule is that the parameters

specified on the command line take precedence over any parameters specified twice in the

.ini file.

The complete list of possible start parameters is output by themediator when called up using

the parameter “-?”.

-interface <interface-1>

This parameter determines the addresses and protocols used to access the server. Possible

protocols are: http, https, cnp, cnps. The abbreviation “cnp” stands for “Coast Native Pro-

tocol” or “Coast Native Protocol Secure.” The syntactic structure of an interface definition is

equivalent to a URL with schema, host and port. The host component is used to manage

which network address(es) is/are used to access the server. For example: “0.0.0.0”=IPv4 all

interfaces, “[::1]”=IPv6 loopback only.

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

-clientTimeout <sec>

Sets the time within which a client must automatically answer to <sec> seconds. The value
should be set to a minimum of 600 (which is also the default value).

-baseDirectory <directory>

Sets the directory in which the “Volumes” directory is located. Along with the “Volumes”

subdirectory, the directories for backups and downloads are created. This parameter used

to be called “-volumes”.

The following parameters give commands to the mediator executable to run specific jobs,

without functioning as a server for semantic networks afterwards.

-quickRecover <volume> -recover <volume>

In the event that the mediator was not shut down properly (e.g. computer crash), lock files

in volumes that were in use stop running. The volume will then not be able to be entered. In

order to disable the lock, remove the lock by calling -quickRecover <volume>. It cannot be
called when (possible) inconsistencies were found. In this case, the start parameter -recover

must be used.

Please note:

The working directory called must be the directory that contains the “volumes” directory. The

“Volumes” parameter therefore does not function in this case.

-bfscommand <volume> <command>

Executes commands that are identified by the BlockFileSystem.

Command line parameter for logging:

i-views 5.3

502/534

-nolog

Disables logging

-loglevel <integer>

Configures the messages that should appear in the log:

• 0: All messages including debug outputs
• 10 (default value): All messages excluding debug outputs
• 20: Warnings and error messages only
• 30: Error messages only

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this

parameter when several clients are being started in the same working directory.

-debug

Switches logging to debug mode

-log <logname>

Sets the log file to <logname>.

4.2.4.2 Configuration file "mediator.ini"

A number of mediator settings can also be defined in the configuration file mediator.ini. The

structure of the file is as follows:

[Default]
parameterName1=parameterValue1
parameterName2=parameterValue2
...

The following parameters can be used at this point:

Network communication

port=<port number>

Starts the server with port number <num>. Without this entry, port 30061 is used.

This parameter is obsolete. It is replaced by the “interfaces” parameter. The entry “port=1234”

corresponds to the entry “interfaces=cnp://0.0.0.0:1234.” In contrast to the start parameter,

multiple values are possible here, which can be listed consecutively in comma-separated

form.

interfaces=<interface-1>,<interface-2>,...<interface-n>

This parameter determines the addresses and protocols used to access the server. Several

values are permissible and are separated by a comma. Possible protocols are: http, https,

cnp, cnps. The abbreviation “cnp” stands for “Coast Native Protocol” or “Coast Native Protocol

Secure.” The syntactic structure of an interface definition is equivalent to a URL with schema,

host and port. The host component is used tomanage which network address(es) is/are used

to access the server. For example: “0.0.0.0”=IPv4 all interfaces, “[::1]”=IPv6 loopback only.

i-views 5.3

503/534

The “http” and “https” protocols can be rerouted via proxies, allowing the server to be ac-

cessed using an IIS running on port 443, for example.

For SSL communication (cnps:// or https://), the file paths for certification and private key

must also be specified in the configuration file:

certificate=name of the .crt file privateKey=name of the .key file

Directories

baseDirectory=<Directory>

Sets the directory in which the “volumes” directory is located. If this value is supposed to end

on volumes, this directory is used directly without creating an additional “volumes” directory

below it.

volumesDirectory=<Directory>

The semantic networks are in this directory. volumes is entered as the default value at this

position.

backupDirectory=<Directory>

Specifies the directory to which the semantic network backups are written and also read for

restoring. Only complete directory names are allowed, no relative paths.

networkBufferSize=<Size in bytes>

This specifies the size of the buffer that is used for sending/receiving data. The default value

is 20480. In some infrastructures, you can specify

networkBufferSize=4096

to achieve a higher throughput.

journalMaxSize=<Maximum size of the journal>

journalMaxSize=0 can be used to deactivate journaling, which is normally active. The default

value is 5242880 (5 MB).

autoSaveTimeInterval=<Wait interval in seconds>

Specifies the maximum wait time in seconds until automatic saving takes place again after

the last cluster was saved. The default value is 15.

clientTimeout=<Timeout in seconds>

Specifies the time in seconds that a connected client may not have sent an Alive message

before the mediator regards it as inactive and excludes it.

password.flavour=190133293071522928001864719805591376361
password.hash=11199545182458660705495599802052624171734965791427080638694954247035513239844

The mediator password is calculated together with a random flavor to produce a (SHA256)

hash value. These two pieces of information then suffice for the mediator to check an au-

thentication request. During authentication on the server, the user name must be specified

as “Server.admin.” To determine these values, you can use

password.update=new_password

Trigger the server to compute a new flavor and suitable hash value and write these to the ini

file. The “password.update” entry is removed in this process.

i-views 5.3

504/534

password=<String>

The obsolete but still supported way of setting the mediator password. This variant must not

be used at the same time as the SHA256 hash variant.

Changed

skipVolumesCheck=<true|false>

Specifies whether the check of the existing volume that is normally performed after starting

the mediator is skipped

Logging

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Working memory

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory. (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

BLOB service configuration

If the mediator is supposed to be started with an integrated BLOB service so that the BLOBs

are stored separately from the database on the hard drive, the following setting must be

entered in the “mediator.ini” file:

startBlobService=true

For more information on this, refer to the documentation of the BLOB service (see link be-

low).

4.2.4.3 Security concept of the Mediator

The i-views server is a generic component that can be used for more than i-views. Along with

the restrictions due to authentications on the server or in the database, the user can also

control which applications may connect to it.

Each application (client and server) receives a pair of RSA keys that is unique for each ap-

plication delivered. The public key can be obtained by using the information (KB: “Tools”

menu, “Information”, then the “Copy RSA key” button) or be called up using the parameter

-showBuildID for console applications. The build information exported this way includes the

public RSA exponents (rsa.e_1) and RSA module (distributed across several rsa.n_X) and an

i-views 5.3

505/534

MD5 checksum for this information (buildID).

Example of build information:

[buildID.90A1203EFB957A58C2268AD8FE3CC5A3] rsa.n_1=93D516DF61395258AA21A91B33E8EE67 rsa.n_2=B07C6FC5023DBB18F2201CF723C8F5DD rsa.n_3=78941FB7C10D20988FEDFC6BD02CF3B7 rsa.n_4=E4567751843C38F055ED791AA7505278 rsa.n_5=23D94BB9EAB2E23F21DBEAA3DD2D2776 rsa.n_6=CE8B81564645DA85C85E9A78BB6E6B41 rsa.n_7=28A646D4868C38E00AE4810601B1EE9F rsa.n_8=4FF5C35F873E6ED4F65F0FE8B4B45307 rsa.e_1=010001

If you would now like only a specific set of client applications to be able to connect to the

server, then youmust transfer the respective sections into the mediator.ini in the server. The

client transfers its buildID when it connects. When the mediator receives a suitable entry, it

authenticates the client. In other cases, it will only connect when there are no entries on

build information in its ini file. This, for example, prevents outdated client applications or

modified client applications from being able to connect to the mediator.

Conversely, corresponding buildIDs for the mediators can be entered in the respective ini file

in the client application in order to prevent a compromised or outdated server from estab-

lishing a connection.

This allows an environment to be configured in which only the latest software can be used

to access productive data, but also allows access to the server with the test data from a

development environment. The user software, in turn, can only access the productive server

or the test server.

If neither the server nor the client is configured, then the installation performs the same

way as the predecessor version: Each application can connect to any server (as long as the

protocol version is correct).

Server version 5.4 or higher requires the server password as a parameter in order to run

administrative commands (by means of the Rest interface or by means of the administration

using an administration tool). An authentication as the administrator in the volume has been

sufficient since version 6.2 for actions that relate to an existing database (backup, download,

garbage collection, etc.).

Conversely, it is possible to log into a volume using the server password. Details of this can

be found in the Admin tool.

If no password has been configured on the server, then any password can be used to log

onto the server. However, logging in on the volume is then not possible.

4.2.4.4 Audit log configuration

In a number of application scenarios, it may be necessary to log all accesses to a Knowl-

edge Graph in an access or audit log. This audit log contains entries for all log-in and log-out

processes, write and read access to Knowledge Graph contents, search requests made, print-

outs, exports, etc.

The log must be activated in the System configuration / Audit log category in the Admin tool.

The activation or deactivation of the log, in turn, results in a entry in the audit log.

An analysis tool can be opened in the administrator menu of the Knowledge Builder to view

and search within the access log.

The log can be configured by creating a file named ’log.ini’ in the data directory of the volume.

This configuration file is only read when the volume is opened. If the configuration was

changed while the volume was opened, then the Mediator has to be restarted.

[Default]
; A comma-separated list of log names. The log is configured in the section with the same name.
applicationLog=audit

i-views 5.3

506/534

[audit]
; Create a compressed backup every 28 days and start with a new empty log
backupInterval=28
; Max size of a JSON file, in MB
maxLogSize=5
; Do not flush the log immediately, for better performance
writeBackImmediately=false

4.2.5 Operation

4.2.5.1 Shut down the server

The i-views server can be shut down locally by means of the Ctrl-C abort signal.

In case of installation as a Windows service, the server must be stopped using the service

management.

Under UNIX and if operated as a Windows service, the server is shut down properly when the

operating system is shut down.

4.2.5.2 Storage and backup of semantic networks

Directory structure

The basic directory of the i-views server has the following structure:

volumes/
knowledgenetworkName/
knowledgenetworkName.cbf
knowledgenetworkName.cdr
knowledgenetworkName.cfl
knowledgenetworkName.lock (if the semantic network is open)

backup/
knowledgenetworkName/

<ten-digit number>/
knowledgenetworkName.cbf
knowledgenetworkName.cdr
knowledgenetworkName.cfl

Storage of semantic networks

Semantic networks are stored in the file system in the “volumes” subdirectory of the basic

directory of the i-views server. In this directory, a subdirectory with a corresponding name

is created for each semantic network. A file with the .lock file extension indicates that a

semantic network is currently in use.

Backup of semantic networks

The semantic network directories must never by copied while the server is running. For this

i-views 5.3

507/534

purpose the server has a backup service, which copies a consistent state of the semantic

network to a backup area. This backup area must be backed up at regular intervals (e.g. as

part of an overall backup strategy).

The location where backups are created can be specified using the entry

backupDirectory=<directory>

in the “mediator.ini“ file. Without this information, the “backup” subdirectory of the basic

directory is used.

The backup service of the K-Infinity server can be initiated in two ways:

1. With a direct request to the server process (e.g. from the administrator tool)

2. With entries in the jobs.ini file in the working directory of the server. For each semantic

network, this file can contain a category [name_of_network] with the following entries:

Example jobs.ini

[volume1]
;Backup of network “volume1”

;Time the backup starts
backupTime=00:45

;Interval in days - daily in this case
backupInterval=1

;Keep the last 5 backups of this semantic network
backupsToKeep=5

backupsToKeep specifies the number of backups to be kept. This also includes backups that

were created manually. The default value is 3.

When specifying the network names in square brackets, you can use the wildcards “*” and

“?”; the names are not case-sensitive.

4.2.5.3 Garbage Collection

Without Garbage Collection, the semantic network continues to grow through use. Hence,

it makes sense to perform a cleanup (Garbage Collection) from time to time. Like a data

backup, you can start the Garbage Collection manually at any time (e.g. with a special admin-

istrator tool) or it can be started automatically.

Depending on the size of the network, the Garbage Collection might require a lot of time and

memory. When running the Garbage Collection in large networks, we recommend starting it

without connected clients (e.g. Knowledge Builder and Job-Clients) and without other active

processes (e.g. backup).

Automatic Garbage Collection: Structure of the jobs.ini file

Automatic Garbage Collection is configured through an entry in the ’jobs.ini’ file, e.g.

[volume1] garbageCollectTime=00:55 garbageCollectInterval=7

This entry in jobs.ini ensures that a garbage collection in the network called “volume1” is

i-views 5.3

508/534

performed at “00:55” a.m. every “7” days. The default value for the interval is “1” (i.e. daily);

the time of day must be specified.

When specifying the network names in square brackets, you can use the wildcards “*” and

“?”; the names are not case-sensitive.

Manual start of Garbage Collection

Alternatively, Garbage Collection can also be controlled using special call parameters of the

i-views server:

-startGC

<volume>
-host

<hostname>

Starts the Garbage Collection on the network named <volume> and on a
potentially remote mediator on the computer<hostname> (optional incl.
port information).

-stopGC

<volume>
-host

<hostname>

Ends any Garbage Collection of the network named<volume> that might
be running on the mediator <hostname>.

-infoGC

<volume>
-host

<hostname>

Informs about the current status of the Garbage Collection.

These commands are transferred to another already running mediator by means of a medi-

ator executable.

Another option is to start the Garbage Collection via the Admin tool.

To execute these demands, the parameter -password must be used to transfer the correct

server password.

4.2.5.3.1 Status check of carbage collection via REST interface

For maintenance purposes, starting and status requesting both can be done via REST inter-

face.

mediator.ini

The initialization file mediator.ini must include two interfaces for the [Default] block:

• cnp-Interface for communication with the job clients
• http-Interface for REST communication

The needed line will be as follows:

interfaces=cnp://0.0.0.0:67890,http://0.0.0.0:45678

The ports are freely selectable, but they must be adjusted for every other access.

i-views 5.3

509/534

Note: After changing the ini files, the mediator needs to be restarted.

Credentials

In order to prevent user and password from appearing within the process lists, a credentials

file needs to be used. For this, we create a file called ".iviews_auth" containing the following

lines:

machine localhost login admin password "<PASSWORD>"

The access rights need to be set to "0600" (read andwrite access) for the user who is intended

for access via REST.

REST call per curl

Requesting status of garbage collection:

curl –netrc-file .iviews_auth http://localhost:45678/volumes/my-volume-name/garbageCollection

Status with json-prettyprint:

curl -s –netrc-file .iviews_auth http://localhost:45678/volumes/my-volume-name/garbageCollection | python3 -m json.tool

Starting garbage collection:

curl –netrc-file .iviews_auth -g -d "action=start" http://localhost:45678/volumes/my-volume-name/garbageCollection

Stopping garbage collection:

curl –netrc-file .iviews_auth -g -d "action=stop" http://localhost:45678/volumes/my-volume-name/garbageCollection

4.2.5.4 Operation in Unix

Under UNIX the server reacts to the following signals:

SIGTERM/SIGHUP

Shuts down the server

SIGUSR2

The server immediately begins to back up all semantic networks that are specified for backup

in the jobs.ini file (see also the section on backups).

4.2.5.5 Operation in Cluster

The mediator can be operated in a cluster. A cluster environment usually mirrors the direc-

tories and therefore the semantic network constantly. If the part of the cluster on which the

mediator is running fails, a newmediator that then manages access to the semantic network

is started automatically

If the first mediator fails, it is possible that the mediator no longer has time to make the se-

i-views 5.3

510/534

mantic network consistent and that the network thus has an inconsistency and the “lock” file

of the old mediator remains in the corresponding directory. To ensure that the newmediator

is able to delete the “lock” file, the following parameter must be added to the mediator.ini

file.

host=NameOfCluster

In this case, all mediators with this ini entry can also unlock locked volumes of other medi-

ators that read the same value in the mediator.ini when started. “NameOfCluster" can be

selected freely but must comply with the rules that apply to host names (no spaces, colon, or

the like)

A consistency check of the volume is executed automatically when the mediator is started.

To the extent possible, the semantic network is made consistent and operation continues as

normal.

4.2.5.6 Troubleshooting

If the i-views server was not shut down properly during operation (e.g. computer crash), then

the locks remain in opened semantic networks. When a locked semantic network is opened,

this lock is detected and removed, if possible.

If the mediator detects an inconsistency, then the semantic network can be checked and in-

consistencies can be repaired to the extent possible by calling the mediator in the command

line using the parameters -quickRecover / -recover.

If resolving the inconsistencies is, contrary to expectation, not possible, then a backup copy

will need to be used.

4.2.5.7 Commands of the BlockFileSystem

The commands behind -bfscommand enable operations on the BlockFileSystem and are de-

signed for support cases. Such a command could look as follows, for example:

-bfscommand quickCheck {target volume}

The database addressed with {target volume} is subjected to a quick structural analysis. Sim-

ilarly, deepCheck can be used to perform a complete analysis.

4.3 Bridge

4.3.1 General

The bridge enables access to semantic networks on three types/operating modes:

• Via a RESTful services architecture (REST-Bridge). The interface is available as an HTTP
or HTTPS version (KHTTPRestBridge)

• Via KEM-RPC (KEMBridge): Access via KEM If binary data is supposed to be stored in the

semantic network, a REST bridge is required, which provides a REST service with a blob

i-views 5.3

511/534

resource handler.

• Operating mode “Load distributor for other bridges” (KLoadBalancer).

PLEASE NOTE: KLoadBalancer and KEMBridge/KHTTPRestBridge may not be activated in one

bridge at the same time because they interfere with each other.

The bridge and all of the accesses to be activated in it can be configured via an ini file. Settings

for accesses are bundled in sections. The most important of these parameters can also be

specified via a command line. If that is the case, the values of the command line call take

precedence over those in the ini file. The individual parameters are explained next.

4.3.2 Common command line parameters

If the bridge is started without any parameters, the required parameters are read from the

ini file bridge.ini and the error messages are written to the file bridge.log.

If there is also an entry in the ini file for a call parameter, then the call parameter has a higher

priority.

-inifile <File name>, -ini < File name >

Name of the ini file that is used instead of the standard ini file. The default is bridge.ini

-host <hostname:port>, -hostname <hostname:port>

Name of the mediator that acts as the data server. This applies to all activated bridge clients

-port |<ClientName> <portnumber>

Parameter -port should usually be set for every client in the ini file. However, if you want to

already do this in the command line, you can specify different clients by specifying the client

name in front of the port number. The line above applies to one client; hence, the -port

parameter must be repeated until several clients are configured.

Examples of calling the bridge:

bridge -host server01:30000 -port KEMBridge 4713 -port KEMStreamingBridge 4714

bridge -ini bridge2.ini -port KMultiBridge 3030

Command line parameter for logging:

-nolog

Disables logging

-loglevel <Integer>

Configures the messages that should appear in the log:

• 0: All messages including debug outputs
• 10 (default value): All messages excluding debug outputs
• 20: Warnings and error messages only
• 30: Error messages only

i-views 5.3

512/534

-logfile <file name>, -log <file name>

Name of the log file that is used instead of the standard log file. It is important to change this

parameter when several clients are being started in the same working directory.

-debug

Switches logging to debug mode

-log <logname>

Sets the log file to <logname>.

-stop <hostname>

If you call the bridge with the parameter above, the current bridge is prompted to terminate

on the specified host. All clients started in it are shut down and the bridge is terminated.

4.3.3 Configurationfile "bridge.ini"

All of the following entries are found below the ini file section [Default]. The entries for the in-

dividual clients follow these. Adding client-specific configuration sections also defines which

clients are activated in the bridge to be configured and started. At the moment, potential

clients include:

• KEMBridge
• KHTTPRestBridge

In addition, the KLoadBalancer can be started as a client of the bridge, in which case the ini

file only includes the section

• KLoadBalancer

host = <hostname:portnumber>

see command line parameter -host

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

maxMemory=<integer, in MB>

Maximum base memory usage permitted. A minimum of 50 MB, the total physical base

memory available (under Windows) or 512 MB by default.

baseMemory=<integer, in MB>

Basememory usage after which efforts to free upmemory increase. By default 0.6 *maxMem-

ory (alias: “growthRegimeUpperBound”)

freeMemoryBound=<integer, in MB> [10]

If memory that is being used, but is no longer needed, exceeds this limit, it is freed up for use

again.

i-views 5.3

513/534

minAge=<integer> [30]

Minimum duration (in seconds) in which a cluster remains in the memory. A cluster is a

set of objects that are always loaded together as one (e.g. an individual with all its (meta)

properties. Clusters that have not been used for an extended period are unloaded when

necessary.

unloadInterval=<integer> [10]

Minimum duration (in seconds) between two clusters being unloaded

unloadSize=<integer> [4000]

Minimum number of loaded clusters after which unloading occurs

keepSize=<integer> [3500]

Number of clusters that are kept when unloading

useProxyValueHolder=true/false

The option useProxyValueHolder=false can be used to reduce the mediator workload during

searches. The client then loads indexes in the basememory instead of querying themediator

by means of RPCs. The drawback of this option is that only read access is permitted.

loadIndexes=true/false

This option is also used to load indexes to the memory. However, it continues to allow write

access. The option can be activated for all clients, including Knowledge Builder.

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

4.3.4 REST bridge

4.3.4.1 Introduction

The REST-Bridge application enables read and write access to i-views via a RESTful services

architecture. The interface is available as an HTTP or HTTPS version.

The REST bridge runs inside the standard bridge of i-views (bridge.exe).

The interface is fully configured by configuration individuals in the semantic network. The

return value of a REST call is any string, usually in a format that the calling client can process

easily (e.g. XML or JSON).

4.3.4.2 Installation

4.3.4.2.1 Prepare volume

I. Creating a system account for the bridge service

To allow a bridge service to access a knowledge network that is managed by a mediator ser-

vice, a system account must be created for the bridge service in the knowledge network. This

can be done with the Admin tool (under System configuration > System accounts) or with
the Knowledge Builder (Settings/Cogwheel > System tab > System accounts). The example
shows how a system account can be created using the admin tool:

i-views 5.3

514/534

Step 1:

Admin tool - Create system account and enter account name

Step 2:

Click ’No’

Step 3:

Automatically generated login token is displayed

Important: The login token (rest-bridge_...) displayed in the last step is required again when

configuring the bridge (next chapter). The Enter token window should therefore remain open

or the token should be saved in a safe place.

II. Activating the REST component in the knowledge network

By adding the software component “REST” in the Admin tool, the required schema is created

in the semantic network.

i-views 5.3

515/534

i-views 5.3

516/534

The schema is created as a subnet of the semantic network called “REST,” which can only be

edited by an administrator in the Technical section:

i-views 5.3

517/534

4.3.4.2.2 Configure bridge

The REST interface is provided by the standard bridge component of i-views, provided the

corresponding configuration file bridge.ini contains an entry for the category KHTTPRest-

Bridge or KHTTPSRestBridge:

[KHTTPRestBridge]
volume=name of the semantic network
port=port at which the service is to be reachable, the default is 8815
authentication=token value of the system account created for this bridge (see above)
services=list of REST service IDs to expose

For the HTTPS version, the file paths for the certificate and private key must also be specified

in the configuration file.

[KHTTPSRestBridge]
volume=name of the semantic network
port=port at which the service is to be reachable, the default is 8815
authentication=token value of the system account created for this bridge (see above)
services=list of service IDs to expose
certificate=name of the .crt file
privateKey=name of the .key file

In the configuration section “KHTTPRestBridge” or “KHTTPSRestBridge” you can also enter

the following special configuration options:

Name Description

i-views 5.3

518/534

realm Name that is returned to the client as

the realm name if authentication is active.

Web browsers typically display the realm

name as the application name in dialog

boxes for authentication to ensure the user

knows who is requesting the authentica-

tion. Default value: REST

4.3.5 KEM bridge

KEMBridge

Section name:

[KEMBridge]

port = <portnumber>

Specifies the port under which the KEMBridge reacts. If no entry is made, the default value

of 4713 applies.

ldapHost = <hostname:portnumber>

Specifies the LDAP host to be contacted if authentication is to be performed via LDAP. If this

parameter is specified, authentication must be handled via LDAP.

maxLoginCount = <number>

Maximum number of failed attempts to log in before the relevant user is locked out of the

network. After that, login is only possible after they have been unlocked via the Knowledge

Builder. If the value is not set, a user can make as many failed attempts to log in as they wish.

In order to allow a user to be locked out of the semantic network, a Boolean attribute with the

internal name userlock and the default value false must have been defined for individuals of

the person concept.

KEMrestrictToIPAddress = <IP address>

If this parameter is set, connections are only accepted from the host specified here.

trustedLoginEnabled = <true/false>

Makes it possible to log in without a password by means of the request “newAuthenticate-

dUser(username).”

preventSessionReplay=<true/false>

[default=false]

This parameter specifies that each writing session receives its own protected semantic net-

work access, so that there is no longer any need for the usual mechanism of executing the

actions of a deactivated session again during reactivation in order to restore the most recent

editor state.

KEMStreamingBridge

Section name:

i-views 5.3

519/534

[KEMStreamingBridge]

port = <portnumber>

Specifies the port under which the KEMStreamingBridge reacts. If no entry is made, the

default value of 4714 applies.

4.3.6 KLoadBalancer

The KLoadBalancer can be used to scale the services and availability of the KEMBridge and

KEMStreamingBridge.

The following specification must be entered in the [KLoadBalancer] section in order to obtain

the required operating mode:

• allowRemoteShutdown (default value false)
• autoRestart (default value true)
• directory (default value current working directory in which the KLoadBalancer was
started)

• executable (default value ’bridge.exe’)
• image (default value ’bridge.im’)
• vm (default value ’visual’)
• hostname (default value Localhost)
• configNames (required value, not optional)
• parameters (default value blank)

The parameter #configNames is used for continuing the configuration of the KEMBridges

and KEMStreamingBridges to be started, with one bridge type controlled by each individual

configuration. The configuration names must be separated by a comma.

Here is an example of a KLoadBalancer ini file:

[Default] [KLoadBalancer] hostname=ws01 port=30003 directory=C:\3.2\balancing executable=bridge.exe ;vm=visual ;image=bridge.im configNames=KEM,Streaming [KEM] bridgeClientClassName=KInfinity.KEMBridge inifile=kembridge.ini bridgeLogfile=kem-<id>.log maxBridges=2 [Streaming] bridgeClientClassName=KInfinity.KEMStreamingBridge inifile=streaming.ini bridgeLogfile=streaming-<id>.log maxBridges=2

Upon starting, KEMBridges and KEMStreamingBridges are started in accordance with both

the configurations. Because the same software is used for operation as is used for oper-

ation of the KLoadBalancer, specifying the parameters #executable, #image and #vm (for

operation in Linux), #hostname, #directory and #parameters are required.

executable / image, vm; directory: Specifications for how the individual bridges can be

started. Specifying #executable and #directory is required under Windows, while specifying

#image, #vm and #directory is required under Linux.

hostname / port: The host name which is used to refer to the bridges to be started, and

the KLoadBalancer to be contacted for administration purposes. If nothing is specified here,

then the name of the computer is determined and used. The port indicates the port used by

the bridges to address the balancer, the default value is 4715.

Careful: The name of the respective mediator that the bridges contact to retrieve data must

be entered in the respective ini files in accordance with the configuration section.

parameters: A field that is used to add additional specifications in the command line of the

bridges to be started, and is the same for all bridges to be started.

allowRemoteShutdown: A parameter that specifies whether the KLoadBalancer can be

ended by means of a shutdown request using remote access.

i-views 5.3

520/534

autoRestart: Parameter that specifies whether a stopped KEMBridge should be restarted

after the shutdown, with a new ID.

Additional specifications must be entered in each configuration section:

• bridgeClientClassName (not optional, only one specification possible per section. Please
observe the syntax described above!)

• inifile (ini file with settings for this type of bridge to be started)
• bridgeLogfile (sample of a log file name in which a placeholder is added, <id>, which
is used to distinguish the log files for the individual bridges, and is replaced with the

consecutive number of the bridge that was started)

• maxBridges (maximum number of bridges of the specified type to be started, not op-
tional)

• sslEnabled (specifies whether the bridges of this type should use SSL to establish a con-
nection, default value false)

Please note: The parameter #directory specifies the working directory in which the files

specified in the configuration sections are searched for and, when applicable, created. Soft-

ware and ini file for starting the KLoadBalancer may be located elsewhere.

The ini files for the respective bridges must have the usual structure. An example of the

KEM-referenced ini file in the configuration section above is provided here:

[Default] host=mediator-hostname:30053 [KEMBridge] trustedLoginEnabled=true preventSessionReplay=true sslEnabled=true timeout=10

For details, please refer to chapter 5, “Configuration file bridge.ini”.

4.4 Jobclient

4.4.1 General

On the one hand, the Job-Client provides services for other i-views clients to relieve them of

time-consuming and data-hungry tasks. On the other hand, it is used as the bridge between

i-views clients and external systems.

One of its most important tasks is to execute all types of queries and deliver the search

results to the clients (sorting, text formatting, rights filtering).

Normally, the client waits until a job is complete (synchronous operation).

To execute complex searches, generate statistics, batch reconciliations, data formatting, data

clearing etc. the client does not have to wait for completion (asynchronous operation). The

result is made available by the server and the client is notified. The result can be viewed

some time later. Since the result is also made persistent, it is still available if the system is

restarted or in case of a fail-over.

Operation:

In the shared object space provided by the i-views mediator, the tasks of the clients for the

services are stored in pools. All i-views Job-Clients are notified of new jobs and apply to

process the new job, provided they are currently free. Once the job has been processed,

the result is made available in the shared object space, the requesting client is informed

and the result can be retrieved and displayed. Hence, the client logically commissions a

Job-Client but the physical communication always goes through the i-views server. To the

client it is transparent which Job-Client is executing its job just as the source of the job and

how many parallel Job-Clients are currently active is transparent to the Job-Client. Hence

i-views 5.3

521/534

installation and maintenance of Job-Clients is very easy and flexible for administrators. Job-

Clients can be scaled as designed, distributed across different computers and be connected

and disconnected dynamically. External clustering or other orchestration is not necessary.

Technical data:

Multi-platform executable based on the VisualWorks Smalltalk Virtual Machine (jobclient.exe

or jobclient.im)

Requires a TCP/IP connection to the i-views server

Automatic load distribution between services

Job-Clients can be connected or shut down at any time

Standby mode in case required resources are temporarily unavailable

4.4.2 Configuration of the Jobclient

4.4.2.1 Configuration file "jobclient.ini"

The Job-Client is configured directly in the ini file. If this file is not specified by the call pa-

rameter “-inifile” when the Job-Client is started, "jobclient.ini” is used as the configuration

file.

4.4.2.1.1 General parameters

The following parameters can be configured:

Parameter: Description: Syntax:

host Name / IP address and

port of the server.

host=<host name:port number>

volume The name of the seman-

tic network for working

on. volume=<volume name>

jobPools Specifies which jobs the

Job-Client is supposed to

process. The names

of the job pools to be

started are to be speci-

fied in comma-separated

form. Alternatively, you

can also specify the cate-

gory (e.g. “index”). In that

case, all job pools of this

category are selected.

The possible types are

presented in the sub-

chapters.

jobPools=<job name1>
[,<job name2>, ...]
Example:

jobPools=KScriptJob, query

i-views 5.3

522/534

cacheDir The description of the

location at which the

cache for the Job-Client is

stored.

cacheDir=<directory>

volumeAcces-

sor

Description of the

storage type of the

cache. Unless specified

otherwise, CatBSBlock-

FileVolumeAccessor is

used. This storage type

is recommended espe-

cially for large networks

as CatCSVolumeFileStor-

ageAccessor would

create a large number of

files.

Example:

volumeAccessor=CatBSBlockFileVolumeAccessor

or

volumeAccessor=CatCSVolumeFileStorageAccessor

maxCacheSize Target size of the cache

maxCacheSize=<size in MB>

shutDown-

Timeout

Wait period for termi-

nation of the active job

when shutting down the

Job-Client. The jobs are

terminated at the end of

this period.

The default value is 10

seconds.

shutDownTimeout=<seconds>

enableLowS-

paceHandler

This option activates the

LowSpaceHandler. This

should always be acti-

vated for large networks.

enableLowSpaceHandler=true/false

i-views 5.3

523/534

useProxyValue-

Holder

This option can be used

to control whether the

Job-Client executes index

access via RPC (true) or

loads indexes to mem-

ory (false). This op-

tion should be deacti-

vated to ease the medi-

ator load. In doing so,

however, you should en-

sure that the Job-Client

has enough memory. If

the Job-Client has been

configured for write jobs,

this option has no effect

as index access is always

executed via RPC then. If

you set the value to false,

a message is output in

the log on start-up.

useProxyValueHolder=true/false

loadIndexes The loadIndexes=true

option has been avail-

able since version 4.2.

In that case, indexes

are also always loaded

to memory. In contrast

to the useProxyVal-

ueHolder option, it

continues to allow write

access. The option

can be activated for

all clients, including

Knowledge Builder.

loadIndexes=true/false

name This name is used to

identify the Job-Client in

the Admin tool in the

overview list of all Job-

Clients.

name=<Job-Client name>

scheduledJobs A comma-separated list

of jobs that are to be

scheduled. scheduledJobs=<Job name 1>
[, <Job name 2>, ...]

Memory settings:

The following three parameters are used to configure the memory allocation and usage. You

may specify values either in megabytes or actual bytes, whereby it is assumed that values

under 1048576 refer to megabytes.

i-views 5.3

524/534

Parameter: Description: Syntax:

maxMemory Maximum base memory

usage permitted. A min-

imum of 50 MB, the to-

tal physical base mem-

ory available (under Win-

dows) or 512 MB by de-

fault.

maxMemory=<integer, in MB>

baseMemory Base memory usage

after which efforts to

free up memory in-

crease. By default 0.6

* maxMemory. (alias:

“growthRegimeUpper-

Bound”)

baseMemory=<integer, in MB>

freeMemory-

Bound

If memory that is being

used, but is no longer

needed, exceeds this

limit, it is freed up for

use again.

freeMemoryBound=<integer, in MB> [10]

minAge Minimum duration (in

seconds) in which a

cluster remains in the

memory. A cluster is a

set of objects that are

always loaded together

as one (e.g. an individ-

ual with all its (meta)

properties. Clusters

that have not been used

for an extended period

are unloaded when

necessary.

minAge=<Integer> [30]

unloadInterval Minimum duration (in

seconds) between two

clusters being unloaded

unloadInterval=<Integer> [10]

unloadSize Minimum number of

loaded clusters after

which unloading occurs

unloadSize=<Integer> [4000]

keepSize Number of clusters that

are kept when unload-

ing.

keepSize=<Integer> [3500]

Job configuration:

To configure individual jobs in the configuration file, a new section has to be created for each

i-views 5.3

525/534

one. These are each started with the name of the job in a pair of square brackets. This is

followed by the respective parameters of the job.

Example:

[Job-Name1]
<Parameter>=<value>
...

[Job-Name2]
...

Logging settings:

For the configuration options for logging, see the logging settings in Chapter 11.1.2 Configu-

ration file.

Lucene server configuration:

Lucene is integrated via a Job-Client whose jobclient.ini file has to be configured accordingly.

Below is an exemplary configuration:

[lucene]
directory=lucene-index
port=5100
pageSize=100
; Wildcards at the start of a word are prohibited by default as they are very slow
; Allow in this configuration
allowLeadingWildcards=true

[JNI]
classPath=lucene-6.4.1\core\lucene-core-6.4.1.jar;lucene-6.4.1\analysis\common\lucene-analyzers-common-6.4.1.jar;lucene-6.4.1\analysis\queries\lucene-queries-6.4.1.jar;lucene-6.4.1\analysis\queries\lucene-queries-6.4.1.jar

The directory lucene-6.4.1 contains the Lucene binary files. The index is stored in the directory

lucene-index.

4.4.2.1.2 Job specific parameters

In general:

Parameter: Description: Syntax:

jobPool JobPool for executing the job.

jobPool=<Job-Pool-Name>

...?

i-views 5.3

526/534

scheduledJobs:

Parameter: Description: Syntax:

time Time at which the job

should be executed for

the first time. time=<Time>

Example:

time=22:15

interval Specifies how frequently

the job should be exe-

cuted. (d=days, h= hours,

m=minutes, s=seconds)

interval=<Exact time>

command For KExternalCom-

mandJob only. Name

of an external batch file

that should be executed

by the job.

command=<File name.cmd>

scriptName For KScriptJob only.

Registration key of an in-

ternal script that should

be executed by the job.

command=<Script resource>

unique (?)

unique=true/false

user (? only) Internal name

of a user instance under

which the job should be

executed.

user=<User name>

arguments (For KExternalCom-

mandJob only?). Argu-

ments that are trans-

ferred when the script is

called.

arguments=<Argument1 [Argument2 ...]>

4.4.2.2 JobPool types

The following types of job pools are available:

i-views 5.3

527/534

4.4.2.2.1 Index jobs

• Category (categories): index

If you specify index or the job classes displayed below, the indexing jobs are executed by the

Job-Client. The indexing jobs should be performed by a single Job-Client. Instead of listing all

the job classes individually in the job pool, you can also use the symbolic name index.

KAddAllToIndexJob

• Name: Add attributes to the index

KLightweightIndexJob

• Name: Update external index

An external index is maintained via the KLightweightIndexJob.

KLuceneAdminJob

• Name: Lucene admin job

The KLuceneIndexJob maintains an externally set-up Lucene index.

KRemoveIndexJob

• Name: Remove attributes from the index

KSyncIndexJob

• Name: Synchronize index

KAddAllToIndexJob, KRemoveIndexJob and KSyncIndexJob are required tomaintain inter-

nal indexes.

4.4.2.2.2 KBrainbotJob

• Category/categories: <none>
• Name: KBrainbotJob

KBrainbotJob executes actions to maintain the Brainbot index.

Within the configuration in the Admin tool, if it is specified that maintenance actions are to

be executed by a Job-Client (“Use Job-Client”), a Job-Client must be started to maintain the

external index.

The KBrainbotJob has no additional configuration parameters the ini file because all the con-

figuration takes place in the Admin tool.

4.4.2.2.3 KExternalCommandJob

• Category/categories: <none>

i-views 5.3

528/534

• Name: External call

Using the KExternalCommandJobs it is possible to activate executable programs that are

concerned with processing or changing files, or that are simply to be called. No configuration

is necessary in the ini file of the Job-Client. The job is inserted by a script call using KScript.

The main element of the script call is the element ExternalCommandJob. The attribute Ex-
ecution allows the user to set whether the job should be executed locally without Job-Client

(value: local) or with Job-Client (value: remote). The default value is remote.

Note about remote execution:

Access to local programs is checked by calling a batch file. Before the Job-Client takes a

KExternalCommandJob to execute, it checks whether it can execute this job. This is the case

if the batch file, which is specified in the element command, exists in the current directory of

the Job-Client. If the currently pending job is not accepted for processing by any Job-Client,

then the job queue is blocked for the user who inserted the job. This job must be deleted

manually.

The necessary first subelement in the script:

• Command: specifies which batch file should be called

<Command>convert.bat</Command>

The name of the batch file is specified in the command element. The directory and the actual

program to be executed are specified in the batch file. Important: The batch file must be located
on the same level as the program (e.g. Job-Client or KB). Directory specifications in the command

element are ignored.

The other subelements are worked through from top to bottom. If the order of parameters

plays a role in the external program, this should be factored in.

Script elements that form the parameters for the call:

• OptionString: can be used multiple times. Parameters of the external program to be
called are specified as strings. The parameters entries must be specified in full.

<OptionString>-size 100x100</OptionString>

• OptionPath: the path expression specified is evaluated and built up in the command
call as a string

<OptionPath path="./topic()/concept()/@$size$"/>

Script elements that are concerned with the handling of attributes

• SourceBlob: This specifies the blob attribute that is used as a data source
<SourceBlob><Path path=“$image$"/></SourceBlob> <SourceBlob path=“$image$"/>

• ResultAttribute: This specifies the parameter for the generation of a new, or the
change of an existing, blob attribute with the content of the file, or the file itself, that

is the result of the program called externally.

Attribute values:

name: Name or internal name of the attribute

Topic to be created: Target individual of the attribute

modifyExisting to be created: change (true) or create new (false, default value)

filename: File name of the blob attribute to be created

<ResultAttribute name=“$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()"/> <ResultAttribute name=“$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()">

i-views 5.3

529/534

<Path path=“$image2$"></ResultAttribute>

Example 01:

Script:

<Script> <ExternalCommandJob execution="local"> <Command>convert.bat</Command> <OptionString>-size 100x100</OptionString> <SourceBlob><Path path="."/></SourceBlob> <OptionString>-geometry +5+10</OptionString> <SourceBlob><Path path="."/></SourceBlob> <OptionString>-geometry +35+30</OptionString> <OptionString>-composite</OptionString> <ResultAttribute name=”$image2$" topic="./topic()" modifyExisting="true" filename="convert_ +./valueString()"/> </ExternalCommandJob> </Script>

Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert.exe" %*
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash
convert $*

Example 02:

Script:

<Script> <ExternalCommandJob execution="local"> <Command>convert2.bat</Command> <SourceBlob path="."/> <SourceBlob path="."/> <ResultAttribute name=”$image3$" topic="./topic()" modifyExisting="true" filename="convert2_ + ./valueString()"/> </ExternalCommandJob> </Script>

Content of the batch file under Windows:

"C:\Program Files\ImageMagick-6.2.6-Q16\convert" -size 100x100 %1
-geometry +5+10 %2 -geometry +35+30 -composite %3
exit /B %ERRORLEVEL%

Content of the batch file under Linux:

#!/bin/bash

convert -size 100x100 $1 -geometry +5+10 $2 -geometry +35+30 -composite $3

Note: The two examples deliver the same file as the result. The exit command is used in the

Windows batch files to return the exit code of “convert” to the call.

Here is another example of an advanced conversion script that can be called using the pa-

rameters “Source file”, “Image width” and “Target file” and that only minimizes wider images

to the specified width. The script also writes a log file for the conversion, whereby error

messages from Image Magick are also written to the log file:

set MONTH_YEAR=%DATE:∼-8%
echo Converting %1 to %3 (width: %2) >> convert%MONTH_YEAR%.log
convert.exe %1 -resize "%∼2>" %3 2>> convert%MONTH_YEAR%.log
echo Conversion finished with exit code %ERRORLEVEL% >> convert%MONTH_YEAR%.log
exit /B %ERRORLEVEL%

And here is the version for Linux (Bash):

#!/bin/bash
FULLDATE=‘date +%c‘
MONTH_YEAR=‘date +%m.%Y‘
LOGFILE="convert.$MONTH_YEAR.log"

i-views 5.3

530/534

echo "$FULLDATE: Converting $1 to $3 (width: $2)">>$LOGFILE
convert "$1" -resize "$2>" "$3" 2>>$LOGFILE
EXITCODE="$?"
echo $FULLDATE: Conversion finished with exit code $EXITCODE>>$LOGFILE
exit $EXITCODE

4.4.2.2.4 KExtractBlobTextJob

• Category/categories: <none>
• Name: Convert blob to a text attribute. Using the batch file specified on the “Index con-
figuration -> External full text filter” tab in the Admin tool, the text content is extracted
from the blob attribute and stored in a new attribute of the specified text attribute type.

The other parameters available for the job are the topic in which the extract is to be cre-

ated, and, if the specified text attribute is multilingual, the language of the attribute to

be displayed. This job is inserted by a trigger, which should be set up to react to the cre-

ation and modification of blob attributes. The KScript rule to be specified in this process

is “ExtractBlobText,” which permits the parameters described above to be specified.

4.4.2.2.5 KQueryJob

• Category(s): query
• Name: Search

Used to outsource the running of simple and expert queries to a Job-Client. Is equipped and

executed to suit the needs of the examined search.

4.4.2.2.6 KScriptJob

• Category (categories): script
• Name: KScriptJob

You can use the KScriptJob to call KScripts from KScript so that they are executed on the

Job-Client. Here, the job is generated by the KScript rule “ScriptJob” which is equipped with

the script and the start objects calculated at this time as the starting point and enters the

resulting KScriptJob into the job queue. In this way, work can be distributed asynchronously

to Job-Clients. This is used, for example, to externalize activities that would block the calling

client for too long in a sequential execution.

To do this, the parameter "scriptName" must refer to the registration key of a script stored in

the network. The script is automatically encapsulated in a transaction.

4.4.2.3 Example for an ini file

volume=MyNetwork
host=localhost

i-views 5.3

531/534

jobPools=query, index
cacheDir=jobcache
logfile=jobclient01.log
maxMemory=400
name=jobclient01

4.4.2.4 Performance optimizations

Pre-load

When starting up, Job-Clients can pre-load selectable structures if configured accordingly.

This operation increases the amount of memory that the Job-Client requires, but it also en-

ables the Job-Client to run more quickly.

The entry keepClusterIDs must be specified in the ini file of the Job-Client. Possible values

for this entry are:

• index - In the settings for pluggable indexers, there is an option to set the check-mark
for Job-Client to load index into base memory. For activated indexers, a part of their index

structure is loaded.

• protoOfSizes - The number of individuals for each concept is already determined at the
start.

• accessRights - The root object of the rights system is loaded into the memory.

Please note: For the entry useProxyValueHolder the value must be set to false. Otherwise,

the Job-Client will attempt to send RPCs (requests to which the mediator can respond) to the

mediator. The client however, should load the clusters itself and possibly retain them in its

memory.

Note: To improve performance, it also helps to activate the hard drive cache for the Job-

Client.

Example of entries in the ini file:

[Default]
...
useProxyValueHolder=false
keepClusterIDs=index,protoOfSizes,accessRights
cacheDir=jobcache
maxCacheSize=1000
...

4.5 Blob service

4.5.1 Introduction

The blob service is used to store the data of large files outside the semantic network but links

to the file attributes in which these file contents are supposed to be stored. This has several

advantages:

• It has the effect that the semantic network only receives the semantic information that
is based on files and remains easy to backup and transfer.

i-views 5.3

532/534

• Storage locations of the semantic network and file contents can be configured differ-
ently.

• Several blob services can be connected to one semantic network, so that one storage
location can be provided for each attribute definition.

The following chapter explains how to set up and operate blob services.

4.5.2 Configuration

To specify under which network address (host and port) the blob service is supposed to be

reachable, the “interfaces” option must be entered in the file “blobservice.ini.” There are two

options here:

1. The blob service is supposed to be reachable only from the computer on which the blob

service is installed.

2. The blob service is supposed to be reachable also by other computers via the network.

Here is an a configuration example for variant 1, whereby the blob service port (30000) can

be selected freely.

interfaces=http://localhost:30000

To configure variant 2, you need to enter the IP address of the network adapter via which the

blob service is supposed to be reachable from the network instead of “localhost.” If you want

the blob service to be reachable via all network adapters that are active on the computer,

you have to enter “0.0.0.0” as the IP address. Example:

interfaces=http://0.0.0.0:30000

If the blob service is address via the network, communication should be encrypted. En-

crypted communication using HTTPS can also be configured in the “interfaces” option by

replacing “http://" with “https://.” Example:

interfaces=https://0.0.0.0:30000

In relation to encrypted communication, see also the next chapter called SSL certificates.

To ensure operation, the DLL of the SQLite framework "sqlite3.dll" must also be available

in the working directory. Without this DLL, the internally required administration structure

cannot be generated and maintained.

Following that, the blob service can be started to make it available immediately.

To link the blob service with a blob store in the semantic graph database, the Admin tool

offers the required tools under “System configuration - Blob storage:”

i-views 5.3

533/534

Clicking on “Create” (1) creates a new logical store. After that, enter the URL (2) of the blob

service specified in the ini file and then click on “Add” (3). The newly created blob store for

external storage of file attributes is then linked to the blob service, which you can check by

clicking on “Update” (4) in the lower display area.

You can also specify a comma-separated list of alternative URLs in the “URLs” area (2). For

alternative URLs, i-views prefers a connection via a loop-back device where possible.

The “Deletable files” area (7) displays the number of files that are no longer required from

the semantic network perspective. Use “Delete" (8) to de-reference them in the blob service

and remove them if appropriate.

The indicator “Internal” (9) shows that this is a store that is integrated into a mediator. Inter-

nal stores are automatically transferred with the volume during a volume transfer (upload,

download, copy, backup, recover).

If you want to remove the link between a blob store and a blob service, select the desired

blob store in the list “External stores in the blob service” and click “Remove” (5). Following

that, you can select the blob store in the top section “External storage for file attributes” and

then click “Delete” (6) to remove it completely. Alternatively, you can specify a new URL to link

the blob store to another blob service.

PLEASE NOTE!

By removing a blob store s link to a blob service, all files stored therein are lost!

4.5.3 SSL certificates

To configure the HTTPS connection, the certificate and the private key must be stored.

The certificate must be stored under certificates/server.crt.

i-views 5.3

534/534

The private key must be stored under private/server.key. Make sure that server.key is avail-

able as an RSA key, i.e. the first line of the file must be

—–BEGIN RSA PRIVATE KEY—–

. If the key is in a different format, it has to be converted. Using OpenSSL, this is possible e.g.

by means of "openssl rsa -in input.key -out private/server.key -outform PEM".

4.6 Install as an OS service

It is possible to set up the service programs as OS services in the various supported operating

systems.

For Unix-type operating systems, it is necessary to use the mechanisms supported by the

relevant platform; you will find several examples in the version-independent manual for i-

views.

ForMS-Windows, the services offer the parameters -installAsService NAME and -uninstallService

NAME , which can be used to set up or remove a Windows-managed service from an admin-

istrative shell. During the installation, all the parameters specified after the service name are

transferred to the installed service as command line parameters. Example:

bridge -installAsService iviews-bridge-rest -inifile bridge-rest.ini

sets up a service with the name “iviews-bridge-rest”, which is given

PFAD\bridge.exe bridge.exe -serviceName iviews-bridge-rest -ini bridge-rest.ini

as its call line.

	Knowledge-Builder
	Basics
	Building blocks
	Type hierarchy - Inheritance
	Create and edit objects
	Graph editor

	Definition of schema / model
	Define types
	Relation types and attribute types
	Model changes
	Representation of schema in the graph editor
	Metamodeling and advanced constructs
	Indexing

	Searches / Queries
	Structured queries
	Simple Search / Fulltext search
	Search pipeline
	Model "hit"
	The search in the knowledge builder
	Special cases

	Folder and registration
	Import and export
	Mapping of data sources
	Attribute types and formats
	Configuration of the export
	RDF-import/export
	Restore deleted individuals from a back up
	Transport selected schema

	Access rights and triggers
	Check of access right
	Trigger
	Filter types
	Operation parameters
	Operations
	Test surrounding

	View Configuration
	Concept
	Menus
	Actions
	View configuration elements
	Panels
	Sessions
	Knowledge Builder configuration
	Style
	Detector system for determining the view configuration

	JavaScript API
	Introduction
	Examples
	Modules
	Debugger
	API extensions

	REST services
	Configuration
	Services
	Resources
	CORS
	OpenAPI documentation

	Reports and printing
	Create print templates
	Create print templates for lists
	Document format conversion with Open / LibreOffice

	Tagging
	Configuration
	View configuration
	Tagging by Script
	Required software

	Development support
	Dev tools
	Dev service

	Rule engine
	What are rules?
	Where can rules be configured?
	How can rules be configured?
	Testing rules
	Executing rules

	Admin Tool
	Admin tool configuration
	Launch window
	Server
	Knowledge network
	Information
	Manage, New and Next
	End

	Create a new knowledge network
	Server
	New knowledge network
	Password (mediator)
	License
	User name
	Password (user)
	Ok and abort

	Server administration
	Network overview
	Message field
	Menu line

	Individual network administration
	User authentication
	Individual network administration window

	View Configuration Mapper
	Introduction
	Configuration
	View configurations for the View Configuration Mapper
	Login configuration
	The View Configuration Mapper component
	Create a project with the View Configuration Mapper
	Modify templates
	Operate the frontend

	Actions
	Viewconfig elements
	General
	Alternative
	Group
	Hierarchy
	Properties
	Property
	Edit
	Table
	Search
	Graph configuration
	Text
	Image
	Script generated HTML
	Scriptgenerated view

	Bookmarks and history
	Bookmark Resource
	Link to Panels
	In-app navigation with bookmarks

	Plugins
	vcm-plugin-calendar
	vcm-plugin-chart
	vcm-plugin-html-editor
	vcm-plugin-maps
	vcm-plugin-markdown
	vcm-plugin-timeline
	vcm-plugin-net-navigator

	Special configuration
	Display change history in a web frontend

	Installation
	Extension project
	Development environment
	Technical details

	i-views services
	General
	Command line parameter
	Configuration file

	Mediator
	General
	System requirements
	Operating modes
	Installation
	Operation

	Bridge
	General
	Common command line parameters
	Configurationfile "bridge.ini"
	REST bridge
	KEM bridge
	KLoadBalancer

	Jobclient
	General
	Configuration of the Jobclient

	Blob service
	Introduction
	Configuration
	SSL certificates

	Install as an OS service

